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ABSTRACT 

 

The accuracy of a supervised classification is highly 

dependent upon the training samples. This paper is concerned 

with the impact of non-proportional training data sampling of 

imbalanced classes on land cover classification accuracy, 

using a See5 decision tree classifier. The purpose of this 

paper is 1) to examine experimentally how the training 

sampling ratio affects classification accuracy in the 

imbalanced class scenario; and 2) to determine the best 

training data sampling ratio for optimal classification 

performance using a See5 decision tree classifier. To better 

measure classification accuracy, we propose a balanced 

accuracy measure of a targeted class, which incorporates both 

False Positive and False Negative errors to truthfully reflect 

the accuracy of a targeted class. The study result indicates 

that balancing the training sample between classes does not 

necessarily improve the classification accuracy. Instead, 

selecting a training sample ratio which equals the actual ratio 

of the coverages of the imbalanced classes will yield the best 

classification performance. 

 

Index Terms— See5/C5, class balancing, targeted class 

accuracy measure, best training sampling ratio  

 

1. INTRODUCTION 

 

Supervised classification methods, such as machine learning 

methods See5, Random Forest, Neural Networks and Support 

Vector Machine are widely used for land cover classification 

[1]. However, classification accuracy varies as a function of 

a range of training set properties [2]. Therefore, properly 

designing a sampling scheme and selecting a training data set 

are critical to the resulting classification accuracy. Properly 

assessing the classification performance with respect to the 

sampled training data is also necessary for improving 

classification accuracy. 
It was found that in machine learning classification, class 

imbalance (i.e., one class population is much smaller than 

others) may hinder the performance of the standard machine 

learning classifiers [3]. The accuracy performance issue 

caused by class imbalance is mainly because most standard 

machine learning algorithms are accuracy driven. This means 

that many classification algorithms try to minimize the 

overall error (i.e. to maximize the overall classification 

accuracy). However, in a class imbalance dataset, overall 

classification accuracy tells very little about the minority 

class [7]. The minority class features are often treated as noise 

and are ignored. This leads standard machine learning 

classifiers to bias towards majority classes which usually 

have a larger number of training instances. Consequently, the 

minority class tends to have a lower classification accuracy 

as compared to the majority classes.  

Research on classification of the imbalanced classes has 

been growing rapidly, and a number of methods have been 

developed recently [4][5][6][7]. In general, there are two 

categories of methods to handle class imbalance 

classification: 1) the data-level approach and 2) the 

algorithm-level approach. The data level approach adjusts the 

class imbalance ratio with the objective to achieve a balance 

distribution between classes whereas in the algorithm-level 

approach, the conventional classification algorithms are fine-

tuned to improve the learning task especially related to the 

smaller class [7]. The data level approach for balancing 

classes is to either increase the minority class sample size or 

decrease the majority class sample size. The goal is to achieve 

the same number of training instances for both classes.  

In this study, we use a real world scenario, the Florida 

citrus land cover classification, as a case study. Florida citrus 

crop production, a $3.34 billion industry, accounts for 49% 

of total U.S. citrus production. It is important to timely 

monitor and assess Florida citrus production for informed 

business decision making and policy formulation. Machine 

learning based classification analysis using remote sensing 

data provides an effective, efficient and low cost approach for 

monitoring such large scale crop production as the Florida 

citrus crop [1]. In this study, all other crop classes and non-

crop classes are merged into one “other” class and the 

classification becomes a binary classification problem.  

It is obvious that the citrus class and “other” class are not 

in balance since the citrus crop land cover is only about 3.2% 

of total land cover within the study area as calculated from 

historical record.  Overall classification accuracy will be 

dominated by the “other” class (about 97% land cover) 

accuracy. The citrus classification accuracy will be greatly 

affected by the training sample balance. Therefore, this is a 



perfect case to study the impact of balancing classes on the 

classification accuracy of the minority class. 

The purpose of this study is 1) to examine experimentally 

how the training sample ratio significantly affects 

classification accuracy in the imbalanced class scenario; and 

2) to determine the best training data sampling ratio for 

optimal classification performance using a See5 decision tree 

classifier. This study will experimentally verify whether  

balancing classes improves classification accuracy of the 

minority class using a See5 decision tree classifier. 

The rest of the paper is organized as follows: Section 2 

describes study area and test data. Section 3 introduces the 

study methodology. Section 4 presents experiment results 

and discussion. Finally, Section 5 presents our conclusions. 

 

2. STUDY AREA AND DATA 

 

2.1 Study Area 

 

This study uses a See5 decision tree classifier to identify the 

2017 citrus crop in Florida, U.S. from Sentinel-1A SAR and 

Landsat 8 data.  The study area for this research covers the 

major Florida citrus growing area, a region within Florida, 

which is approximately 6357 km2, as shown in Fig. 1(red 

polygon). This region is selected due to its major citrus 

production and persistent clouds to evaluate the SAR data. 

Though Florida is one of the major citrus growing areas, the 

citrus land coverage is just about 3.2% of the study area. 

There are many other varieties of crops in the area. This 

makes it a perfect scenario for studying the impact of decision 

tree classification training data sampling ratio on 

classification accuracy. 

 

2.2 Satellite Imagery 

 

The geospatial data used in this assessment include: Sentinel-

1A and Landsat 8 imagery, a Florida citrus mask, citrus field 

polygon data, and the 2011 National Land Cover Data Set 

(NLCD). 

The ESA Sentinel-1 constellation has two polar-orbiting 

C-band SAR satellites Sentinel-1A and Sentinel-1B. 

Sentinel-1A level-1 data products, acquired on March 26, 

April 7, May 3 and July 24, 2017, are used in this study. 

Sentinel-1A’s interferometric mode has 250 km wide swath. 

The Level-1 products are multi-look ground range detected 

(GRD) and have 5x20 meter spatial resolution and dual 

polarization (VV and HH).  

Landsat 8 30m OLI Level-1 imagery used for this 

assessment were acquired on April 7 and May 9, 2017. The 

same date and path scenes were mosaicked. The bands used 

for this assessment include: bands 3 (visible green), 4 (visible 

red), 5 (near infrared), 6 (short wave infrared – 1), 9 (Cirrus) 

and 10 (Thermal Infrared – TIRS-1).  

 

 
Fig. 1.   Study area within Florida, U.S. (red polygon)  

 

 
 
Fig. 2. Zoom of citrus polygon data used for training and validation. 

All polygons are manually delineated and attributed, based on 

annual field inspections, in the USDA NASS Florida Field Office. 

Blue boundaries surround the citrus groves overlaying the aerial 

imagery.   
 

2.3 Citrus Mask 

 

A 30m resolution Florida citrus mask, derived from 2013 – 

2016 NASS historic Cropland Data Layers [1], is used as an 

ancillary layer in the classification. The citrus mask defines a 

pixel as citrus if the pixel is identified as citrus in all four 

years. 

 

2.4 Ground Reference Training and Validation data 

 

Citrus polygon data provided by the USDA NASS Florida 

Field Office are used for training and validation of the citrus 

class in this study. Fig. 2 shows a zoom of a portion of the 

citrus polygon data, outlined with blue boundaries, which are 

overlaid on aerial photography. All citrus groves are 

manually delineated and updated yearly based on field 

inspections which take place from October through June. 

There are 26,536 citrus groves recorded in the 2017 Citrus 

Geographic Information System (GIS) Data Layer. The citrus 

polygon data are the most accurate, current and 

comprehensive delineation of the Florida citrus crop 

available [8].   

The 2011 U.S. Geological Survey, National Land Cover 

Data Set (NLCD) are used for training of all non-citrus 

categories of land cover [9].  The NLCD data have a 16-class 

land cover category scheme. It covers CONUS at a spatial 

resolution of 30 m. 



3. METHODLOGY 

 

3.1 Sentinel-1A and Landsat 8 preprocessing   

 

The downloaded Sentinel-1A images were first preprocessed 

with calibration to sigma naught, Range Doppler terrain 

correction and de-speckling (median 5x5 speckle filter) using 

the ESA open source Sentinel-1 toolbox.  The preprocessed 

same date images were mosaicked, reprojected to Albers 

Conical Equal Area projection, resampled to 30 m and set to 

the map extent of the study area using Hexagon’s ERDAS 

Imagine 2016 software.   

Landsat 8 OLI Level 1 scenes were reprojected to Albers 

Conical Equal Area Projection, mosaicked (same date and 

path) and set to the extent of the study area. The six bands 

selected in this assessment are the bands identified as most 

useful in classifying crops by the NASS CDL program.   
 

3.2 See5 Classification Test and Training Sample 

Selection 

 

In this study, See5 decision tree method (version 2.08), with 

the boosting option, is used to produce the citrus 

classifications. Both multi-date optical and SAR imagery are 

stacked for classification. A citrus mask is used as an 

ancillary layer for all classifications. The algorithm of the 

decision tree classifier is untouched. The input imagery, 

decision tree classifier parameter settings are unchanged for 

all tests.  

To test the impact of class balancing on citrus 

classification accuracy, we sample a series of training data 

sets with different class sample ratios.  The training data sets 

are randomly sampled from the Citrus GIS Data Layer for 

citrus training and NLCD for non-citrus training respectively. 

The number of sampled training data is determined by testing 

the sample ratio of the citrus class to “other” class with a 

combined total sample number of 1,000,000 points. The 

experimental training sampling ratios to be tested are 2%, 

3%, 5%, 10%, 20%, 30%, 40% and 50%, of which the 50% 

ratio is the balanced class sampling ratio. For example, for 

the 3% ratio, there are 30,000 citrus pixels and 970,000 non-

citrus pixels sampled from the Citrus GIS Data Layer and 

NLCD respectively. For citrus classification validation the 

complete Citrus GIS Data Layer including all polygons are 

used in this study. 

  

3.3 Accuracy Assessment 

 

Classification accuracy is usually measured using a confusion 

matrix which contains information about the actual and the 

classified class as shown in the following table: 

 
TABLE 1. Binary classification confusion matrix 

 Classified Positive Classified Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Common performance measures (indices) can be derived 

from the confusion matrix as follows [10]:  

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

True Positive Rate sometimes is also called user’s accuracy 

(corresponds to error of commission) while Precision is also 

called producer’s accuracy (corresponds to error of 

omission). Each type of accuracy measure yields different 

information.  

Either the True Positive Rate or Precision, or the True 

Negative Rate measures only one performance aspect of the 

classifier. They do not provide a comprehensive measure of 

the performance.  For example, a classifier that has higher 

precision may have a very high false negative rate. Therefore, 

if we focus on only one measure, we may get a biased 

measure of accuracy.  

On the other hand, total accuracy is a summary measure, 

which does not reveal if error is evenly distributed among 

classes or if some classes have very low accuracies and others 

have very high accuracies. In an imbalanced scenario, the 

total accuracy is not an appropriate measure to evaluate 

classification accuracy performance for very small minority 

classes since the accuracy may mainly represent the 

classification performance of the majority classes due to the 

dominance of the majority classes.  

In this study, the citrus land cover classification problem 

is formulated as a binary classification: citrus or “other”. The 

Florida citrus crop covers just around 3.2% of total land cover 

within the study area. It is a typical minority class, which is 

overwhelmed by the majority classes. The citrus class is the 

targeted class. In the binary classification confusion matrix, 

the targeted class is set as the positive class and the “other” 

class is designated as the negative class.  To better measure 

classification accuracy, we propose a balanced accuracy (BA) 

measure of a targeted class, as defined as following: 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑  𝐴𝑐𝑐𝑢𝑟𝑎𝑦(𝑇𝐶𝑇𝐴) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 

The balanced accuracy measure incorporates both False 

Positive and False Negative errors which directly affect the 

targeted class. It thus truly reflects the classification accuracy 

of the targeted class, not including the accuracy information 

of the “other” class.  

In addition, the Kappa coefficient is also a popular 

measure used to assess the accuracy of the land cover 



classification. The Kappa coefficient reflects the difference 

between actual agreement and the agreement expected by 

chance. The estimate of Kappa coefficient 𝑘̂ is defined as 

following 

𝑘̂ =
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)

𝑐
𝑖=1

𝑐
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖
𝑐
𝑖=1 )

 

 

where C and N represent the number of classes, and the total 

number of samples, respectively. xii, xi+ and x+i represent the 

correctly classified pixel numbers in class i, the sum of the 

class i in the classified data, and the sum of class i in the 

validation data, respectively.  
 

4. RESULTS AND DISCUSSIONS 

 

The classification accuracy results with respect to the 

different training sampling ratios (TSR) are summarized in 

Table 2. The training sampling ratio of citrus to “other” class 

runs from 2%, 3%, 5%, 10%, 20%, 30%, 40% to 50%. As 

shown in Table 2, the producer’s accuracy monotonically 

increases as the training sample ratio of citrus to “other” class 

increases while the user’s accuracy decreases. The balanced 

targeted accuracy (BA) – citrus balanced accuracy starts at a 

lower 70.73% for 2% TSR, increases to the best accuracy of 

71.41% for 3% TSR and then the accuracy monotonically 

decreases to the lowest 42.14% as TSR increases to a class 

balance ratio (50%). As shown in Table 2, the class balancing 

does improve the omission errors but significantly increases 

commission errors. It does not improve the targeted class 

balanced accuracy at all. As observed from Table 2, the best 

training sample ratio for a targeted citrus class should be in 

proportion to the ratio of the actual population sizes of 

classes.  In addition, this result also indicates that the 

balanced accuracy measure is more appropriate for 

classification imbalance problem performance assessment. 

Interestingly, the overall Kappa coefficient follows the 

same pattern of change as the balanced accuracy. This means 

it can also be used as criterion for accuracy performance 

improvement assessment. 

 

5. CONCLUSIONS 

 

This paper demonstrates experimentally that the training 

sample ratio of imbalanced classes significantly affects the 

classification accuracy using a See5 decision tree classifier 

for the class imbalance problem. It is found that balancing 

classes does not improve the classification accuracy of the 

minority class using a See5 decision tree classifier. The study 

results indicate that balancing classes by equalizing instances 

of classes will not improve performance. However, selecting 

a training sample ratio which reflects the actual ratio of the 

land cover classes will yield the best classification 

performance. 

The proposed targeted class balanced accuracy (BA) 

measure provides a better measure of classification accuracy 

for a targeted individual class. It incorporates both False 

Positive and False Negative errors to truthfully reflect the 

accuracy of the targeted individual class. Moreover, the 

overall Kappa coefficient also truthfully reflects the changes 

in classification accuracy similar to the BA. 

 
TABLE 2. Citrus accuracy with different minority/majority 

class sampling ratios  

Training 

Sampling Ratio 

(TRS) 

Citrus 

Producer 

Accuracy 

Citrus 

User 

Accuracy 

Overall 

Kappa 

Citrus 

Balanced  

Accuracy 

(BA) 

2% 85.3% 80.6% 0.823 70.73% 

3% 89.1% 78.3% 0.828 71.41% 

5% 91.9% 75.6% 0.824 70.88% 

10% 93.9% 71.6% 0.806 68.41% 

20% 95.4% 64.0% 0.757 62.07% 

30% 96.4% 56.7% 0.702 55.49% 

40% 97.2% 49.4% 0.640 48.70% 

50% 97.8% 42.5% 0.575 42.14% 
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