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Four timely and broadly available remotely sensed datasets were assessed for inclusion into county-level corn
and soybean yield forecasting efforts focused on the Corn Belt region of the central United States (US). Those
datasets were the (1) Normalized Difference Vegetation Index (NDVI) as derived from the Terra satellite's
Moderate Resolution Imaging Spectroradiometer (MODIS), (2) daytime and (3) nighttime land surface temper-
ature (LST) as derived from Aqua satellite's MODIS, and (4) precipitation from the National Weather
Service (NWS) Nexrad-based gridded data product. The originating MODIS data utilized were the globally
produced 8-day, clear sky composited science products (MOD09Q1 and MYD11A2), while the US-wide NWS
data were manipulated to mesh with the MODIS imagery both spatially and temporally by regridding and
summing the otherwise daily measurements. The crop growing seasons of 2006–2011 were analyzed with
each year bounded by 32 8-day periods from mid-February through late October. Land cover classifications
known as the Cropland Data Layer as produced annually by the National Agricultural Statistics Service (NASS)
were used to isolate the input dataset pixels as to corn and soybeans for each of the corresponding years. The
relevant pixels were then averaged by crop and time period to produce a county-level estimate of NDVI, the
LSTs, and precipitation. They in turn were related to official annual NASS county level yield statistics. For the
Corn Belt region as a whole, both corn and soybean yields were found to be positively correlated with NDVI
in the middle of the summer and negatively correlated to daytime LST at that same time. Nighttime LST and
precipitation showed no correlations to yield, regardless of the time prior or during the growing season. There
was also slight suggestion of low NDVI and high daytime LST in the spring being positively related to final yields,
again for both crops. Taking only NDVI and daytime LST as inputs from the 2006–2011 dataset, regression tree-
based models were built and county-level, within-sample coefficients of determination (R2) of 0.93 were found
for both crops. Limiting the models by systematically removing late season data showed the model performance
to remain strong even atmid-season and still viable even earlier. Finally, the derivedmodelswere used to predict
out-of-sample for the 2012 season, which ended up having an anomalous drought. Yet, the county-level results
compared reasonably well against official statistics with R2 = 0.77 for corn and 0.71 for soybeans. The root-
mean-square errors were 1.26 and 0.42 metric tons per hectare, respectively.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Crop yield statistics

Accurate and timely estimation of local and regional crop yield
statistics is important for a variety of reasons. On the macroeconomics
level they allow societies to understand the food and fiber supply
which in turn helps the demand side plan for and better utilize the finite
crop resources. In the most developed countries this is manifested
through futures contract markets which are most efficient and fair for
price discovery when transparent and current statistics are available.
Local, direct to consumer markets work similarly in that statistics help
both parties understand the value of the crop. From a management
ghts reserved.
standpoint, yield information gives a farmer a baseline of what is
typically expected to be produced and thus can be used to best establish
risk, insurance premiums or the value of input costs. Established yield
information also highlights the impact to crops from natural events
such as severe weather or changing climatic conditions. Likewise,
regional yield statistics help quantify how strategies such as planting
methodologies, irrigation, fertilizer and pesticide use are playing
out in aggregation and can identify regions that are chronically
underperforming, or have a “yield gap.”

The United States Department of Agriculture (USDA) spends consid-
erable effort in determining United States (US) crop yields in service
to the agricultural community. The statistical arm of the USDA, the
National Agricultural Statistics Service (NASS), conducts two large
panel surveys (USDA, 2012) that are annually ongoing throughout the
growing season (USDA, 2010) to establish state- and national-level
yield estimates. The first is known as the Agricultural Yield Survey

http://dx.doi.org/10.1016/j.rse.2013.10.027
mailto:dave.johnson@nass.usda.gov
http://dx.doi.org/10.1016/j.rse.2013.10.027
http://www.sciencedirect.com/science/journal/00344257


117D.M. Johnson / Remote Sensing of Environment 141 (2014) 116–128
which is based on a maintained “list frame” of farmers and the
results are directly reliant on the information they provide. Each year
thousands of those farmers are randomly selected, contacted monthly
by phone during the growing season and asked to report expected
yields for their crops grown. Information from all those sampled
is then combined and summarized to derive a set of regional yield
“indications.” Run in parallel is the Objective Yield Surveywhich derives
an independent set of indications through biophysical crop measure-
ments. For it, hundreds of small plots are randomly sampled from fields
throughout themajor growing areas and visited by an enumerator a few
times during the crop season. Attributes collected include plant counts
per unit area, grain size, grain weight, etc. The information from all
of the plot-level data is ultimately aggregated into a model to derive
this second set of yield indications. The Objective Yield Survey is more
limited in scope over the Agricultural Yield Survey in that it only focuses
on the dominant commodity crops like corn, soybeans, wheat, potatoes
and cotton. Ultimately, the results from both surveys, along with any
relevant ancillary information, are analyzed by the NASS Agricultural
Statistics Board (ASB) to establish themonthly published yield forecasts.

After the season is complete late in the fall, an additional widely cast
survey is undertaken which documents agricultural production statis-
tics down to the county-level. For it questionnaires are sent to a much
larger sample of producers asking for responses on many agricultural
facets of their operation including estimates of their crop yields. Finally,
these county-level statistics are assessed and published to reconcile
with the previously established ASB national- and state-level yields.

Any further independent, error assessable and cost effective mea-
sures of crop yield indications that can be provided to the ASB are
welcome. Real-timemeasuring of crop yields from remote sensing tech-
nologies has been promoted as a feasible methodology but has been
fairly limited in implementation (Allen, Hanuschak, & Craig, 2002;
Baruth, Royer, Klisch, & Genovese, 2008; Reynolds et al., 2000; Rojas,
2007). Reasons for lack of uptake are likely many but probably lead by
a perception that results are not being seen as accurate, timely, or objec-
tive enough. Furthermore, remote sensing estimation of crop yields
has potentially been hindered due to the unknown availability, cost
and capacity of future imagery data combined with the highly special-
ized nature of the work for which it may be hard to find skilled and
experienced labor.

In terms of US crop statistics themselves, corn and soybeans are the
two largest commodities grown by land area and the planted acreage
has steadily expanded in reach by about 25% over the last couple of
decades (USDA/NASS Quick Stats). Yield trends for these crops have
been increasing at a similar rate but see more relative variability year
to year. Corn and soybeans from the US are high value and significant
commodities on global export markets and of late they have been
volatile in pricing. This suggests, at least in part, that the true amount
produced has not been fully understood at all times.

1.2. Remote sensing of crop yields

Monitoring crops via satellite remote sensing is not a new idea or
one inwhich there is a lack of research. Funk and Budde (2009) showed
a summary of the work in a variety of sensor, location, and crop type
contexts. Gallego, Carfagna, and Baruth (2010) also presented a history
targeted specifically to crop production estimation. Even with all
this aggregated work, assimilating the results to summarize to a best
practice is confounding because the research has targeted different
ecoregions of the globe, does not use the exact same type of input
datasets or has varying methodologies. Furthermore, the specific crop
type of focus has varied across the studies making the outcomes further
difficult to compare. However, in general there has beenmore emphasis
on corn, soybeans and wheat. Reasons why these three crops in partic-
ular have been the most studied are unknown but likely because
they are found wide spread and in large quantities geographically. An
alternative reason could be that there has been found better remote
sensing yield estimation success with them versus other potential
crops (and failures tend not to get published).

Regardless of crop being investigated, a common and central
theme of this type of remote sensing research involves the reduction
of the sensor's multispectral channels into a single metric known
as the Normalized Difference Vegetation Index (NDVI), analyzing its
response throughout the crop growing season and then relating it
again to in situ collected crop information. NDVI is calculated from the
red and near-infrared (NIR) spectral channels as

NDVI ¼ NIR–redð Þ= NIRþ redð Þ:

NDVI exploits the large difference seen between the red and NIR
bands for heavily vegetated land cover types and has been shown to
be strongly correlated with plant productivity in both in situ (Hatfield,
1983; Shanahan et al., 2001; Viña et al., 2004) and remote sensing
applications (Basnyat, McConkey, Lafond, Moulin, & Pelcat, 2004;
Tucker, 1979). NDVI is often preferred over the independent use of the
red andNIR channel in that it simplifies data analysis into a singlemetric
while at the same time it is a normalization which helps to reduce
data errors due to poor viewing geometry or hazy atmospherics. The
normalization also allows for easier comparison across different sensors.

Many sensors with the ability to provide NDVI have been utilized
throughout the past few decades. Long-term, ubiquitous, and freely
available US satellite assets are reviewed here. The program with the
longest lineage is that of the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor. Variants of it have been aboard over a dozen oper-
ational polar orbitermeteorological satellites that were first launched in
the late 1970s. The last was placed into orbit in 2009. AVHRR is decently
suited from monitoring vegetation dynamics given its daily revisit rate
and reasonable spatial resolve of a little over 1 kmwhich is fine enough
formonitoring relatively homogenous crop areas. Assessment of AVHRR
NDVI phenology and the general relation local crop yields has been
performed (Ferencz et al., 2004; Maselli & Rembold, 2001) in addition
to analysis targeted toward the specific commodities of corn, soybeans
or wheat (Benedetti & Rossini, 1993; Hays & Decker, 1996; Mkhabela,
Mkhabela, & Mashinini, 2005; Salazar, Kogan, & Roytman, 2007; Wall,
Larocque, & Léger, 2008).Modeling results have been shown reasonable
for all but there are limitations on the yield estimation precision. Errors
may be a function of the native coarse pixel size of AVHRR, which is
larger thanmost fields even in heavily mechanized agricultural regions,
or due to the sensor itself which may not be able to provide adequate
spectral information with low noise.

Technology has progressed and a newer and more sophisticated
sensor called the Moderate Resolution Imaging Spectroradiometer
(MODIS) improves on AVHRR (Fensholt & Sandholt, 2005; Huete
et al., 2002) particularly in terms of spectral response, spatial resolution,
and having more emphasis placed on land related observations (Justice
et al., 2002). MODIS is aboard two earth science research oriented
satellites, Terra and Aqua, which were launched in 1999 and 2002,
respectively. MODIS carries a total of 36 spectral bands with most
having a nadir ground resolution of about 1 km, which is similar to
AVHRR. However, two of the key bands for land observations, the red
and NIR, have a much finer resolution of about 250 m. MODIS derived
crop andproductivity yieldwork has again often relied onNDVI phenol-
ogy with a focus on wheat (Becker-Reshef, Vermote, Lindeman, &
Justice, 2010; Mkhabela, Bullock, Raj, Wang, & Yang, 2011; Reeves,
Zhao, & Running, 2005) and corn or soybeans (Bolton & Friedl, 2013;
Doraiswamy et al., 2004; Doraiswamy et al., 2005; Funk & Budde,
2009; Guindin-Garcia, Gitelson, Arkebauer, Shanahan, & Weiss, 2012;
Sakamoto, Gitelson, & Arkebauer, 2013). Yield research which use
MODIS data have proven better results than those that use AVHRR
data. There are no identical MODIS follow-on mission planned but
a similar meteorology focused polar orbiting sensor called the Visible
Infrared Imaging Radiometer Suite (VIIRS) programhas begun. A proto-
type VIIRS instrument was launched in 2011 aboard a satellite platform
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named Suomi National Polar-orbiting Partnership. VIIRS was ultimately
designed to replace the AVHRR program but has characteristics more
similar to MODIS.

Improving on spatial resolution further are the Landsat series of
earth observation satellites. They have also provided an opportunity
for assessing crop yields from space. Landsat has carried a few optical
and thermal sensor variants since the first launch in 1972 with steady
performance and calibration improvements on successive missions to
the present. The original sensor was the Multispectral Scanner (MSS)
which had four or five spectral channels and a spatial resolution of
about 60 m. More contemporary Landsats have carried variants of a
sensor called Thematic Mapper (TM). It has even more spectral bands
than the MSS and a ground sample resolution of 30 m. The eighth
Landsat mission, having eleven bands, was launched early in 2013.
While the spatial resolution from all Landsat sensors is vastly superior
to AVHRR andMODIS, Landsat has been hindered for use in monitoring
crop yields given its relatively narrow swath of about 185 km which
provides a temporal revisit rate of only 16 days. This severely limits
the number of observationswithin a typical growing season, particular-
ly when factoring in the likelihood of clouds. However, yield and pro-
ductivity work utilizing TM data have been prototyped for different
crop types (Doraiswamy, Moulin, Cook, & Stern, 2003; Gitelson et al.,
2012; Liu et al., 2010; Lobell, Ortiz-Monasterio, Asner, Naylor, & Falcon,
2005) and it has been shown possible, albeit for relatively small analysis
areas only.

Weather variables have had a much longer history of use for under-
standing crop yields compared to NDVI which was spawned from mul-
tispectral remote sensing technologies. Temperature and precipitation
are the ubiquitous choice for yield predictor variables. Ample, and too
lengthy to list, research going back a century ago has shown the nega-
tive correlation of heat and positive correlation to precipitation for
corn yields (Smith, 1914; Wallace, 1920). More recent analysis has
been increasingly sophisticated and refined (Kauffman & Snell, 1997;
Lee, Phil Kenkel, & Brorsen, 2013; Tannura, Irwin, & Good, 2008) as
more detailed climate and weather datasets in addition to wide-scale
and historical yield validation information have become available.
Most recent analysis is also integrating future climate variability into
crop models (Dixon, Hollinger, Garcia, & Tirupattur, 1994; Schlenker &
Roberts, 2009). Ultimately, all work converges around the notion that
too much summer heat reduces crop yields while decent rainfall
amounts help increase it.

While there has been a lot of agro-meteorology research, little of it
has used remotely sensed datasets as input for predicting crop yields.
But now, unlike in the past, there exists the ability to collect spatially
detailed proxy parameters for agro-meteorology variables via remote
sensing. Land surface temperature (LST) is a similar, but not exactly
the same, measurement as more commonly collected air temperature.
The two variables are strongly related, though, with LST having larger
temperature extremes and being locally dependent on the land cover
type (Mildrexler, Zhao, & Running, 2011; Prihodko & Goward, 1997;
Wan, 2008). In terms of satellite LST and the relation to yield no
knowndirect research has been done. However, there have been related
studies that have used LST to monitor agricultural drought (Feddema &
Egbert, 2005; Patel, Parida, Venus, Saha, & Dadhwal, 2012). Some have
also integrated NDVI alongside LST for the analysis (Goetz, 1997;
Prasad, Chai, Singh, & Kafatos, 2006; Wan, Wang, & Li, 2004).

Researchusing remotely sensingderivedprecipitation in the context
of agricultural yields would also seem prudent given that rainfall rates
can vary dramatically by location, and thus interpolated measurements
from the limited weather stations may not be providing sufficient
spatial detail. To counter this problem, a dedicated satellite for measur-
ing rainfall amounts was indeed developed called the Tropical Rainfall
Measuring Mission (TRMM). Unfortunately, its steeply inclined polar
orbit around the earth is only focused on the equatorial Tropics and
thus it provides no imagery farther than 35° north and south. So,
TRMM can onlymonitor the southern portion of the US and thusmisses
the Corn Belt, and most other major growing areas around the globe,
completely. Within the US however there is an alternative option.
The National Weather Service (NWS) part of the National Oceanic and
Atmospheric Administration (NOAA) operates a ground based remotely
sensed datasetwith coverage being provided by a large array of Doppler
radars fromwhich precipitation can be estimated (Seo, 1998). Up to this
point few applications of the data beyond pure rainfall and hydrological
monitoring have been published. Reason why are unknown but are
likely a combination of it being a new dataset and one that is not
obviously available to those in the remote sensing community.
It could also be seen as providing too much spatial and temporal
information that is not obvious how to exploit.
1.3. Objective

This applied-leaning research here attempts to provide an increased
understanding of the corn and soybean production in the US through
two primary objectives:

1. To firmly understand the relationship between US county-level average
corn and soybean yields versus relatively common variables collected
throughout the entire crop growing season via remote sensing. The
variables assessed were a time series of the NDVI as derived by the
Terra MODIS sensor, daytime and nighttime LST as derived by
the Aqua MODIS sensor and precipitation estimates produced from
the NWS Nexrad Doppler weather radar system. The Aqua LST and
Nexrad precipitation datasets were both considered novel in regard
to what has been researched previously for predicting crop yields.
Also, equal importance to corn and soybeans was given whereas in
many studies only a single crop type is analyzed.

2. To build a county-level yield forecasting model, from those remotely
sensed variables deemed important, that is not only accurate but also
timely and relatively simple to run in an operational environment. A
large and robust cross-sectional panel of historical county-level
yield information from NASSwas used as the basis of the forecasting
and implemented with regression tree, machine learning software.
Rulequest Cubist was chosen for themodeling solution and is viewed
as both pragmatic and unique.
2. Materials and methods

2.1. Study area

The crop yield work focused on 12 states which sit in the central and
north US and are known collectively as the Corn Belt (Fig. 1). They are
Arkansas, Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, South Dakota and Wisconsin. The states make up
over 75% of the US corn and soybean production and thus are focused
upon by the NASS Objective and Agricultural Yield Surveys in making
national crop production estimates. Note, corn does not include
Arkansas or North Dakota in the Objective Yield Survey and soybean
does not include Wisconsin. The 12 states are geographically contigu-
ous, relatively flat and level, and have very fertile soils. Winters are
usually cold and snowy and summers warm and humid. Prior to
transitioning to wide-scale farming in the middle and late 1800 s
the area was covered by native tall grasses. Most of the states are now
dominated by the two crops of soybeans and corn which are often
rotated symbiotically in the same field alternatively from year to year.
The states towards the west, ebbing into the drier Great Plains, do
however have a higher diversity of crop types and in particular small
grains crops like wheat and barley. Recent and overall trends have
shown corn and soybeans to be slowly accounting for more and more
of the cropland area and reducing the area of other crops (USDA/
NASS, Quick Stats).



Fig. 1. Distribution of corn and soybean within the US as depicted from the 2012 USDA Cropland Data Layer. Deeply shaded states are those that were used in analysis.
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2.2. Datasets

Four grid-based, map referenced datasets were explored in terms of
their relationship to county level crop yields and for possible inclusion
into corn and soybean yield forecasting models. They were:

1. NDVI — calculated from the 8-day composited surface reflectance
bands product (Vermote, Kotchenova, & Ray, 2011) from the Terra
MODIS sensor (termed MOD09Q1),

2. Daytime LST— produced from the 8-day composited thermal product
(Wan, 2007) from the Aqua MODIS sensor (termed MYD11A2),

3. Nighttime LST — also produced from the 8-day composited Aqua
thermal MODIS sensor, and

4. Precipitation — derived from the NOAA/NWS Nexrad ground based
system (Seo, 1998; Seo, Breidenbach, & Johnson, 1999).

These particular variables were chosen for several reasons. First
and foremost, they all are suggestive of being related to crop yields via
simple conventional wisdom and more importantly, agronomy type
research. Secondly, each of the datasets is spatially detailed and allows
for modeling at relatively fine geographic scales approaching, particu-
larly for NDVI, the crop field level. As incorporated here the NDVI
resolution is about 250 m, the LST is 1 km, and the precipitation is
4 km (6.25, 100, and 1600 ha, respectively). Temporal revisit times
are also high with all of these products as raw input data for each
are collected daily. On any given date cloud cover impacts the quality
of imagery collected from satellites and thusMODIS composite products
which pick the “best of” pixels over an eight day period are distributed
to end users helping simplify data management and processing. The
precipitation dataset used is also produced and distributed daily but
not impacted by cloud cover due to the penetrating ability of radar.
Composited precipitation type products are also produced but
they are accumulation periods of a week or month and not exactly
in alignment with MODIS datasets. Thirdly, each of the datasets has a
reasonable history depth. Terra data collection goes back to the year
2000 and Aqua 2002. These start years were soon after the launch of
each satellite. The NWS precipitation product archive began in 2005.
All products have a finite lifespan but it is believed that each of these
dataset will continue to be at least available into the near future. For
MODIS, while it is aging, at the time of writing there is no sense that
the sensor is about to fail or be shut off, and even if one platform does
fail the other can be considered a backup. Furthermore, for MODIS the
VIIRS sensor is considered a replacement. More VIIRS sensors are
planned for the operational Joint Polar Satellite System so whatever
is learned about yield forecasting from MODIS will likely be directly
applicable for years to come. Andfinally, and perhapsmost importantly,
all four of these datasets are provided free of charge and accessible
immediately via the Internet. They each have little lag time from
collection to distribution. The last point is particularly critical if trying
to forecast yields in an operational and time sensitive environment.

The respective Terra and Aqua satellite from which the MODIS
data were chosen was done for purposeful reasons. Terra was used for
NDVI because its approximately 10:30 a.m. overpass time is thought
to provide the most optimal time for observing surface reflectance
versus Aqua which is at 1:30 p.m. and more likely on average to have
encountered afternoon clouds. Conversely, Aqua was chosen for LST
observations instead of Terra because the daytime overpass of 1:30 p.m.
aligns closer in time with the maximum daytime temperature. Likewise,
the Aqua nighttime temperature product was also chosen over Terra's
because it would be more representative of the low temperature point
of the diurnal cycle. Both daytime high and nighttime low temperatures
are often talked about in terms of crop yield impacts, albeit usually
anecdotally, so it was desirable to include a proxy for both. The 8-day
composited products were chosen as a compromise over single day
observations or even longer compositing time windows. Furthermore,
the 8-day compositing period is seen as usually sufficient time in which
to have obtained at least one clear sky observation, in the Corn Belt at
least, for inclusion into the mosaic.

All of the MODIS MOD09Q1 and MYD11A2 data were obtained via
File Transfer Protocol (FTP) over the Internet from the Land Process
Distributed Active Archive Center (LP DAAC). The MODIS data is global
in nature and distributed by standardized five degree by five degree
“tiles.” Six tiles were needed to cover the entire Corn Belt region of
interest and consisted of “horizontal/vertical” referenced tiles 9/4, 9/5,
10/4, 10/5, 11/4 and 11/5. Thirty-four time periods of the 8-day data
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were pulled for the years 2006 through 2012. The start time of the first
composite for each year was February 10th, or day-of-year (DOY) 41.
The start date of the final annual composite acquired was November
1st which equals DOY 305. The entire data series time window was
seen as more than comprehensive enough not only to cover the Corn
Belt crop growing season, which is typically from May to October, but
also allowed for spring pre-season information to be investigated. The
MODIS rawfileswere obtained natively in theHierarchical Data Format.
The “Collect 5” version was used.

The NOAA/NWS data were also obtained via Internet FTP but from
the NWS Advanced Hydrologic Prediction Service website. Because the
rainfall data were to be aggregated to the same 8-day schedule as
MODIS, all the daily data from February 10th through November 8th
were gathered. The same 2006–2011 years were spanned. The NWS in-
formation was natively in Environment Systems Research Institute's
(ESRI) Shapefile vector format in a standardized and regularized point
grid of approximately 4 km in spacing. The Shapefile data were provided
by the NWS in “compressed”.zip format.

The dependent variable for which the remote sensed dataset
would ultimately be compared came from annual county-level corn
and soybean yields as published by the USDA NASS. The data were
downloaded from the Internet in tabular form from the USDA/NASS
Quick Stats website. An annual average yield for each county, for
both corn and soybeans, across the Corn Belt, years 2006–2011, was
ultimately gathered. There are roughly 1000 counties in the region so
with seven years of data a large amount of data points resulted. A hand-
ful of the counties did not contain data in certain or all years because
they failed to meet NASS publication standards of having a sufficient
number of farmers or large enough response rate. This typically means
there was very little or none of that crop produced in that particular
county and any estimate would have been unreliable.

Finally, land cover “masks” depicting crop areas were obtained.
NASS produces a robust annual land cover classification over the US
called the Cropland Data Layer (CDL). The first US wide coverage was
developed in 2009 (Johnson &Mueller, 2010) and has continued annu-
ally since (Boryan, Yang, Mueller, & Craig, 2011). Year 2008 was com-
pleted retrospectively for the nation and for the Corn Belt area CDL
classifications exist in the years 2006 and 2007 as well. CDL accuracies
for corn and soybean fields are particularly strong and thus can act as
an excellent proxy for ground validation data. All of the CDL information
was obtained over the 12 state region from 2006 to present. The 2006
start year of the CDLs also drove the starting point for inclusion of the
MODIS and precipitation datasets even though they both exist farther
back in time. The CDLs were ultimately used to isolate only the relevant
areas of corn and soybeans from the MODIS and precipitation data.

2.3. Data preparation

A consistent grid-based reference frame was first established in
which all of the data products used would harmoniously nest. The
MODIS-based “250 meter” sinusoidal equal area map projection was
chosen. Selecting this coordinate systemminimized the overall amount
of data processing needed since the majority of the data used was from
MODIS. It also avoided any resampling caused degradation of the
MODIS data since it would not have to undergo a map reprojection. Of
note, while the MODIS data are labeled as 250 m in resolution
they are more precisely 231.66 and indeed that spacing is what was
used. The generalized 250 m, and multiples of it, nomenclature will be
continued here.

With the reference grid established, a 250 m resolution raster-based
mask file for each state (again, Arkansas, Illinois, Indiana, Iowa, Kansas,
Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
Wisconsin) was created to define which pixels were within a particular
state's border. All boundary definitions were derived from ESRI's Data
and Maps Detailed Counties Shapefile (dtl_cnty.shp) by first converting
the vector file into the sinusoidal projection and then determining
which 250 m reference grid cell belonged to what state. A majority
area rulewas used to assign pixels thatwere split by two ormore states.
Each final state mask was ultimately aligned spatially with the MODIS
reference grid and stored in 1-bit Earth Resources Data Analysis System
(ERDAS) Imagine format with pixels coded zero defined as residing
outside the state border and those coded one being inside.

Similarly and in conjunction, 250 m pixel identifications grids were
developed by state to define which county each pixel best fit. Grid cells
were assigned to their Federal Information Processing Standard (FIPS)
codes which typically are ordered alphabetically by county name
starting at a value of one and increasing by odd numbers only. The
ESRI County Shapefile was again used as input. The output however
was in 16-bit format to account for FIPS values that could range above
255.

Corn and soybean masks were next developed, by state and year,
from the available CDL 2006–2011 annual information. These masks
were developed to provide a means to isolate corn or soybean areas
from the MODIS and precipitation data (Kastens et al., 2005). A four
step process was used to tailor the information from each 30 or 56 m
CDL into something appropriate at the 250 m level. The first step was
to reproject the raw CDL grids from their native Albers equal-area
conic projection to that of the MODIS sinusoidal. The output grid cell
size was kept the same as the input (thus, either 30 or 56 m). Next,
the number of crop of interest pixels from the CDL that were contained
within each 250 m pixel grid cell was calculated. The total possible was
also established. Depending on the CDL pixel size, and the vertical and
horizontal alignment of it versus the 250 m grid, the maximum counts
possible could vary between 16 and 49. Next, the total corn (or soybean)
counts in each MODIS grid cell were divided by the maximum possible
to give an areal proportion. Finally, that proportion information was
compared to a threshold of 0.9 to establish whether the 250 m cell
contained enough of the crop of interest. This 90 percent threshold
value was subjectively determined but was felt to be a good compro-
mise between the possibility of excluding too many pixels, because of
noise orminor cover typemixing, yet conservative enough to be robust.
The final corn and soybean masks for each state were a 1-bit formatted
file where a value of one equaled at least 90% of the MODIS-scaled pixel
to be containing corn (or soybeans) as a cover typewhile a value of zero
was less than 90%. In the end, each of the state-level mask grids had
minimally thousands of pixels declared as corn or soybeans and most
counties within them hundreds of pixels. This was deemed more than
sufficient to build a high quality sample for intersection against the
NDVI, LST and precipitation datasets.

With the state, county and yearly corn and soybean masks all
in place, next the remotely sensed data was managed. For the MODIS
surface reflectance data (MOD09Q1) each of the 6 Hierarchical Data
Format (HDF) tiles comprising the Corn Belt per 8-day time step were
successively mosaicked into a single HDF file. Next, the red and near-
infrared channels (HDF bands 0 and 1, respectively) were extracted
and stored in ERDAS Imagine format. Finally, the NDVI was calculated
for each entire image mosaic. All data management was kept in the
original 16-bit scaled by 10,000 format and thus the output NDVI was
also scaled. There were ultimately 34 NDVI mosaic images per year
created and thus a grand total of 204 over the six years from 2006
through 2011.

Next all of the correspondingMODIS LST datasetswere ingested. The
processing used was very similar as to the surface reflectance data in
that each date of six tiles were first read and mosaicked. However,
after combining the tiles, it was HDF layers 0 and 4 that were imported
into ERDAS Imagine format. Those particular bands corresponded to the
daytime and nighttime information, respectively. No further processing
was then done and thus temperatureswere left in their native, scaled by
50 K, 16-bit and 1 km spatial resolution, format. In total there were 204
images for both the daytime and nighttime LST information.

Through subjective observation of the MODIS composite imagery it
was noticed that there were often times when the 8-day window was
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not long enough to assure noise free pixels. The errors tended to be
more pronounced in the early or later periods of the growing season
and in more northerly locations. It was also concluded that for both
NDVI and LST when noise occurred it usually erred in the negative
direction. These findings were consistent with what would result
when periods of prolonged clouds or haze or even standing snow or
water existed. Many methods for minimizing noise within remotely
sensed time series data have been proposed and used to smooth the
data. They range from simple to sophisticated and include analysis
methods like least squares (Jönsson & Eklundh, 2004), harmonics
(Moody & Johnson, 2001) or wavelets (Galford et al., 2008). Choosing
a best method is not always straightforward (Hird & McDermid, 2008)
and a disadvantage of them all is they usually perform best when a
true periodic length of data is available. For many applications this
may not be an issue. But, if trying to analyze and forecast crop yields
in the middle of the season, the full time series of the current year
will not be available, or in itself will need to be modeled. Furthermore,
potential outlier or unusual data needs to be scrutinized carefully for
any smoothing methods for fear of imputing additional error into the
time series.

Thus, here only a simple and mild error checking of the data was
employed to help minimize the effects of the typically lower error
values. To do so, each pixel within the time series was compared to
the pixel one composite date prior and one date after. If that middle
value was lower than both, it was deemed to be bad. It was then
corrected by taking the simple average of that prior and subsequent
pixel. The only caveat is the first and last images in each year's time
series were not able to be error checked since they are at the ends of
the time series. But, this is why 34 time steps were downloaded per
year when ultimately only the central 32 would be used for direct anal-
ysis. This simple error checking method was sufficient to improve the
data in the vast majority of cases yet not so extreme as to be altering
perfectly good pixels.

Next, the precipitation information was ingested to harmonize with
the MODIS time series data. The native format of the rainfall data was
markedly different from theMODIS since it was stored as vector points.
So, an independent series of steps was taken to prepare the data. First,
the data were grouped by 8-day intervals in the same time windows
as for each of the 8-dayMODIS composites and added together to derive
an accumulated 8-day precipitation at each vector point. These 8-day
accumulated precipitation files were each then projected to the
MODIS sinusoidal projection. Finally, the values were interpolated
from vector points to raster-based cells via an inverse distance
weighting methodology. Ultimately, a four km grid (more closely
3706 m) with floating point values of rainfall measured in inches was
a result. An output value of zero meant no rainfall during the 8-day
period. The precipitation output grid was established so that the 1 km
LST and 250 m NDVI data nested perfectly to the four km precipitation
pixels. No temporal error checking or smoothing of the precipitation
data was undertaken.
2.4. Data integration

With the 8-day composited NDVI, daytime and nighttime LST, and
accumulated precipitation information in place alongside the reference
masks, a final step was performed to determine the time series of
county-level averages for both corn and soybeans. In summary, the 32
8-day periods, spanning from mid-February to late October, for each
variable were “stacked” into one file and then intersected, by county,
state, and crop mask for each of the years. Global mean statistics were
then calculated for the pertinent pixels within each county for all of
the 32 time periods. The result was a 32 value long vector containing
county-level averages for NDVI, daytime and nighttime LST, and precip-
itation over only the corn and soybean areas. So in total, for each county
and for each year 128 variables were derived.
After all the vectors were derived, they were combined and man-
aged into a table in which each row in the database pertained to a par-
ticular year and county. A state identifier, county identifier, and year
were affixed. Most important, the NASS published county-level average
yield values (reported in the US customary bushels per acre for units) to
be used as the independent variable were also added to each record.
A few counties did not have any crop pixels to analyze so those were
ultimately dropped. Counties that were shown to have crop pixels but
no corresponding NASS yield were also dropped. Also, Arkansas and
North Dakota counties were not included in the corn dataset since
theywere not part of theNASS Objective Yield survey region.Wisconsin
was excluded from the soybeans list for the same reason. The resulting
corn and soybean tables had 4824 and 4693 records, respectively.

3. Results

Having the corn and soybean databases built, simple exploration to
determine what dependencies existed between each variable by date
and the crop yields was undertaken. The Pearson product-moment
correlation coefficient (r) was used for this and the results for the entire
combined Corn Belt region over all of the years are shown in Fig. 2a for
corn and Fig. 2b for soybeans. Both corn and soybeans showed similar
relationships and patterns. For corn the strongest correlations came
positively from NDVI peaking during the first week of August
(r = 0.73). A simple linear regression of NDVI versus yield at that
date gave a R2 = 0.54. An exponential regression was tighter with
an R2 = 0.63. There was a continuous and smooth correlation rela-
tionship going forward or backward from that time but it progres-
sively weakened. Inversely, daytime LST showed a good negative
correlation to corn yields. It was also optimized during early August
(r = −0.58) and steadily weakened in both time directions. A
linear regression at the most negative correlation point yielded an
R2 = 0.33 while again an exponential regression was better
with R2 = 0.53. Soybean NDVI and daytime LST peak correlation
responses were a week later and slightly less (r = 0.70, R2 = 0.49
and r = −0.51, R2 = 0.26). The scatterplots during the peak corre-
lation time for NDVI and daytime LST, corn and soybeans, are shown
in Fig. 3a, b, c and d.

Another noticeable, albeit weak feature, was the inverse relationship
of NDVI to yields during spring. There was also some suggestion of
positive spring daytime LST relating to better yields. The nighttime LST
however showed very little correlation to crop yield regardless of the
time of the season or crop but there was possibly some minor sugges-
tion of being consistently negative throughout. Precipitation also
showed little to no relationship with corn or soybean yield and with
equal distribution along the zero line throughout the 32 period time
window.

The corn and soybean datasets were further analyzed for NDVI and
daytime LST correlation coefficient response by dividing them into sub-
groups. The first stratificationwas done by state. In summary, each state
had a similar response to the average and variedmainly bydegree. Thus,
all state's corn peaked at or around early August with most having r
greater than 0.70. Missouri, Indiana and Ohio were somewhat weaker
with peak r = 0.53, 0.46 and 0.39, respectively. Likewise, the corn
daytime LST relationships by state were all consistently inverse to
yield. Those peak magnitudes were somewhat more widely spread
ranging though and varied from −0.29 (Kansas) to −0.83 (South
Dakota). For soybeans the state responses were also all similar in shape
to the overall average. NDVI in Indiana had the lowest correlation but
was still 0.46. Minnesota was the highest with r = 0.83 and all states
peaked at or around the middle of August. Daytime LST for soybeans
for each stateswas also consistent and inverted for each state and ranged
more weakly from −0.22 (Nebraska) to −0.64 (Illinois and Missouri).

A second stratification methodology was performed but by year
instead. Like by state, the results showed for both crops that each
stratum followed a similar summer pattern to the combined average,
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Fig. 2. Corn (a. upper) and soybeans (b. lower) remotely sensed variable correlation by date.
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regardless of year. For corn the NDVI to yield correlation still peaked
mid-summer for all strata on or just around the July 28–August 4th
composite. Year 2011 saw the highest peak correlation with r = 0.81
and 2008 with the lowest equal to 0.64. Also closely consistent
was the inverted response of daytime LST. However, in years 2009
and 2010 daytime LST peaked an 8-day period earlier during the July
20–27th and in 2008 itwas a period later than the average. For soybeans
the peaks all occurred in August and most centered with the overall
average. For NDVI the peaks were fairly consistent and ranged from
0.67 for 2008 and 0.77 for 2010. For LST the relationships were also
clustered in August but weaker with 2009 notably lower than the rest
with only−0.24. Overall, the strength andweakness years for soybeans
were the same as that for corn.

4. Discussion

4.1. Yield relationships to remote sensing variables

The positive mid-summer NDVI to yield relationship for both corn
and soybeans was not surprising and expected given past research by
others. The results here simply reinforce the fact and fine tune the
knowledge that early August NDVI is the very best relationship for
understanding corn yields from MODIS NDVI and about a week later is
the optimal time for understanding soybean yields. From the scatterplot
there is suggestion that the values are saturating and the best regression
fit is non-linear. The mild inverse relationship to NDVI shown around
the late April period is perhaps more interesting and new knowledge.

More of anunknowngoing into thisworkwas the relationship of the
LST variables since most agronomy type research involves simple air
temperature instead of land surface temperatures. Furthermore, the
limited LST research has involved the morning overpass of the MODIS
sensor from the Terra satellite instead of the afternoon overpass of
Aqua which confounds the question. The early afternoon daytime LST
was clearly inversely related mid-summer in this study for corn and
just slightly less for soybeans. This is consistent with agronomy work
that suggests that as temperatures get overly warm plant productivity
begins to suffer, particularly for corn. It was expected that there would
also be found a relationship between the nighttime LST and crop yields
given, albeit anecdotal, information that plants prefer a cooling off
period during the evening. However, nothing of the sort was proven
here. With either the daytime or nighttime temperature case it needs
to be noted that the relationships shown here would not necessarily
reflect what might be found if using more traditional air temperatures
instead. Also, since the LST information is natively at 1 km resolution
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Fig. 3.Relationship betweenNDVI anddaytime LST andcrop yield at thepoint of peak of correlation.NDVI corn (a. upper left), daytime LST corn (b. upper right), NDVI soybeans (c. lower left),
and daytime LST soybeans (d. lower right).
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there is a potential that finer resolution data would reduce pixel mixing
of the land cover types and thus further improve the relationships.

The results of the lack of any sort of relationship between precipita-
tion and yields were more surprising and perplexing because it is con-
ventional wisdom that crops need rainfall to thrive. The reasons that
no relationships were found, regardless of time of year, could be
many. First, there are certainly areas, particularly in Nebraska and Kan-
sas, that are heavily reliant on irrigation and thus regardless whether
rain occurs or not the corn and soybean crops can still have adequate
moisture. Second, the NWS rainfall grids are effectively a model of the
rainfall amounts derived from radar reflectivity data and may not in
fact be overly accurate even though they appear reasonable. Third,
it could just be that rainfall during the season is not as helpful to yield
production as it might seem. Perhaps soil moisture is built up over a
longer time period and at sufficient depths that the plants can still
reach and utilize it even during times of minimal rainfall.

Finally, precipitation comes in different severities, types, and dura-
tion and likely some are more beneficial than others. For example, a
slow but steady rainfall over a long period like days or weeks may
have better impact on plant health and yields than that from a quick
but intense storm lasting only hours or minutes long. Those strongest
of storms could also result in hail which if large enough outright could
destroy the crop. The accumulated 8-day period was likely not time
specific enough to capture the intensity attribute. On the flipside
it could be speculated that longer accumulation periods are needed to
develop a relationship to yields. This is something that was actually
tested. The precipitation data were explored more intensively by recur-
sively combining the original 32 values by multiples of 2 to further
accumulate the data. In other words, a variety of 16-day, 32-day, 64-day
and 128-day accumulated grids were formed. These types of snapshots
provided something more akin to more commonly used monthly or
seasonal totals. However, regardless of what periodic window was tried,
no better relationships were found.

While the mid-season NDVI and daytime LST relationships are
obviously strongest, the suggestion of a pre-season indicator of crop
yield via the inverse NDVI in late April is particularly compelling. It is
reinforced, even though weak, because it occurs over many dates
which reduces the likelihood that it is just noise. Why this inverse
pre-season relationship exists is not immediately intuitive but an expla-
nation could be that low NDVI tends to occur in damp soils with little
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vegetation present and thus those are the areas which will lean toward
having better yields as the season progresses. Likewise, there may also
be a very slight suggestion that warm spring land surface temperatures
are helpful to crop yields. This could possibly be explained by reason
knowing that warm spring temperatures provide earlier and better
planting conditions which should improve the yield outcomes. These
leading season indicators are tantalizing and could be seen as extremely
important predictors for crop yields that potentially could be used, at
least minimally, to nudge yield forecasts up or down from a trend line.

Finally, the stratifying of databases by state and by year was done to
understand if there were dominant dependencies based on geography
within the Corn Belt or certain years. In all cases the individual state
or year levels followed the overall trend of being peaked for NDVI in
early August, and inversed for daytime LST, for corn. Soybeans peaked
a period or two later than but otherwise each state and year followed
the over trends. These results suggest that the NDVI and daytime LST
relationships to crop yield are similar throughout the widespread Corn
Belt area in addition to over each of the six years studied. This ultimately
bolsters the idea that a singularmodel across time and space integrating
all of the county-level information is appropriate.

4.2. Forecast application of the remote sensing variables

Armed with a better understanding of what variables are correlated
with crop yields, the next objective was to put them into practice for
forecasting. Many types of modeling options exist but in this context it
was decided to use a tool called Rulequest Cubist and allow it to “data
mine” for the bestways relate the historical county-level input variables
to crop yields. Cubist is a machine learning tool which autonomously
derives bestfitting piecewise linearmodels used to predict a continuous
outcome variable (Quinlan, 1993). It has the ability to analyze the
input data for “nearest neighbor” relationships and can run iteratively
multiple times to form ensemble or “committee”models. Furthermore,
it is clever in that is has a built in multi-fold cross-validation ability to
self-test the models it has created. Finally, Cubist also provided output
so a user can assess the rules set for importance of which dependent
variables are used most. Decision tree type models have been used for
remote sensing of agriculture applications but have tended to be toward
crop type mapping (Chang, Hansen, Pittman, Carroll, & DiMiceli, 2007;
Friedl & Brodley, 1997) versus crop yield mapping (Lobell et al., 2005).

Only NDVI and daytime LST were used going forward for modeling
efforts since both nighttime LST and precipitation provided little corre-
lation to yield regardless of the time of season or crop type. However,
the entire time series of NDVI and daytime LST were used even though
it was acknowledged that some dates, particularly early and late in the
season, had likely no value. Itwas fully anticipated thatwithmore infor-
mation than from just the single optimal dates, as summarized earlier,
the modeling efforts would improve due to the accumulation of infor-
mation over the season, but it was not obvious exactly which dates to
include to maximize the information gain. So, a liberal stance was
taken to include all whichwas bolstered by the knowledge that decision
tree analysis has the inherent ability to ignore, or prune, input data that
is not useful, or might even be harmful, compared to other modeling
methodologies.

By omitting nighttime LST and precipitation, the data tables where
effectively halved in terms of the number of data fields before letting
Cubist assess them. To reiterate, at this point each record contained
variables for state, county, year, alongwith the seasonal 32 NDVI values
and 32 daytime LST values. Corn and soybeans were run separately.
Since Cubist has a few input parameters for tweaking its models,
many trial-and-error runs of the software were performed in an
attempt to determine its most effective and parsimonious use. Eventu-
ally, the method settled upon was letting Cubist use “instances”
while limiting it to a single rule set with a “committee” model of five
iterations. A 10-fold cross-validation was done to assess the model but
this option ignored when the final rule-set model was built.
The county-level yield model results using all of the data gave a self-
reported cross-fold validation R2 of 0.93 for both corn and soybeans. The
average absolute error at the county-level was self-reported 0.50 -

metric tons per hectare for corn and 0.17 for soybeans. Interestingly,
allowing Cubist to derive a more sophisticated model with multiple
rules instead of a single one showed little performance gain. Thus the
simplest was used to make the results more interpretable and reduce
the potential for model over-fitting. Using Cubist's instances option in-
stead of rulesmode did provide significantly better results. The iterative
committee models also improved the results noticeably. The derived
rules for both the soybean and corn models tended to rely most heavily
on the mid-summer variables for both NDVI and daytime LST. This
is reassuring and expected given that theywere known tohave the stron-
gest correlations with yields. Some time periods and/or variable types
were not used at all, particularly those early or late in the season. Finally,
somevariableswere indeedused, such as during the green-up and senes-
cence times, but had a small coefficient in the resulting model so are
viewed more as tweaking the overall results rather than driving it.

The initial Cubist runs incorporated the whole years' worth of data.
However, the corn and soybean models were also tested to understand
the performance when withholding the data available towards year
end. This would mimic the scenario when trying to forecast crop yields
mid-season. So, R2 assessments of the models were calculated by
systematically removing end of year data. Surprisingly, the models still
derived an R2 = 0.93when only providedwith information up through
the middle of August. Subsequent reduction of the end of year data
finally started to impact the models but the decrease in the R2 was not
overly dramatic. For example, in early July the cross-validated R2 for
corn and soybeans 0.90 translating to absolute error averages about
20% greater than with having the full season's information. This ability
to derive reasonable mid-season yields is heartening and suggests that
evenwithout a full years' worth of data there is yet enough information
in the time series data to forecast accurately.

4.3. Validation of forecasting

Cubist's self-assessment tools are useful for understanding the
performance of its models but it is not a true out-of-sample validation.
So, to fully test the implications of the remote sensed corn and soybean
forecasting rules, they were run against the MODIS data collected for
2012 and results compared to the NASS 2012 published county-level
yields. This assessment was undertaken by first downloading the 2012
NDVI data from Terra and daytime LST data from Aqua and managed
in the exact same manner as for the 2006–2011datasets. Likewise, the
2012 CDL data were also gathered and processed to create the corn
and soybean masks and then were used to extract the county-level
NDVI and daytime LST averages for 2012.

Next, an executable, called Cubistsam.exe provided with the
Cubist software, was run to easily implement the previously derived,
full-season rules against the new predictor data. The final result was
an estimated yield for each county based solely on the MODIS data. Of
note, several 2012 images early and late in the season were very noisy
beyond what could be error checked and thus were excluded as
the model inputs. They were the first eight NDVI and last three NDVI
periods and the first ten and last three daytime LSTs. Effectively
what was left was the data spanning the middle of May through early
October. Also, allmodelingwork herewas completed prior to the official
release of those numbers so as to avoid retrospect altering of the model
to, perhaps, tune results.

Fig. 4a shows the relationship between the modeled yields for corn
and what NASS ultimately published. Each point represents a county
in the Corn Belt region. Fig. 4b shows the same for soybeans. For corn
the relationship between the county-level predicted and published
years gave a good R2 = 0.77 and a root-mean-square error (RMSE) of
1.26 metric tons per hectare. The linear regression relationship was
y = 0.96x + 0.27. Because the slope was close to one there not much
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Fig. 4.2012 corn (a. upper) and soybeans (b. lower) county-level remote sensing forecasted
yields versus NASS published.
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suggestion of bias to the estimates dependent on themagnitude of yield.
However, there is some visual evidence by way of increased scatter that
the model is less accurate on the low yielding counties. The soybean
results were also good but not as strong as for corn. The soybean
regression gave an R2 = 0.71, RMSE = 0.42 metric tons per hectare,
and a linear model equation of y = 0.81x + 0.48. The slope was not
as close one as hoped and showed that remote sensing tended to
underestimate on the low end and overestimate on the high. Because
the R2 is lower than it was for corn the soybean model is not as precise
overall.

It was expected for both crops that themodeled resultswould have a
tighter relationship to the final NASS yield given the self-reported R2
performance of Cubist at 0.93. Three explanations to the decrease are
hypothesized. The first, and perhaps the most obvious, is that Cubist is
simply overestimating how powerful it is. The program is ultimately
proprietary and complicated and it is not externally obvious how it
is constructing its results. However, even if it is indeed overstating its
usefulness it is still believed valid to use comparative results to under-
stand the utility of different models' parameters and input variables.
Secondly, it is recognized that the time series of input data variables
which are input into Cubist are not purely independent. For example,
NDVI from successive time period is usually similar and one would be
a good predictor for a previous or successor value because it usually
does not vary much from one 8-day period to the next. And in addition
to the temporal autocorrelation there are likely spatial autocorrelation
effects too. This overall lack of date independence is usually considered
a violation of purely statistical type modeling and may be coming into
play here as well.

Finally, and perhaps most importantly, 2012 turned out to be an
outlier year in terms of US weather in the Corn Belt where the bulk of
crop production exists. The area underwent what was considered the
biggest agricultural drought since at least 1988 due to unusually
prolonged heat and dryness which occurred directly in the middle of
the summer. Final yields for corn were far under trend expectations
across the region and most depressed in non-irrigated southern and
western parts of the Corn Belt region. On average they were down
about 16% from 2011 and 25% from the record high set in 2009 — this
when usual year to year yield variability tends to be less than 10%.
Ultimately, corn yields were the lowest since 1995 which is remarkable
considering the improved seed varieties and planting andmanagement
techniques that have progressed since. Soybean yields were also nega-
tively impacted in 2012 although to a lesser extent since they are
more heat tolerant to begin with and late season rains helped spare
the crop. They were down over 5% from 2011 and 10% from the record
high set in 2009. Still 2012 was the lowest soybean yield since 2003.
So, both the corn and soybean models here having been derived from
relatively good to excellent 2006–2011 data had to extrapolate to a
certain extent its results for 2012. It is believed that any modeling
efforts which purely relied on contemporary datasets like this would
have struggled to properly predict 2012 values given that they were
unusually low on average.

A second, albeit subjective, validation was also performed to under-
stand the utility of the remote sensing estimates. Itwas doneby creating
2012 yieldmaps at the 250 mMODIS resolution. Fig. 5a shows the stud-
ied corn states and Fig. 5b the soybeans. They were created in ERDAS
Imagine by calculating for each pixel a yield from the final decision
tree model equation against the time series of the 2012 MODIS data.
The original 30 m resolution 2012 CDLs were also integrated to better
mask cartographically the pertinent field areas for each crop. The map
results were particularly interesting because they begin to show
the spatial heterogeneity that occurs even across a county. At the finest
scale and in the most homogeneous of pixels one can attempt to
estimate a field-level yield. Unfortunately, no field-level in situ informa-
tion is known to be widely available in order to fully understand the
accuracy of themaps. However, the patterns look reasonable and certain-
ly highlight the known lower yielding areas, particularly those toward
the south and west. The maps also reinforce the irrigated areas common
throughout Nebraska which ultimately maintained good yields in 2012.

A final assessment of the practicality of themodel was to recursively
perform hindcasting for each of the years 2006–2011. In other words
2006–2010 and 2012 were used to predict for 2011, then 2006–2009
and 2011–2012 to predict for 2010, then 2006–2008 and 2010–2012
to predict for 2009, and so on for each of the individual years back to
2006. This is hypothetical because one would never have future
data to predict for the current but it does allow for more out-of-
sample validation trials to help increase the understanding of the
model performance. It also provides evidence of the model accuracy
beyond trying to predict for the anomalous 2012 drought year.
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Fig. 5.Corn (a. upper) and soybean (b. lower) remotely sensedpixel-level forecast yieldmap.
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Results showing RMSE (metric tons per hectare), R2, model regres-
sion line slope and intercept (again, metric tons per hectare) for each of
the scenarios are shown in Table 1. For corn the best R2 was for the year
2012 but RMSE was tied for worst in 2012, along with 2007. Overall, no
years for corn were shown to be a real under or over outlier in terms
model performance. A notable consistency though was the model
slope always being less than one. This suggests that themodel is always
prone to underestimating on the low end and/or overestimating on the
high. For soybeans the overall results and implications were similar
with slopes also always less than one. RMSE and R2 were also fairly
stable across analysis years for soybeans although 2008 only had an R2

of 0.47. Its RMSE of 0.41 was relatively average though so in general
not ofmuch concern. In terms of an average coefficient of determination
the corn models outperformed the soybean models with R2 = 0.70
versus 0.65. Average model slope was closer to one for corn as well
(0.83 versus 0.77). In summary, the hindcasting results reinforce
that the modeling efforts are strong for both crops but with corn being
somewhat more robust.

4.4. Modeling for 2013

With the 2012 data now in hand, it was deemed constructive to test
the overall models by including it into the pool of 2006–2011 data. It
was believed that having the preponderance of low 2012 data points
should only help for future forecasting efforts. Indeed once added,
correlations to yields for the 2006–2012 increased the NDVI and
daytime LST relationships further. For corn the NDVI peak correlation
r was still found to be the first week of August and increased to 0.78
from 0.73. The inverted peak daytime LST relationship increased to an
r of −0.60 from −0.58. Similarly the updated soybean relationship
also increased with r = 0.73, from 0.70, for middle August NDVI and
−0.56 from −0.51 for the same date daytime LST. Additionally, the
modest pre-season inverse NDVI relationship strengthened for both
crops going from−0.33 to−0.39 for corn and−0.29 to−0.34 for soy-
beans. But, any early season positive daytime LST to yield relationship
became even weaker and thus it is truly not believed to be useful as
a yield predictor for either crop. Finally, updating of the Cubist rules to
include the 2012 data showed the self-reported full-season R2 to
increase to 0.95 for corn and 0.94 for soybeans. It was 0.93 for
both previously. Since 2012 was an unusually low year for yields, the
inclusion of that data has now resulted in even stronger models for
the future.

5. Conclusions

In summary, this work was undertaken to substantiate the use of
four timely and spatially detailed remotely sensed datasets for inclusion
into county-level corn and soybean yield forecasting models for use
across the US Corn Belt. Those datasets tested were NDVI, daytime LST
and nighttime LST as collected from the space-borne MODIS sensors
and precipitation as derived from the ground-based NWS Nexrad
weather monitoring system. All datasets were assessed as 8-day
composited products chosen as a compromise between data processing
simplicity and retention of sufficient temporal detail. A large and robust
cross-sectional panel of county-level data fromNASS spanning the years
2006 through 2011 was used to verify the explanatory power through-
out the spring and summer of each input dataset. Detailed land cover
information helped isolate within the datasets the corn and soybean
areas.

NDVI was found to be strongly and positively correlated with both
corn and soybean yields throughout the summer andmost dramatically
in early August. Also, and unexpectedly, there was a suggestion that
early season NDVI is negatively correlated to crop yields, albeit weakly.
Daytime LST strongly mirrored NDVI and was found to be negatively
correlated with yields for both crops throughout the summer season
and peaking in early to mid-August. Nighttime LST and precipitation
were also investigated but showed to have no correlation to corn or
soybean yields regardless of the seasonality. Not finding a precipitation
to yield relationship was particularly surprising.

Using the full time series of NDVI and daytime LST variables for
inclusion into a decision rule-based predictive model gave very good
results (R2 = 0.93) for both corn and soybeans as ascertained through
the self-reported, cross-validation diagnostics of Cubist software.
Dates of the strongest correlation in Augustwere shown tomost heavily
used by the models as expected. Removal of data frommid-August and
later degraded the model little suggesting that yield forecasting results
in early August are nearly as robust as would be after the season has
completed. Furthermore, forecasts even earlier in the season are possi-
ble with model precision dropping steadily into the spring to where
the error is about double. This may still be useful in certain applications.

Out-of-sample validation of the model with a full season's worth of
2012 NDVI and daytime LST remote sensing input data against the
2012 published county estimates was calculated and showed corn
performing good with an R2 = 0.77 and soybeans, somewhat less so,
with an R2 = 0.71. These correlations were lower than was suggested
by model cross validation but 2012 turned out to be an anomalous



Table 1
County-level corn (a. upper) and soybeans (b. lower)model result statistics for forecasting
year 2012 and hindcasting of years 2006–2011.

Year RMSE R2 m (slope) b (intercept) Type

Corn
2006 1.08 0.71 0.89 0.98 Hindcast
2007 1.26 0.67 0.84 1.95 Hindcast
2008 0.99 0.66 0.76 2.06 Hindcast
2009 0.96 0.66 0.87 1.44 Hindcast
2010 1.07 0.66 0.74 2.57 Hindcast
2011 1.09 0.74 0.74 2.18 Hindcast
2012 1.26 0.77 0.96 0.27 Forecast

Soybeans
2006 0.47 0.66 0.75 0.90 Hindcast
2007 0.38 0.69 0.81 0.62 Hindcast
2008 0.41 0.47 0.65 1.03 Hindcast
2009 0.38 0.59 0.73 0.71 Hindcast
2010 0.41 0.70 0.81 0.34 Hindcast
2011 0.41 0.71 0.81 0.52 Hindcast
2012 0.42 0.71 0.81 0.48 Forecast
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yield year inwhich to forecast for due to a large and deep droughtwhich
lowered yields, some dramatically, across most of the study region.
Thus, much of the model error may have been a result of trying to
predict what would eventually become outlier events. Hindcasting the
individual years 2006–2011 showed similar results to that of 2012. All
the results taken together show the modeling efforts to be robust for
both crops but with corn performing somewhat better on average.

While the focus on this paper has been the forecasting of county-
level corn and soybean yields, the ability to derive broader estimates
at the state- and national-level was also a strong motivation for
this work. Those results were not shown but were indeed constructed
by weighting each county by typical harvested area statistic to come
up with a state and then regional estimate. Those estimates ultimately
corresponded with even greater accuracy against the official 2012
NASS estimates. Finally and perhaps most importantly, was the strong
desire to derive timely and objective early and mid-season yield
estimates at these state- and national-levels. The Cubist modeling
methodology employed appears flexible and robust even when a full
season's worth of data is not yet available for input.

Moving forward, Collect 6 version of the MODIS data archive is
currently under construction and should provide the final and most
revised history for the dataset. It is said to be modestly improved in
terms of data precision and stability over time (Wang et al., 2012) and
thus hoped to fine tune the crop yield modeling further when released.
In the end, after bothMODIS sensors are finally retired, this type ofwork
will undoubtedly transition to VIIRS. Exploration of that dataset
will need to be undertaken when a reasonable history of data has
been collected. The good LST relationships found from Aqua MODIS
should be bolstered by the fact that the VIIRS instruments will also
be in afternoon orbits. Analogous NDVI work utilizing the Aqua sensor
instead of only Terra should also be tested before VIIRS is deemed oper-
ational to better understand if it shows markedly different results.
Conversely, Terra LST could also be analyzed, for completeness, but
since there is no futuremorning LST sensor there is little incentive to test.

Finally, this work focused only on corn and soybeans as grown in the
Corn Belt region of the US and it was predicated on having detailed crop
specific land cover information in which to best isolate the relevant
areas from the input remote sensingdatasets. Inmost settings this infor-
mation does not exist with the same spatial detail or timeliness. Howev-
er, anecdotal testing here suggests that using more generalized masks
for cropland cover (Johnson, 2013) can still be effective for modeling
corn and soybean yields although the model precision does decrease.
Also, and regardless of the detail of land cover information available, it
is not directly evident whether the results found here can be assumed
to work or extrapolated to other crops or areas. But given the clear
seasonal relationship of both corn and soybeans to NDVI and daytime
LST it is believed that, minimally, functionally related crops in similar
style growing regimes should indeed respond similarly.
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Note

Since the initial submission of this manuscript, soybean yield values
were adjusted by NASS for the 2011 crop season. The average county-
level change was up fractionally by 0.02 metric tons per hectare, or
less than 1%. The analysis was rerun using the updated 2011 numbers
but found to be insignificant on the results so the initial 2006–2011
dataset was kept as the basis for this work. NASS corn yield estimates
did not change.
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