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ABSTRACT

Virtual analog modeling is the process of digitally recreating an
analog device. This study focuses on analog distortion pedals for
guitarists, which are categorized as stompboxes, because the musi-
cian turns them on and off by stepping on the switch. While some
of the current digital models of distortion effects are circuit-based,
this study uses a signal-based approach to identify the device under
test (DUT). An algorithm to identify any distortion effect pedal in
any given setting by input-output (I/O) measurements is proposed.
A parametric block-oriented Wiener-Hammerstein model for
distortion effects and the corresponding iterative error minimiza-
tion procedure are introduced. The algorithm is implemented in
Matlab and uses the Levenberg-Marquardt minimization
procedure with boundaries for the parameters.

1. INTRODUCTION

Since the first distortion stompbox had been introduced in the 1960s,
these effects became very popular amongst guitarists. Some are
willing to pay horrendous prices for original vintage effect pedals,
others have a huge collection of distortion effects. With the aid of
system identification these devices can be digitally reproduced by
virtual analog modeling, providing all advantages of digital sys-
tems. Identifying analog distortion circuits and building circuit
based models to capture their characteristics has widely been done
in the context of virtual analog modeling.

In [1–5] circuit based approaches were used to model distor-
tion effects. Nodal analysis is used to derive a state-space-system
describing the original circuit. The state-space-system is extended
to be able to handle nonlinear circuit elements. However, complete
knowledge of the circuit-schematics and all characteristics of the
nonlinear elements are required for this method to be applied. If
the circuit-schematic of a certain device is not accessible, expen-
sive reverse-engineering and high quality measurements would be
needed to derive a digital model. Therefore a simple technique,
based on input-output (I/O) measurements would be desirable to
get a quick snapshot of the DUT’s characteristics. An approach
based on I/O measurements was already used in [6–8]. The au-
thors use a modified swept-sine technique, originally introduced
by [9], to identify an overdrive effect pedal, which is described by
a block-oriented Hammerstein model. Unfortunately, the results
from [6–8] could not be reproduced accurately enough from the
information given in the paper for a detailed comparison.

To the authors knowledge, there does not exist an objective
measure which describes the perceptual correlation between digi-
tal model and reference system output. Most of the current objec-

tive metrics to evaluate audio content, like PEAQ [10], were de-
signed to rate the sound degradations of low bit-rate audio codecs.
This work does not focus on finding an acceptable error metric but
designing a proper parametric model and the corresponding iden-
tification procedure for modeling of distortion effects. The opti-
mization is based on iterative error minimization between the para-
metric, block-oriented Wiener-Hammerstein model and the DUT.

In 2008 Kemper introduced a patent describing his model and
identification routine for identifying nonlinear guitar amplifiers.
He uses a block-oriented Wiener-Hammerstein model to emulate
the characteristics of an analog guitar amplifier by analyzing the
statistical distribution of pitches and volumes of the identification
signal. The filters and the nonlinearity are identified by an iden-
tification procedure of his own design, analyzing small and high
signal levels separately [11].

This paper is structured as follows. The model is described in
Section 2. Section 3 explains the identification process. The results
are described in Section 4 and Section 5 concludes this paper.

2. THE MODEL

The basic idea behind the model used in this study is to have
a parametric model, which is flexible enough to adapt to many
distortion effects but still simple enough to be computationally
efficient. The structure of a distortion effect can be described
by a Wiener-Hammerstein model. This model consists of linear-
time-invariant (LTI) blocks and a nonlinear block. The blocks are
ordered in series where the nonlinear block is lined by two LTI
blocks. The LTI blocks are filters, which are shown in Fig. 1 as H1

H1 H2

Figure 1: Block diagram of a Wiener-Hammerstein model.

and H2, and the nonlinear block is basically a mapping function,
mapping the level of the input signal to an output level, according
to the nonlinear function g(·), which simulates the nonlinear be-
havior of the distortion effect. x(n) denotes the input and y(n) the
output signal.

Block-oriented Wiener-Hammerstein models are successfully
used in commercial products due to their flexibility and expand-
ability. Fractal Audio Systems calls a Wiener-Hammerstein sys-
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(a) Block diagram of one filter.

LP

(b) Block diagram of the nonlinearity.

Figure 2: Diagrams for the single blocks of the Wiener-Hammerstein model.

tem consisting of two filters and a distorting nonlinearity the "fun-
damental paradigm of electric guitar tone" [12]. They extend this
model with more linear and nonlinear blocks to include frequency
responses of speakers and model the different nonlinear stages
(preamp, power amp) of an analog guitar amplifier.

2.1. LTI Blocks

The filters of the Wiener-Hammerstein model were designed to
be flexible but still stay stable in the identification process. Hence,
the parameters which will be varied during optimization are not the
coefficients of a Direct Form II filter structure, because the identi-
fication procedure will not converge if the filter coefficients yield
an unstable filter. Instead, they are expressed as the parameters of
a simple band-limited equalizer. Figure 2 (a) shows the structure
of one LTI block of the Wiener-Hammerstein model. The input
signal x(n) is processed by a high-pass filter, a series of four peak
filters and finally by a low-pass filter which yields the output sig-
nal y(n). The adjustable parameters of the filters are expressed
in terms of cutoff frequency fc for the low-pass and high-pass fil-
ters. The peak filters can also be modified in terms of gain and
Q-factor. All filters are second order IIR filters and their coeffi-
cients are computed according to [13].

All parameters are aligned in a parameter vector
plti = [fc,hp, fc,pf1, gpf,1, Qpf1, . . . , fc,lp]

T .

2.2. Nonlinear Block

The nonlinear block of the Wiener-Hammerstein model is shown
in Fig. 2 (b). The input signal x(n) is multiplied with a pre-gain

gpre and then fed into the lower side-chain which acts as a very
simple envelope detector. The absolute value of the signal is com-
puted, low-pass filtered and multiplied with the side-chain gain
gainsc. This signal is then subtracted from the direct path after
the pre-gain multiplication. Subsequently it is fed into the ac-
tual mapping function, which is controlled by four parameters.
Thereafter the signal can be mixed with the pre-amplified input
signal via the parameter α. Finally the signal is multiplied by
the post-gain gpost to yield the output signal y(n). All param-
eters for the nonlinear block are aligned in the parameter vector
pnl = [gpre, fc, gsc, kp, kn, gp, gn, α, gpost]

T .
The side-chain envelope detector was added to the nonlinear

block because the used mapping function is memoryless. But this
is not adequate to model the time-variant behavior of e.g. vacuum
tube distortion circuits. The bias-point of a vacuum tube amplifica-
tion stage changes slightly, depending on the signal history, which
leads to a DC-offset of the output, amongst other effects. This is
emulated by subtracting the lower side-chain envelope signal from
the direct path, before the mapping function is applied [14].

2.2.1. Mapping Function

The flexibility of the nonlinear block is based on the mapping func-
tion. If we would chose a mapping function based on one hyper-
bolic tangent, it would not be very flexible. In some cases a mod-
erate slope around the zero-crossing of the mapping function and,
at the same time, a sharp transition into the saturated region are re-
quired, because it resembles the behavior of analog circuit compo-
nents. A simpler mapping function could not model that behavior
accurately. Therefore, we propose an alternate mapping function,
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consisting of three hyperbolic tangents which are concatenated at
the location denoted by kp for the positive part of input levels and
at kn for the negative part. The tanh functions above or respec-
tively below kp and kn are modified so that they have the same
slope as the middle part of the function at the connection points,
shown in Eq. 1.

m(x) =


tanh(kp)−

[
tanh(kp)

2−1

gp
tanh(gpx− kp)

]
if x > kp

tanh(x) if − kn ≤ x ≤ kp
−tanh(kn)−

[
tanh(kn)2−1

gn
tanh(gnx+ kn)

]
if x < −kn

(1)
The parameters gp and gn control the smoothness of the transition
between saturated region and linear center part. For high values of
gp and gn the transition is very sharp, for low values it is smooth
and for very small values and correctly chosen values of kx and kp
it behaves like a linear function.
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p1 = [0.5,0.5,0,0]
p2 = [0.1,0.1,6,40]
p3 = [0.1,0.25,15,40]
p4 = [0.1,0.5,100,40]

Figure 3: Modified tanh function with the parameters
p = [kp, kn, gp, gn]. Gain values for gp and gn are in dB.

Figure 3 illustrates the modified tanh function. The darkest
curve for parameter set p1 shows a nearly linear mapping function
with relatively high values for kn > 0.5 and kp > 0.5 and low
values for gn < 1 dB and gp < 1 dB. For positive input ampli-
tudes p2, p3 and p4 have steadily increasing gain values gp and
the same connection point kp = 0.1. This changes the shape of
the nonlinear mapping function. The gain gn was kept constant at
gn = 40 dB for negative input amplitudes, while the connection
parameter kn was shifted for p2, p3 and p4. Positive and negative
sections of each curve could be interchanged by simply changing
the corresponding gain and connection parameters.

3. IDENTIFICATION

The concept of iterative error minimization is shown in Fig. 4. The
same input signal is sent through the digital model and the refer-
ence system, y(n) denotes the desired output from the DUT, while
ŷ(p, n) denotes the model output, which is not only dependent on
the input samples, but also on a set of parameters p, which were
introduced in Sec. 2. If the model is nonlinear for at least one

Figure 4: Block diagram of iterative error minimization.

parameter, it has to be identified iteratively [15]. The error signal
e(p, n) = y(n)− ŷ(p, n) is calculated by subtracting the model
output from the reference output. The parameter estimation algo-
rithm calculates a new set of parameters, which are applied to the
model in order to minimize the error between digital model and
analog system according to a cost-function C, in our case least-
squares, C(p) =

∑N
n=1 e(p, n)

2. Where N is the length of the
input signal in samples. The parameter estimation method used in
this work is the Levenberg-Marquardt algorithm. This algorithm
combines the advantages of gradient-descent and Gauss-Newton
method [16, 17].

Before the identification procedure can be started, the refer-
ence signals need to be recorded. For this purpose a high quality
audio interface (RME Fireface UC TM) was used, which is con-
trolled via Matlab. The DUT is placed between output and in-
put of the audio interface. Before the actual input signals are
send through the DUT, the interface is calibrated by sending a
test signal x(n) = sin

(
2π f0

fs
n
)

with an amplitude of 0 dBFS,
while the DUT is in bypass mode. The fundamental frequency is
f0 = 1 kHz. The output gain of the interface was adjusted, so that
an amplitude of 1 corresponds to 1 V at the output of the audio
interface.

3.1. Nonlinear Identification

There are two different input signals for the identification of the
linear and nonlinear parts of the Wiener-Hammerstein model. The
input signal,

xnl(n) = a(n) ·
M∑
i=1

sin
(
2π ·

[
fi · sin

(
2π

fmod,i

fs
n

)])
, (2)

for the identification of the nonlinear block is created by sum-
ming several sine waves with different fundamental frequencies.
Where a(n) is a scaling function, creating a logarithmically rising
amplitude from −60 dBFS to 0 dBFS to emphasize lower signal
levels. f = (50, 100, . . . , 900, 1000)Hz is a vector containing
all the desired frequencies that roughly cover the range of notes
that can be played on a guitar and fmod,i is a vector containing
the modulation frequencies, which range from fmod,min = 1Hz to
fmod,max = 10Hz and are used to avoid destructive and construc-
tive interference which affect the envelope of the signal. M is the
amount of sine waves which are summed and then normalized to
achieve a maximum amplitude of 1.

When the parameters of a nonlinear model are optimized by an
iterative error minimization algorithm, like the Levenberg-Marquardt
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method, it is very important to have an appropriate set of initial pa-
rameters. The minimization algorithm might converge into a local
minimum if the wrong set of initial parameters is chosen. Thus, ev-
ery possible combination of the parameters gpre, kp, kn, gp and gn
is tested on a coarse grid by calculating the sum of squares C(p)
for each combination. The set with the lowest sum of squares is
used as the initial parameter set for the identification process.

Because the parameters gpre, kp, kn, gp and gn have the most
influence on the envelope of the input signal, this procedure helps
finding a starting point, which is most likely to converge into the
global minimum of the cost function. During the iterative error
minimization, only the parameters of the parameter vector pnl are
optimized. The parameters of the two LTI blocks are fixed and
can not be changed during this identification step. The parameters
in the plti vectors are set to yield a neutral filter characteristic in
the audible frequency range for both filters. After the optimization
pnl is saved for further use.

3.2. Filter Identification

The input signal for the parameter optimization of the LTI blocks
is white noise with signal levels below −50 dBFS, because we as-
sume, that for low signal levels the nonlinear part of the reference
system operates in its linear region and tanh(x) ≈ x for |x| � 1
is also true for the nonlinear block of the digital model.

In this case optimization of time domain error signals is chal-
lenging because the signal can look different in time domain, due
to deviating phase characteristics of simulation and reference sys-
tem, but is still perceived as similar for the human ear. For this
reason the output signals y(n) and ŷ(p, n) need special treatment
before the actual minimization procedure can be started.

First the saved parameters from the identification of the non-
linear block are loaded and used during filter parameter optimiza-
tion. This helps identifying both filters of the model. If the filter’s
parameters would be identified before the nonlinear parameters in
the first optimization step, characteristics of the first filter could
be optimized onto the second filter and vice versa even though the
overall frequency response is retained.

The time domain output sequence for the white noise identifi-
cation input is recorded. The power spectral density (PSD) of the
output is computed by calculating a 16384-point discrete Fourier
transform (DFT) with a hop size of 4096 samples. All calculated
spectra are averaged and multiplied by its complex conjugate to
yield the PSD. But the frequency resolution of a PSD or DFT re-
spectively does not correspond to the perceptual resolution of the
human ear. For this reason the semi-tone spectrum is calculated
from the PSD by averaging the frequency bins corresponding to
one note. The first note is A0 in the sub contra octave which has a
frequency of f0,A0 = 27.5Hz, which is one note below the lowest
note on a standard tuning 5-string bass. This is done for reference
and digital model respectively before the error signal is calculated.

The initial values for the identification procedure are chosen
in such a way that the filter is flat and the cutoff frequencies of
high- and low-pass filters are set to fc,HP = 10Hz and fc,LP =
18 kHz. After the filter parameters are adapted, they are stored for
further use.

3.3. Overall Identification

In this final step the stored parameter vectors for both LTI blocks
and the nonlinear block are loaded and used as the initial parameter

set in the final parameter vector

p =

plti1

plti2

pnl

 . (3)

The Levenberg-Marquardt algorithm is started and now all pa-
rameters of the model can be modified to refine the results from
the previous optimization runs. The input signal for this step is
the same as for the optimization of the nonlinear parameters, de-
scribed in Subsec. 3.1. The identification is not done solely in time
domain. This approach helps finding an initial parameter set for
the error minimization which is likely to converge into the global
minimum of the cost function. The spectrogram (8192-point DFT,
4096 hop size) of the output of the analog system and the digital
simulation is calculated and then vectorized as the minimization
algorithm is not able to process error signals which are not in vec-
torial form. By optimizing over the spectrogram error signal the
necessary information for adapting the filter and nonlinear param-
eters is included.

4. RESULTS

As stated in Subsec. 3.2 it is challenging to find an objective er-
ror measure for the perceived differences between to audio sig-
nals. For this reason the error between simulation and reference is
shown in time-domain as well as frequency-domain.

4.1. Time-Domain Error

A possible objective error measure would be the time domain error,

eyŷ =

∑N
n=1(y(n)− ŷ(p, n))

2

N
, (4)

whereN is the overall length in samples of the output signals. The
error becomes zero if the signals are completely the same. But in
certain cases, the time domain error is quite high but the perceived
(subjective) difference is hard to hear. In general however, the time
domain error gives us an estimate about how close the model can
recreate the DUT. Nevertheless this is no reliable metric to charac-
terize the perceptual difference between two audio signals. Figure
5 shows the comparison between time domain signals of DUT and
the identified model. The DUT was a Hughes & Kettner - Tube
Factor, which is basically a tube-preamp in stompbox format with
a 12AX7 vacuum tube. Figure 5 (a) shows the response of digi-
tal model and reference system to an exponentially decaying sine
input with 440Hz. The maximum amplitude of the input was 1.
The digital model reproduces the analog system quite well, ex-
cept from the transient part at the beginning of the signal. For the
recorded electrical guitar signal, depicted in Fig. 5 (b), the simu-
lation follows the measured curve closely but there are still some
differences for certain frequency components, which may be a re-
sult of the simple nonlinear block, where one nonlinear function
is used for all frequency components of the input signal. Another
way of determining how well the identification worked, is by com-
paring the transfer functions of both, reference and simulation.

4.2. Time and Frequency-Domain Error

Figure 6 shows the frequency response of a Jim Dunlop - Fuzz
Face fuzz pedal in comparison to the frequency response of its
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(a) 40ms 440Hz sin with exponentially decaying amplitude.
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(b) Excerpt from recorded guitar signal.

Figure 5: Comparison of the time-domain signals for the Hughes
& Kettner Tube Factor and the identified model.
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Figure 6: Comparison of the frequency response of analog refer-
ence and digital model for a Jim Dunlop - Fuzz Face.

digital model. The model deviates from the reference system by
less than 1 dB, but becomes more inaccurate for low frequencies
(below 60Hz) and for frequencies above 18 kHz.

The spectrograms of digital model and analog system output
are shown in Fig. 7. The input to both reference system and digi-
tal model was a recording of an electrical guitar playing fast high
chords, as customary for funk music. The DUT was a Hughes &
Kettner - Tube Factor. The harmonics generated by the DUT and
its digital representation resemble each other well. The error spec-
trogram, shown in Fig. 7 (c), shows the difference of the absolute
values of the previous spectrograms. The overall error energy is
much lower than the signal energy of reference system and digital
model.
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Figure 7: Spectrograms of reference system and digital model out-
put and the error spectrogram.

4.3. Aliasing

The sampling frequency was set to fs = 48 kHz for identification
and runtime operations. The upper plot of Fig. 8 shows the fre-
quency response of the digital model to a 1500Hz sine wave. The
aliasing, caused by the nonlinear block of the Wiener-Harmmerstein
model is clearly visible due to the distinct peaks between the main
peaks for fundamental frequency and the harmonics. For this rea-
son resampling was introduced. The output signal of the first LTI
block is upsampled by resampling factor L, then processed by the
nonlinear block and finally the output of the nonlinear block is
downsampled by factor L. The lower plot of Fig. 8 shows the re-
sponse of the digital model to a 1500Hz sine wave with resam-
pling factor L = 8. The effects of aliasing are now nearly dimin-
ished.
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Figure 8: Response of the digital model to a 1500Hz sine. Above:
without oversampling. Below: with 8 times oversampling.

4.4. Auditory Impression

Although no formal listening test was conducted, the subjective
auditory impression of the proposed model is quite satisfying. In
some cases the difference between simulation and reference output
is still audible but only for a trained listener. Different input signals
as well as digital model and analog system outputs can be found
online. Please visit [18] for listening examples.

5. CONCLUSIONS

This work proposed a method to identify and model nonlinear ana-
log distortion effects. LTI filter blocks and a nonlinear block of
a Wiener-Hammerstein model, are introduced. The identification
routine is described and the model is able to emulate any distor-
tion pedal in a given setting. For many effects the results from the
model are nearly indistinguishable from the analog device itself.
But this method still has several drawbacks, which should be ad-
dressed in the future. First the search for the initial parameter set
is still carried out on a coarse grid, because the computational ef-
fort rises drastically if the grid resolution or the amount of tested
parameters increases. This may cause the identification algorithm
to converge into a local minimum instead of the global minimum.
Furthermore it is essential to study more perceptually motivated
error metrics, e.g. PEAQ, to find a comparable and reliable error
metric.
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