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Abstract— Mapping nationwide in-season crop-type data is a
significant and challenging task in agriculture remote sensing.
The existing data product for U.S. crop-type planting, such as
the Cropland Data Layer (CDL), falls short in facilitating near-
real-time applications. This article designed a workflow aimed
at automating the generation of in-season CDL-like products
for USA. We methodically extracted trusted pixels as land
cover labels from historical CDL datasets, employing Sentinel-2,
Landsat 8, and Landsat-9 as sources for spectrum data, using the
random forest classifier to conduct nationwide crop-type classifi-
cations. These classifications were integrated into the In-Season
Crop Data Layer (ICDL) covering the entire Conterminous
United States (CONUS). This approach facilitated the efficient
generation of ICDLs for May, June, and July 2022, achieving
satisfactory accuracy in July. Compared to Nebraska and Iowa
ground truth data, ICDL achieved F1 scores of (0.911, 0.845)
for corn and (0.959, 0.969) for soybean. Furthermore, ICDL’s
regional acreage estimates for major crops (corn, soybean, spring
wheat, cotton, winter wheat, and rice) closely align with the
U.S. Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS) figures, showing minimal variances as
low as (0.01%, −0.68%, 0.19%, −4.39%, −5.78%, −1.28%).
Notably, ICDL outperforms CDL in most assessments. This
research consistently produces annual ICDLs from May to
July that are readily accessible to the public in the iCrop
system. Simultaneously, it presents an alternative technique for
nationwide, in-season mapping of crop types.

Index Terms— Cropland Data Layer (CDL), In-Season Crop-
land Data Layer (ICDL), Landsat, Sentinel-2, trusted pixel.

I. INTRODUCTION

THE U.S. croplands play a crucial role in global sustenance
by not only producing food but also serving as a vital
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source of raw materials for various industries [1]. Conse-
quently, the cultivation and yield of crops in USA significantly
influence global food and energy security. Recognizing this,
an in-season map detailing crop types across the entire country
becomes essential, providing crucial insights into the location
and extent of crops planted during the growing season. Simul-
taneously, an up-to-date national-scale crop-type map proves
invaluable for agricultural research and decision-making pro-
cesses. This includes applications such as comprehensive yield
predictions, investigations into biofuel storage, analysis of
grain commodity prices, and accurate estimation of crop losses
during disasters. The U.S. Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS) has consis-
tently generated the annual Cropland Data Layer (CDL) for
many years. This comprehensive dataset includes information
on over 100 crop types and other significant nonagricultural
land use types, covering the entire Conterminous United States
(CONUS) with a spatial resolution of 30 m. As reported
by Boryan et al. [2], the See5 decision tree classifier model
underwent training for each Landsat scene, utilizing ground
truths provided by farmers regarding crop types at USDA’s
Farm Service Agency Common Land Units (CLU). Notably,
the overall classification accuracy for major crops, such as
corn and soybean, exhibited a range between 85% and 95%
in the year 2009. The CDL product is accessible through
CropScape [3] and has found extensive utility in diverse
agricultural applications and decision-making processes. Its
applications include flood monitoring and crop-loss estima-
tion [4], the extraction of crop masks for early season winter
wheat identification [5], and the estimation of land cover
changes [6]. Nevertheless, the CDL is a post-season product
typically accessible in January or February of the subsequent
year. This temporal delay renders numerous in-season agricul-
tural applications and decision-making processes impractical.

Previous researchers have delved into in-season crop map-
ping using remote sensing and machine learning models [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16]. The success
of some endeavors relies on the availability of high-quality
crop-type ground truth data, which is essential for accu-
rately labeling satellite image pixels as training data that
play a pivotal role in determining classification performance.
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Researchers commonly gather ground truth samples directly
from fields to construct the training dataset [17]. In recent
years, researchers also extracted crop category data from
historical official cropland maps. Wang et al. [18] collected a
certain number of random corn and soybean pixels from histor-
ical CDL that acted as the crop category data to participate in
the supervised classification. Li et al. [19] also used 2011 and
2014 CDL crop pixels without field edge training the random
forest classifier to identify the crop in California. In the realm
of large-scale mapping, Pazúr et al. [39] employed farmers
reported data and Sentinel-2 imagery as the primary data
source for classification, relying on random forest classifier
to generate distribution maps for cropland and permanent
grassland across the entirety of Switzerland. In addition,
Blickensdörfer et al. [47] integrated data from Sentinel-2,
Landsat 8, Sentinel-1, and other environment and agricultural
practices data to map crop types in Germany. Notably, they
undertook the resampling of Landsat 8 data to align with the
resolution of Sentinel-2. Johnson and Mueller [22] conducted
a study testing four data utility strategies (CDL, Landsat
7/8, Sentinel-2, and a combination of all) using a random
forest classifier to generate in-season land cover maps for the
Corn Belt. Their findings confirmed that the integration of
CDL, full-season Landsat 7/8, and Sentinel-2 imagery yielded
the best classification performance for corn and soybean.
Cai et al. [23] employed USDA CLUs in conjunction with
multiple Landsat imagery datasets. They trained a deep neural
network model specifically for classifying corn and soybeans
in Illinois county, achieving consistently high overall accuracy
across the years 2000–2015.

In the context of crop-type mapping for USA, nevertheless,
ground survey data, such as CLUs, are usually inaccessible.
Moreover, the CDL still possesses misclassifications, intro-
ducing uncertainty into the process of directly extracting crop
labels. To overcome the challenges, a concept of trusted
pixels and an extraction method were introduced, grounded in
U.S. agriculture rotation practices. This innovative approach
forecasts current-year crop types in specific locations with
consistent rotation patterns identified in historical CDL. Sev-
eral studies have substantiated the viability of this method,
showcasing advanced classification performance for crop map-
ping during the early stages of the growing season [10],
[12], [13], [14], [22], [24]. In detail, most of them employed
trusted pixels of corn, cotton, rice, and soybean extracted from
2008–2019 CDL in the middle-west of USA based on three
kinds of intricate rotation patterns.

Rather than diversifying data source strategies, some peers
focus their efforts on innovating machine learning algorithms.
Hang et al. [25] developed a cascaded recurrent neural network
(RNN) model for hyperspectral image classification. This
model has two RNN layers to refine overflow information
and enhance correlative features. Subsequently, the features
weighted fusion and loss functions weighted combination
strategies were built to efficiently connect these two layers.
In addition, the convolutional layers were also incorporated
to recognize spectral and spatial information. This model
achieved higher overall cropland classification accuracy than
RNN for two different datasets. Hong et al. [26] introduced

mini graph convolutional networks (miniGCNs) as a solu-
tion to address the disadvantages associated with traditional
graph convolutional networks (GCNs). These networks were
designed to be trained in a minibatch fashion, aiming to
discover improved and more robust local optima. The con-
catenation fusion strategies of miniGCN and convolutional
neural network (CNN) reached the highest overall accu-
racy in crop classification when compared to ten models.
Rußwurm et al. [27] developed an end-to-end learned early
classification of time-series (ELECTS) RNN. This model
utilized multiple remote sensing imagery and official crop
datasets to achieve in-season crop-type mapping across four
geographically distinct locations, demonstrating a notable level
of accuracy.

Nevertheless, there are persistent challenges that require
attention. The integration of multiple spectrum datasets with
different widths probably introduces uncertainties in the clas-
sification process. Extended history periods and complex
rotation patterns usually cause a scarcity of trusted pix-
els and lower accuracy. Machine learning models based on
network structures often demand a substantial amount of
computation resources when dealing with super large-scale
mapping, such as for USA, where careful consideration must
be given to computational costs. To efficiently produce U.S.
in-season crop-type maps, this article implemented an auto-
mated mapping-without-ground-truth workflow on multisource
satellite imagery. We utilized the 2017–2021 Crop Data Layer
(CDL) to extract trusted pixels serving as land cover labels
for the year 2022. Subsequently, we conducted random forest
classifications independently for Landsat 8/9 and Sentinel-
2A datasets. The results of these classifications were then
methodically integrated into the In-Season Crop Data Layer
(ICDL) covering the entire CONUS. This approach facilitated
the automated generation of ICDLs as early as the end of
May. Notably, by the conclusion of July 2022, the accuracy
reached exceptional levels, surpassing that of CDL. These
ICDL products come out around six months earlier than CDL
updates. This research mainly has three contributions.

1) Employing the last five-year CDL to extract a sub-
stantial quantity of trusted pixels as land cover labels,
expanding the trusted pixel methodology from Corn
Belt to CONUS for all land cover types, concentrat-
ing on two kinds of rotation patterns, as opposed to
the previous approach that considered three patterns in
approximately ten-year and only for specific crop types
in the middle-west of USA.

2) Conducting random forest classifications for Landsat
8/9 and Sentinel-2A datasets independently, as opposed
to the previous approach of merging datasets before
classification, ignoring discrepancies in spectrum widths
between corresponding bands of two datasets.

3) Pioneering the annual production of CONUS ICDLs
during the months of May, June, and July, achieving
a satisfactory level of accuracy by July.

The production environment is the public cloud computing
platform—Google Earth Engine (GEE) [28] and Python of
ArcGIS Pro. The remainder of this article will accomplish the
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Fig. 1. Major crop’s typical planting, growing, and harvest period in USA.

following tasks: elucidating the workflow involved in CONUS
ICDL production, evaluating the accuracy of trusted pixel
and classification methodologies, assessing the performance
of ICDL in regional crop acreage estimation, and analyzing
both the advantages and limitations inherent in this workflow.

II. METHODOLOGY

A. Study Area

The study area is the entire CONUS, including 48 states and
the District of Columbia with a total size of 7 653 006 KM2

[20]. According to the USDA NASS acreage estimates for
2022, the primary crops in USA, ranked from first to sixth
in terms of acreage, are corn, soybean, winter wheat, cotton,
spring wheat, and rice [21]. Corn and soybean are mainly
located in the Corn Belt. Winter wheat and spring wheat are
planted in the middle and northern areas such as Kansas,
Oklahoma, Texas, South Dakota, North Dakota, Montana, and
Washington. A great quantity of cotton is planted in Texas and
Georgia. Rice mainly grows in Missouri, Arkansas, Louisiana,
and Alabama delta regions. In USA, the annual planting season
for major crops, excluding winter wheat, typically commences
in April and concludes in June. The harvest, on the other
hand, generally takes place between September and November.
This established timeframe reflects the customary planting and
harvest practices for these crops. This study concentrates on
the May–July period, which is the early growing season of
corn, soybean, cotton, spring wheat, and rice, and the late
growing season of winter wheat. Fig. 1 illustrates the typical
planting, growing, and harvest periods for the above major
crops in USA [29].

B. Data Collection

To produce early season and in-season crop maps, we select
Landsat-8, Landsat-9, and Sentinel-2A satellite images in May,
May–June, and May–July as the primary sources for the time-
series crop-type classification. The primary reason for this
phenomenon is that a specific type of satellite imagery often
lacks a sufficient number of cloud-free images in certain loca-
tions. The presence of cloud coverage can substantially impact
the quality of time-series remote sensing classification [30].
Landsat 8 and Landsat 9 Operational Land Imager (OLI)
surface reflectance products are generated by the Land Surface
Reflectance Code algorithm, which both are atmospherically
corrected surface reflectance images. Landsat 8 OLI products
are available from 2013 that provide nine spectral bands with
30-m spatial resolution for all bands except the panchromatic
band with 15 m, which has a 16-day revisit cycle [31]. The

Landsat 9, launched on September 27, 2021, whose sensor
OLI-2 has the same capacity as Landsat 8’s OLI, and therefore,
they have the same spectral band structure, spatial resolution,
and revisit frequency, but different observation times [32].
Landsat 8 and Landsat 9 swath sizes are both 185 × 180 km
in a scene, and they have the same scene grids with the same
path and row numbers [33].

Thus, we utilized them collectively as Landsat 8/9. There
are 459 WRS2 descending scenes covering the CONUS.
Sentinel-2A with a five-day revisit frequency on the CONUS
published globally in December 2018 and provides bottom-of-
atmosphere (BOA) reflectance images, which own 13 spectral
bands [34]. Sentinel-2A imagery is presented in the Uni-
versal Transverse Mercator (UTM) projection, with a total
of 990 scenes covering the CONUS [35], [36]. Each scene
encompasses a ground area of 100 × 100 km. Table I shows
the Landsat 8, Landsat 9, and Sentinel-2A properties, includ-
ing spectral resolution, spatial resolution, revisit period, and
coverage size. Meanwhile, we collected 2017–2021 CDL data
to extract 2022 CONUS trusted pixels as crop-type and land
cover labels. To operate the time-series classification scene-by-
scene, the scene-tiling grids of Landsat 8/9 and Sentinel-2A
were employed as scene-bound features. The WRS-2 Descend-
ing (daytime) grid shapefile has Landsat 8/9 scene-tiling grid
geometry and path/row number [37]. Meyers [36] developed a
Sentinel 2 tiling grid shapefile with every scene’s polygon and
identification. In addition, the 2021 1:500 000 states boundary
shapefile served to restrict the mapping extent [38].

C. Workflow of ICDL Production

The process for generating ICDL is depicted in Fig. 2.
Sentinel 2A and Landsat 8/9 images have different spectrum
wavelengths and were used to generate the crop-type classi-
fication, separately. The shorter revisit period of Sentinel-2A
results in a higher quantity of data, which positively impacts
the performance of time-series classification. Consequently,
Sentinel-2A classification takes precedence, with Landsat 8/9
classification utilized as a supplementary source. The entire
production consists of three main steps: 1) scene-by-scene
classification of multisource images for a state; 2) every
state ICDL; and 3) CONUS ICDL. The top two steps were
implemented in GEE, and the third step was conducted using
Python of ArcGIS Pro.

Scene-by-scene classification in a specific state is the first
step. For the time-series classification of a certain Sentinel-
2A scene, a selection of multitemporary high-quality images
is made by applying filters based on cloud-cover and no-
date percentages. As well as Sentinel-2A is processed via
resampling and spectrum calculation. Subsequently, trusted
pixels within the extent of this scene are extracted from the
2017–2021 CDL. Following this, the selected trusted pixels,
along with their corresponding time-series image pixels, con-
stitute the training data used to train the random forest model,
facilitating the execution of the time-series classification. This
operation is iteratively applied to each Sentinel-2A scene,
with the resulting classifications being mosaicked to construct
a comprehensive Sentinel-2A crop-type map for this state.
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TABLE I
CHARACTERS OF LANDSAT 8, LANDSAT 9, AND SENTINEL-2A IMAGERY DATA

Fig. 2. Workflow of producing ICDL for CONUS.

In cases where the generated map does not cover the entire
state area, additional processing is required for the Landsat 8/9
crop-type data to ensure comprehensive coverage. Similarly,
the Landsat 8/9 classification for this state can be generated
using the same method. Mosaicking these two classification
results to generate a new comprehensive in-season crop type
map for this state. This step is reiterated for each state,
ensuring the repetition of the process to achieve a complete
set of ICDL for every individual state. Finally, the ICDLs
from all states are mosaicked to create a comprehensive dataset
representing the ICDL for the entire CONUS. According to

this workflow, we produced the 2022 CONUS ICDL in May,
June, and July.

D. Spectrum Data Processing

This article aims to automate the production of the ICDL
using Sentinel-2A and Landsat 8/9 time-series images. Thus,
high-quality multisource satellite imageries need to be col-
lected and encapsulated into a time-series image stack in every
scene before the classification. Sentinel-2A has cloud-cover
and no-data properties, while Landsat 8/9 only has cloud-cover
property, facilitating the extraction of high-quality images.
Given the necessity for a 30-m resolution in the ICDL and
considering that the Sentinel-2A images at a resolution of
10–20 m, a bilinear resampling process was implemented to
adjust their resolution to 30-m before conducting the Sentinel-
2A classification.

To provide a clear description of the high-quality image
selection process, we will use Nebraska in May–July as an
illustrative example. During the period from May to July in
Nebraska, Sentinel-2A images with cloud cover of less than
5% and no-data properties of less than 8% were chosen to
ensure the inclusion of images with minimal cloud interference
and missing data. The occurrence of no-data in Sentinel-
2A images is a common phenomenon observed across all
states. Fig. 3(b) displays Sentinel-2 no-data areas’ distribution
and empty-image scene in the southeast corner of Nebraska,
which need to be filled by Landsat 8/9 classification. The
high-quality image selection process for Landsat 8/9 imagery
involved setting a threshold of less than 6% for the cloud-cover
property. Fig. 3(a) visualizes how Landsat 8/9 images were
gathered in areas where Sentinel-2 data had missing values
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Fig. 3. Example of selected multiple satellite images in May–July in
Nebraska. (a) Landsat 8/9, (b) Sentinel 2A (image count—the number of
time-series images in the scene).

(no-data). After processing, time-series image stacks for each
scene are constructed for both Sentinel-2A and Landsat 8/9.
These stacks represent a sequential collection of images over
time, capturing the spectral change pattern in two kinds of
data. Fig. 3 also illustrates the quantity of time-series images in
every scene. The count of time-series images for Sentinel-2A
in each scene ranges from 3 to 9, while the additional Landsat
8/9 images supplementing each scene range from 3 to 5.

In certain states, such as Louisiana, where low cloud-cover
images are scarce compared to Nebraska, the cloud filter
conditions are adjusted accordingly. In that case, the selection
criteria for high-quality images involve setting a threshold of
less than 12% separately for both Sentinel-2 and Landsat 8/9.

To augment the classification performance, we employed a
combination of multiple spectral bands along with two vegeta-
tion indexes (VIs) in the classification process. This approach
resulted in higher accuracy in crop classification [14], [23].
A similar method was used for mapping pan-European land
cover and Switzerland cropland [39], [40]. The well-known
vegetable index is the normalized difference vegetation index
(NDVI) [41]. Time-series NDVI curve can indicate the veg-
etable phenology change in the growing period [42]. The
normalized difference water index (NDWI) is the indicator
to enhance open water body character in multiple spectrum
images [43], which was also used in crop identification for
MODIS and Sentinel-2A images [14], [44]. In this article,
specific bands (blue, green, red, NIR, SWIR_1, and SWIR_2)
were extracted from each Landsat 8/9 and Sentinel-2A image.
At the same time, the NDVI and NDWI bands also were
calculated in these images. As a result, the time-series images

of training and classification spectral data have blue, green,
red, NIR, SWIR_1, SWIR_2, NDVI, and NDWI bands. Two
VIs formulas are shown as follows:

NDVI =
NIR − RED
NIR + RED

(1)

NDWI =
GREEN − NIR
GREEN + NIR

. (2)

E. Training Label Extraction

This study enhanced its methodology by incorporating
trusted pixel data and time-series satellite images as train-
ing samples for the construction of the machine learning
model. The pivotal step in this process involves the extraction
of trusted pixels, which entails predicting crop types for
the upcoming year using historical planting data based on
crop rotation patterns. Our prior research has unequivocally
validated the efficacy and precision of this method in the
middle-west of USA [10], [12], [13], [14], [22], [24]. This
study expands the trusted pixel method from Corn Belt to
CONUS and concentrates on two kinds of crop rotation
patterns in the last five years, as opposed to the previous
approach, which considered three in approximately ten years.

The 2022 training pixel data were extracted from 2017–2021
CDL, which serves as an effective predictor for the types of
crops anticipated to be planted in 2022. Crop rotation is a
farming practice wherein farmers alternate the cultivation of
either the same or different crops on a specific field over
a defined period. Common rotation patterns in agriculture
include both multiple-year and one-year rotations. In the
multiple-year pattern, a single type of crop is cultivated
continuously on a field for several years. Fields adhering to
the multiple-year pattern are expected to plant the same crop
in 2022 as they did in the years 2017–2021. Conversely, in the
one-year pattern, two different types of crops are alternately
grown on the same field during this cycle. Fields following
the one-year pattern will cultivate the same crop in 2022 as
they did in the years 2020 and 2018.

As an illustration, a field that has been consistently planted
with corn from 2017 to 2021 will continue to plant corn in
2022. In contrast, another field with a crop sequence of “corn–
soybean–corn–soybean–corn” during this cycle will shift to
planting soybeans in 2022. The planting choices for 2022 are
determined by the established crop rotation patterns observed
in the preceding years. Based on this theory, we successfully
extracted a substantial number of trusted pixels for the year
2022 across the CONUS. Each trusted pixel is characterized by
its crop category attribution and geospatial location, providing
a convenient means to label time-series multisource images
for the year 2022.

F. Time-Series Classification

The random forest method [45] was employed for
time-series classification in this study. Several studies have
observed that this approach demonstrates superior inter-
pretability and stability when dealing with complex input data
with a few errors. Moreover, it exhibits higher identification
precision compared to both support vector machines (SVM)
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Fig. 4. Distribution of ground truth in Nebraska and Iowa.

and AdaBoost in operational contexts [46]. This model has
been used in large-scale optical satellite imagery crop classifi-
cation [10], [14], [39], [47]. The previous research witnessed
random forest classification with a 0.88–0.9 Kappa index when
the number of decision trees is 100–1000 and the number of
random split variables is 1–8 (number of classification indices)
[48]. Nevertheless, the increased number of decision trees
necessitates a larger allocation of computational resources and
entails more time expenditure, especially in extensive area
classification tasks. In this study, we are tasked with processing
classifications for hundreds of scene images. For each scene,
we have set the number of random split variables to eight,
and the number of decision trees is fixed at 500, striking a
balance between computational efficiency and classification
accuracy. Every processed Landsat 8/9 and Sentinel-2A time-
series image stack, along with its corresponding trusted pixel
data, is compiled into the training data set. For the training of
the random forest model, 5000 random samples are selected
to carry out the classification calculation. In this article, the
satellite data sources for both training and classification remain
consistent across every scene. Specifically, the same Sentinel-
2A time-series images are used for both training the model and
conducting the classification, and a similar process is followed
with Landsat 8/9 data.

G. Validation

This process involves computing pixel-level accuracy and
region-level acreage estimates to validate the performance of
the ICDL. Pixel-level accuracy evaluates the quality of trusted
pixels and classifications by comparing them to independent
ground truth data, represented by ground-field raster maps
in Nebraska and Iowa. Fig. 4 illustrates the distribution of
ground truth data located in the states of Nebraska and
Iowa, encompassing areas with corn, soybean, and grass. The
assessment process can be segmented into three aspects.

1) Trusted Pixel Accuracy Assessment: The precision,
recall, and F1 score will be calculated between ground
truth data and corresponding trusted pixels.

2) Classification Accuracy Assessment: The precision,
recall, and F1 score need to be computed between
ground truth pixels and corresponding 2022 ICDL
pixels.

3) Crop Acreage Comparison: The comparison involves
assessing the difference between the crop acreage of

ground truth pixels and the corresponding crop acreage
predicted by the 2022 ICDL pixels.

Simultaneously, the performance of the CDL 2022 classi-
fication is assessed and compared to evaluate the quality
of the ICDL. Equations (3)–(5) show precision, recall, and
F1 calculation equations, where TP is the number of true
positives, FP is the number of false positives, and FN is the
number of false negatives. Precision is a value to indicate
how many correct pixels are predicted in the trusted pixels
or classification pixels. Recall expresses how many correct
pixels are predicted in the ground truth pixels. F1 is more like
a comprehension value to assess prediction quality

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2

1
Precision +

1
Recall

. (5)

In the region-level assessment, we compared the regional
crop acreage estimates from the 2022 ICDL with the annual
crop acreage estimates from the NASS to evaluate the over-
all regional performance of the ICDL. The region crop
acreage estimate is a crucial application of crop maps in
agriculture. The NASS Crop Acreage Report (CAR) annually
publishes major crop acreage estimates in USA, provid-
ing essential support for national agricultural research and
decision-making [21]. In addition, the CDL 2022 specific
crop-type acreage estimates were also assessed using infor-
mation from the NASS CAR.

III. EXPERIMENTS AND RESULTS

A. Production of 2022 ICDL

The ICDLs were produced by processing these steps,
as shown in Fig. 2. Fig. 5 shows a few detail screenshots
of 2022 ICDL products in May, June, and July, illustrating
crop field units, grass area, forest area, and river boundary.
The 2022 ICDLs are raster maps with 30-m spatial resolution,
which includes 86 types of land cover types such as crops,
fruits, vegetables, grass, forests, open water, developed areas,
and more. The pixel value and color structure are consistent
with CDL. The major crop-type land cover distribution areas
can be observed easily from ICDL such as corn, soybean,
winter wheat, cotton, spring wheat, and rice.

B. Assessment of Trusted Pixel and Classification Quality
Using Ground Truth

In this section, we employed ground truth data to assess
trusted pixels and classification accuracy at the pixel level.
The ground truth data are represented as a ground-field raster
map with corn, soybean, and grass. These data were collected
in Nebraska and Iowa during July 2022. The 2022 trusted pixel
data were extracted from the 2017–2021 CDL. Fig. 6 as an
example shows Nebraska trusted pixel data.

In the assessment process, we extracted trusted pixels, ICDL
pixels, and CDL 2022 pixels corresponding to ground truth
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Fig. 5. 2022 CONUS ICDL produced by May, June, and July.

pixels. Subsequently, precision, recall, and F1 scores were cal-
culated for each crop category separately. These measurement
values of corn and soybean’s trusted pixels are presented in
Table II. In Nebraska, the precision of corn trusted pixels is

higher than that of soybean, although the recall is lower. The
F1 score for corn trusted pixels is 0.930, while for soybean,
it is 0.888. Similarly, in Iowa, corn trusted pixel precision
remains higher than soybean, with both having recalls greater
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Fig. 6. Nebraska trusted pixel data.

TABLE II
TRUSTED PIXEL ACCURACY ASSESSMENT

than 0.9. Consequently, the F1 score for corn trusted pixels is
slightly smaller than soybean, with values of 0.949 and 0.954.

In addition, the precision, recall, and F1 scores for the
time-series classification results of corn and soybean from
May to July, considering both ICDL and CDL 2022 pix-
els corresponding to ground truth pixels, were computed
and are presented in Table III. The results indicate a
time-series increasing accuracy tendency in all items of ICDL.
In Nebraska, the classification performances of corn and
soybean in ICDL exhibit an increasing trend from May to
July, reaching peak accuracy in July. The F1 scores for corn
and soybean in July are 0.911 and 0.845, respectively. These
scores are slightly higher than CDL for corn but slightly
lower than CDL for soybean. During the period from May
to July, the classification quality of corn in ICDL is superior
to that of soybean, aligning with the accuracy distribution
observed in trusted pixels in Nebraska. In Iowa, within the
growing season, ICDL from May to July demonstrates a
similar increasing tendency in corn and soybean classification
performance, climbing to the top accuracy in July with corn
F1 = 0.959 and soybean F1 = 0.969, both higher than CDL
2022. In the July ICDL F1 scores for Iowa, corn shows a
slightly lower score than soybean, which corresponds to their
trusted pixel accuracy distribution, as indicated in Table II.
Both corn and soybean of Iowa exhibit better classification
performance compared to Nebraska. These assessments still
indicate that July 2022 ICDL obtains stratified classification
accuracy.

The corn and soybean acreage estimates from ground truth
data, as well as the corresponding estimates from ICDL

and CDL 2022, were calculated separately. In addition, the
percentage differences in acreage between them were com-
puted. Table IV shows the acreage estimates and percentage
differences. In ICDL, Iowa corn and soybean acreage estimates
are much closer to ground truth crop acreage than Nebraska.
In Nebraska, the soybean ICDL acreage has a bigger gap
compared to the ground truth acreage than corn. However,
in Iowa, the soybean ICDL acreage is closer to the ground truth
acreage than corn. The observed crop acreage comparisons
align with the accuracy distribution of trusted pixels and the
classification results discussed earlier. For CDL, in Nebraska,
the biases in corn and soybean acreage for CDL compared
to the ground truth (11.26%, 11.77%) are significantly larger
than those for ICDL. In Iowa, the percentage difference in
corn acreage compared to ground truth data (−1.43%) is
higher than ICDL (−1.15%), but for soybean acreage, the gap
(0.04%) is smaller than ICDL (−0.39%).

C. Assessment of Region-Level Crop Acreage Using
Official Crop Acreage Data

Crop acreage estimates in extensive areas are widely applied
in agricultural research, such as total yield prediction. In this
section, major crops, such as corn, soybean, winter wheat,
cotton, spring wheat, and rice, are presented as acreage esti-
mates in the 2022 July CONUS ICDL. These estimates are
then compared with the 2022 official figures from the NASS
CAR [21] and the CDL. In this context, the NASS CAR is
considered as reference data, while ICDL and CDL serve as
test data. We calculated specific crop planted acreage in each
main plantation region, typically encompassing specific states.
Fig. 7 shows the comparisons.

1) Corn and Soybean Acreage Assessment: According to
the NASS acreage data, corn and soybean are recognized as the
most important crops in USA [21]. Their primary cultivation
region is the Corn Belt, a traditional agricultural plantation
area consisting of 13 states in the Midwest of the CONUS.
Acreages for corn and soybean in the Corn Belt were estimated
using ICDL and CDL, and these estimates were compared with
NASS CAR data. Fig. 7(a) and (b) illustrates their comparisons
in this region. In corn acreage estimate, most states’ estimates
in 2022 ICDL are quite near to the NASS acreage data. For
corn acreage estimates, the 2022 ICDL estimates in most
states closely align with NASS acreage data. While there
are instances of underestimation and overestimation in certain
states, such as North Dakota and Missouri, the overall corn
acreage estimation in the Corn Belt region for 2022 ICDL
is very close to the 2022 NASS corn acreage data, with
only a 0.01% gap. Regarding the soybean acreage estimate
in the Corn Belt region, the 2022 ICDL provides estimates
that are generally close to the NASS acreage data, with some
variations observed in states such as Kansas and Minnesota.
The overall soybean acreage estimate exhibits only a −0.68%
gap compared to NASS soybean acreage. In the case of
CDL, underestimates and overestimates are observed in certain
states, leading to an overall corn acreage difference of −1.25%
compared to NASS CAR. Similarly, for soybean, the overall
acreage difference is −2.59%. Both differences are larger than
those observed with ICDL.
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TABLE III
CORN AND SOYBEAN CLASSIFICATION ACCURACY ASSESSMENT FOR ICDL AND CDL 2022 IN NEBRASKA AND IOWA

TABLE IV
CORN AND SOYBEAN ACREAGE ESTIMATES IN GROUND TRUTH DATA AND CLASSIFICATION DATA

2) Spring Wheat Acreage Assessment: According to
the 2022 NASS crop acreage estimate, a total of 11 110 000
acres of spring wheat were planted in USA. This cultivation
predominantly occurred in states such as North Dakota, Mon-
tana, Minnesota, Washington, Idaho, and South Dakota. Spring
wheat acreage was reported to be less than that of winter wheat
but considerably more than rice [21]. We estimated spring
wheat planted acreage in 2022 ICDL and CDL, as well as
compared them with NASS acreage data in these six states.
The calculation and comparison results are shown in Fig. 7(c).
North Dakota, Montana, and Minnesota emerged as the leading
states in terms of spring wheat cultivation, with a substantial
portion of their acreage being identified in the 2022 ICDL.
The states of Washington, Idaho, and South Dakota planted
relatively few acres of spring wheat, and extremely low
quantities of them were estimated in the 2022 ICDL. Possible
reasons for this could include the presence of numerous
incorrectly trusted pixels and biased distribution of spring
wheat in these three states. These factors may contribute to
the challenges in accurately estimating spring wheat acreage
in the ICDL for these states. The overall spring wheat acreage
in this region from ICDL is 11 131 000 acres, which has a
0.19% gap with NASS acreage data. The total acreage of
spring wheat from CDL in this region is 12 200 000, drifting
around 9.81% from NASS CAR. In general, the overall
spring wheat acreage estimates from CDL exhibit a larger
difference compared to NASS when compared to the estimates
from ICDL.

3) Cotton Acreage Assessment: USA exports one-third of
the cotton in the world and stands as the third cotton producer
in the global [49]. In the 2022 ICDL, the predominant cotton
cultivation in USA was observed in Texas, Georgia, Oklahoma,
and Arkansas, collectively contributing to over 70% of the
total cotton production. In addition, limited cotton cultivation
was identified in the Delta region and California. This section
estimated cotton acreage in four specific states from ICDL
and CDL, comparing them with NASS acreage data. Fig. 7(d)
illustrates the comparison outcomes.

Notably, approximately 6 915 000 acres of cotton were
planted in Texas, closely aligning with the NASS acreage data
of 7 100 000 acres. Similarly, the cotton acreage estimate in
Georgia closely matches the NASS data, with both indicating
the same acreage of 1 200 000. However, in Arkansas and
Oklahoma, their cotton acreages exhibit big differences from
the NASS acreage data. In this region, 2022 ICDL overall
cotton acreage shows a −4.39% difference from the NASS
data. The 2022 CDL cotton acreage appears to significantly
overestimate in the four states mentioned, leading to an overall
acreage that exhibits a substantial gap with NASS CAR
(26.04%).

4) Winter Wheat Acreage Assessment: Winter wheat is
predominantly cultivated in the central and western regions of
the CONUS. In this analysis, the 2022 ICDL was employed to
estimate winter wheat acreage in eight specific states, namely,
Kansas, Oklahoma, Texas, Colorado, Washington, Montana,
Idaho, and Oregon. These estimates were then compared
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Fig. 7. Comparison of six major crop acreage between 2022 July ICDL, NASS Crop Acreage Report (NASS CAR), and CDL. (a) Corn acreage comparison
in Corn Belt. (b) Soybean acreage comparison in Corn Belt. (c) Spring Wheat acreage comparison. (d) Cotton acreage comparison. (e) Winter Wheat acreage
comparison. (f) Rice acreage comparison.

with corresponding NASS acreage data. Fig. 7(e) shows the
calculation results. Kansas stands out as the leading state
in the nation for winter wheat cultivation, with approxi-
mately 6 909 000 acres estimated in the 2022 ICDL. This
estimate closely aligns with the corresponding NASS winter
wheat acreage data. Oklahoma, Texas, Colorado, and Wash-
ington also demonstrate substantial winter wheat cultivation,
with sizable acreages identifiable in the 2022 ICDL. The
total winter wheat acreage in this region is approximately
23 188 000 acres, indicating a −5.84% difference compared

to the corresponding NASS acreage data. Notably, the overall
acreage estimation for winter wheat in CDL (23 223 000
acres) exhibits a slightly smaller difference (−5.64%) with
NASS CAR compared to ICDL. Both estimates are remark-
ably close to each other. Winter wheat is typically harvested
in early June. The ICDL in 2022 July, employing only
three months (May–July) of spectrum information for classi-
fication, likely contributes to the significant underestimation
of winter wheat in certain states, such as Montana and
Texas.
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5) Rice Acreage Assessment: Rice holds the rank of
the sixth most-grown grain in USA, with cultivation pri-
marily concentrated in southern states such as Arkansas,
Louisiana, Texas, Missouri, and the state of California. This
section processed similar estimates and comparisons with
the above. Fig. 7(d) demonstrates the outcomes. According
to the 2022 ICDL, Arkansas boasted the largest acreage of
rice fields in the entire nation, having cultivated 1 093 000
acres of rice in 2022. Notably, this estimate aligns closely
with the 2022 NASS acreage data. In the other four states
(Louisiana, Texas, Missouri, and California), there are notable
differences between the two datasets. In this region, the overall
rice acreage in the 2022 ICDL is quite close to NASS acreage
data, and their gap is −1.28%. The total acreage estimation
in this region of rice from 2022 CDL exhibits a smaller gap
(0.8%) with NASS CAR than ICDL.

IV. DISCUSSION

A. Significance of ICDL

The 2022 ICDL data product, as derived from this study,
stands as the first in-season crop-type land cover map for the
CONUS. Notably, the ICDL successfully identified various
land cover categories encompassing all major crops in USA,
such as corn, soybean, winter wheat, cotton, spring wheat,
and rice. An outstanding feature of the ICDL is its early
production and publication, occurring in early August. This
timing is approximately six months ahead of the CDL release
schedule. This endeavor represents an exploration into utilizing
the capabilities of a public cloud platform for the automated
production of an extensive area crop map. Through multiple
assessments, the classification quality of ICDL demonstrates
an increasing trend throughout the growing season, achieving
satisfactory accuracy in the July data product when compared
to ground truth data. In addition, the acreage estimates for
major crops, such as corn, soybean, spring wheat, and cotton,
exhibit higher agreement with NASS CAR in certain regions
compared to CDL 2022. This suggests that ICDL performs
well in capturing the dynamics of crop cultivation and provides
more accurate estimates in specific areas.

B. Application Scenario of ICDL

The ICDL product serves as a nationwide raster cropland
map, offering valuable information for agriculture applica-
tions and decision-making processes. This comprehensive
map provides a detailed and accessible overview of cropland
distribution across the entire nation, supporting a range of
applications in the agricultural sector. The potential applica-
tions might involve the following.

1) Yield Prediction: By monitoring crop conditions
throughout the growing season, ICDL supports the esti-
mation of potential yields. This information is valuable
for farmers, agribusinesses, and policymakers for plan-
ning and decision-making.

2) Harvest Planning: ICDL aids in harvest planning by
providing basic field data to monitor the spatial and
temporal variability of crop maturity. This information
helps optimize harvest timing and logistics.

3) Land Use Planning: ICDL contributes to land use plan-
ning by providing information on the distribution and
types of crops grown in specific regions. These data are
useful for policymakers, land managers, and researchers.

4) Insurance and Risk Assessment: Crop insurance agencies
can use ICDL to assess and mitigate risks associ-
ated with yield fluctuations. Timely information on
crop distribution enhances the accuracy of insurance
assessments.

5) Environmental Monitoring: Monitoring changes in crop
cover contributes to environmental monitoring efforts.
This includes assessing the impact of agriculture on
ecosystems, tracking land use changes, and studying the
relationship between crop patterns and environmental
conditions.

6) Precision Agriculture: Farmers can utilize ICDL to
facilitate precision agriculture practices. This involves
tailoring inputs (such as water, fertilizers, and pesticides)
based on the specific needs of different areas within
a field, optimizing resource use and enhancing overall
crop productivity.

7) Loss Estimates: ICDL can be fundamental data to be
used in crop loss estimates during the growing season.
For some extremely natural disasters such as flooding,
rescue departments or insurance companies can use
ICDL to estimate the affected crop types and areas,
assess the economic loss, and assist disaster relief
decision-making.

C. Advantages of the Mapping-Without-Ground-Truth
Approach

The ICDL offers the capability to generate early in-season
crop maps for major crop types across large-scale counties,
utilizing an automated and efficient approach that does not
necessarily rely on ground truth data. The central focus of
this study lies in mapping without the reliance on ground
truth samples. We employed trusted pixels, derived as land
cover labels from historical CDL data. This approach not
only circumvented the need for extensive time and financial
resources but also facilitated a freely automated extraction pro-
cess. Notably, our study expanded the scope of trusted pixels
to encompass not only major crop types but also various other
land cover categories such as developed areas, grass, forest,
and open water. This inclusive approach significantly broad-
ened the identification capabilities of remote sensing cropland
supervised classification. Consequently, the 2022 CONUS
ICDL encompasses more than 80 distinct land cover types.

D. Limitations and Potential Solutions

According to the acreage assessment, their accuracies are
not equal everywhere in the CONUS, and there are signif-
icantly low accuracies in some states such as corn acreage
estimates in North Dakota and spring wheat acreage estimates
in South Dakota. Meanwhile, ICDL and CDL both have
big percentage differences in overall winter wheat acreage
compared to NASS CAR. The reasons may include unequal
crop rotation patterns and misclassification of CDL. In some
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areas of CONUS, on one hand, the crop rotation pattern
could be variable dramatically in different places, which will
significantly impact the trusted pixel quality, but our trusted
pixel is based on the constant rotation patterns. On the other
hand, the historical CDL is the basic data of trusted pixels,
which still own a certain number of misclassifications pixels.
To improve crop-type classification accuracy, such as winter
wheat, merging the confidence data layer with CDL probable
is a method to improve the CDL accuracy [50]. Another
approach is CDL purification and refinement to improve the
quality of the trusted pixels [51]. Meanwhile, some areas are
covered by clouds for a long period: thus, there are insufficient
high-quality time-series satellite imageries that miss crop phe-
nology information and reduce the classification performance.
Synthetic aperture radar (SAR) data such as Sentinel-1 can
be a potential supplementary data in crop classification that is
insensitive to the cloud.

E. Computational Complexity

In the production of ICDLs, various tasks, such as collecting
multiple satellite imagery, image processing, CDL collection,
trusted pixel extraction, training the random forest model,
scene-by-scene classification, and state ICDL, primarily rely
on the GEE platform to the automated process. During the
process, computational instability was only encountered when
training with more than 5000 samples. Consequently, in this
study, we opted to randomly select 5000 samples from each
scene’s trusted pixels to address this computational challenge.
The computation time for each state varies, ranging from
0.5 to 2 h, depending on the size of the state’s geographical
area. Moreover, it is worth noting that multiple states can
be processed simultaneously. For the CONUS ICDL, the
“Set Null” and “Mosaic To New Raster” Python APIs in
ArcGIS Pro were employed to achieve efficient outcomes
in the processing of the third step of the workflow. This
program completed its execution in no more than 2 h, even
when running on a standard laptop without additional GPU.
In summary, the entire process took approximately 40 h to
produce an ICDL map.

V. CONCLUSION

This study explored an automated workflow for the in-
season crop-type data layer mapping without ground truth
in the CONUS using Landsat 8, Landsat 9, and Sentinel-2A
datasets. The trusted pixels from historical CDL acted as land
cover labels based on the crop rotation patterns. Thousands
of high-quality satellite images in May–July, integrating land
cover labels to train random forest models, conducting the
time-series classification. The approach successfully produced
the CONUS ICDLs product from May to July 2022, including
major crop types and other land use types. The pixel- and
region-level data assessments were executed by utilization of
the ground truth data and NASS acreage estimates data. The
ICDL product at the end of July reaches higher accuracy than
CDL in most regions. This study offered a set of in-season
CDL-like data products, as well as provided an option for
automated large-scale in-season crop mapping.

In the future, some relevant work should be procedure to
further increase the accuracy and applications of ICDL. First,
the refinement of trusted pixels should be a pivotal focus for
enhancing mapping quality. On the one hand, future research
endeavors could delve into the intricate study of diverse crop
rotation patterns across different regions and different crop
types. The trusted pixel pre-refinement using early season
spectrum information, on the other hand, could be explored
to reduce noise pixels in each crop type. Concurrently, there
are plans to explore the integration of microwave satellite
data into the crop-type identification process, aiming to mit-
igate the impact of atmospheric conditions. This innovative
approach seeks to enhance the robustness and accuracy of crop
mapping. In addition, the introduction of transfer learning in
crop-type mapping is on the horizon. This involves extract-
ing high-quality trusted pixels to train classifiers in specific
locations and utilizing the trained model to process crop
mapping in other areas, extremely reducing the uncertainty
of large-scale trusted pixels. The versatility of this algorithm
is envisioned to transcend national and temporal boundaries.
Simultaneously, those applications of ICDL will be explored,
aiming to unlock and maximize its potential uses in various
contexts.

DATA AVAILABILITY

The ICDL data product is GeoTIFF 8-bit integer file format
with 30-m resolution and EPSG:5070 coordinate system. The
full dataset and associated web services are accessible on the
iCrop service system (https://cloud.csiss.gmu.edu/icrop/) [52],
served and managed by the Centre for Spatial Information
Science and System, George Mason University.
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