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We report numerical solution of a Schrodinger equation modified by the nonlinear term b In|¢s|* as proposed by
Bialynicki-Birula and Mycielski. Experiments on the diffraction of cold neutrons at an absorbing straight edge performed
earlier had set a very low upper limit on b, the strength of the nonlinearity, and it was the purpose of the present
calculations to check the validity of some approximations made in the evaluation of that experiment. The numerical
solutions show diffraction both in the usual spatial domain and in the time domain. When compared with the earlier

estimates we find agreement within a factor of two.

1. Introduction

The linearity of the Schrddinger equation is
crucial for such fundamental properties of quan-
tum mechanics as the spreading of wave packets
during their temporal evolution or the unlimited
validity of the superposition principle. Specifical-
ly, it is the understanding of many physicists that
the quantum measurement problem could be
resolved if the Schrodinger equation were suit-
ably nonlinear [1]. Though we do not share this
point of view, we certainly consider the question
of the linearity of the Schrodinger equation to be
one which has to be subject to experimental test.

Of the various types of nonlinear variants
proposed in the literature, the one by Bialynicki-
Birula and Mycielski (BBM) [2] has been de-
veloped far enough to permit experimental tests.
This nonlinear Schrodinger equation (NLSE) is
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in standard notation. The new nonlinear term
F(|¢|*) can conceptually be understood as a kind
of ‘self-potential’. It has been shown by BBM
that many of the important features of standard
wave mechanics can be retained within their
nonlinear equation. The specific functional form

of F(|i|?) is then a separate question, which can
ultimately only be answered by experiment. Ac-
cording to BBM a very interesting variant of eq.
(1) follows for the case of a logarithmic non-
linearity

F(|¢|*) = —bIn(|y]*). (2)

Here, b measures the strength of the nonlineari-
ty. It has the dimension of energy and has to be
positive in order to lead to solutions bounded
from below in energy. The most significant fea-
ture of an NLSE with logarithmic nonlinearity is
the separability of noninteracting subsystems. In
view of the excellent agreement of standard
linear wave mechanics with experiment, it is
evident that b has to be very small. On the basis
of Lamb shift measurements BBM arrive at an
upper limit of b<4x 107"’ eV.

2. The neutron experiments

It was first realized by Shimony [3] that this
limit could be further lowered by neutron inter-
ferometry. The experiment proposed by him was
then performed by Shull et al. [4] leading to an
upper limit of the strength b of the nonlinearity
of b<3.4x10 *eV. The crucial step in the
evaluation of that experiment was the realization
that for small enough b the WKB anproximation
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is applicable to the time-independent variant of
the NLSE. Then, the nonlinear ‘self-potential’
term leads to a phase shift analogous to other
potentials.

As with nonlinear equations in general, a most
sensitive test results if a disturbance as steep as
possible is introduced into the amplitude. This is
related to the breakdown of the linear equival-
ence of the evolutions in real space and in
Fourier space for such equations. For neutrons,
a related experiment was performed by Gahler
et al. [5] by introducing an absorbing straight
edge into a beam of cold neutrons with a
wavelength of A =20 A. The Fresnel diffraction
pattern was then measured precisely and careful-
ly checked for possible deviations from the pat-
tern predicted by standard linear theory. No
statistically significant deviation was found. From
the known sensitivity of the experiment one
could then deduce a new upper limit for the
nonlinearity of b <3.3x 10~ " eV.

For the evaluation of the Fresnel diffraction
pattern the influence of the nonlinear term on
the distance between the point P, straight down
from the absorbing edge (i.e. with 25% intensi-
ty) from the position P, of the first maximum was
studied. In order to arrive at a theoretical predic-
tion some approximations of the NLSE had to be
made. These were most notably (a) the replace-
ment of the time-dependent equation by a time-
independent one, (b) the assumption that the
spatial variations of the amplitude of i are small
over distances of the order of the wavelength
and (c) the assumption that, because of the
smallness of the nonlinearity, any change of the
diffraction pattern due to a nonlinear term can
be expressed as a small variation of the pattern
predicted by the linear theory. This finally results
in the following expression for the change Y of
the distance between the points P, and P,:

2b
Y:E_\F/\ C‘]Z:”z, (3)

where Z is the distance between the diffracting
edge and the observation plane and ¢, is a
geometrical constant of order unity. The ex-
perimentally observed value was consistent with

Y =0 which, using the known sensitivity of the
experiment, lead to the limit on b given above. It
is important to realize that the validity of the
approximations made, though certainly reason-
able within the linear theory, is not at all obvious
within a nonlinear theory. To investigate this
specific question detailed numerical calculations
were performed [6] and are reported here.

3. The numerical method

In the numerical calculations the absorbing
straight edge was assumed to be infinitely long
and oriented along the x-direction, i.e. for its
absorbing potential we have V(x,y,z)=
V(y, z). The absorption was taken into account
by setting the wave function to zero along the
absorbing half-plane. The fact that the non-
linearity studied is logarithmic then permits the
separation ansatz

¥(r, 1) = x(x)$(y, 2, 1) (4)

leading to a NLSE which depends on the 3
parameters y, z and ¢ only:

(~2( L+ L) v, 9= bnar)

X 6(y, 2,0 =ik 5 (3, 2,1).. 5)

This differential equation was transformed into a
difference equation which was defined on a dis-
crete lattice. The solution was calculated in time
steps Af from a suitably chosen initial wave
function. Due to limitations both in computer
storage space and in computer time the calcula-
tions had to be restricted to a region close to the
diffracting edge. For that reason values of the
nonlinearity constant b much larger than the
upper limits resulting from existing experiments
had to be chosen in order to observe significant
differences between the linear and the nonlinear
equations.

For the calculation two step sizes had to be
chosen, a spatial step size A and a time step size
At. If ¢, , , denotes the value of the wave func-
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tion at the lattice site j in y-direction, k in
z-direction (the direction of propagation) and !/
in time direction, the following difference quoti-
ents turned out to be most suitable:

(%) _ Gkt = Bk ©)
AT/ pks 2AT
and
A A
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Hd g 4¢,-‘,c‘,]/A2 i (7)

Insertion of these expressions into the Schrod-
inger equation results in an expression for ¢, , ;. ,
as a function of the six field values ¢, , ;_, ¢, ;s
¢j—1.k.:s Dii1u0> Pj—1, and & k1

The initial conditions were then chosen as

‘f’j,k,o =[1=80a),

@i k,—1 = [1— 0(kd)] exp(iw AT)

(8)

where 6 is the Heavyside step function. Physical-
ly, this should describe a situation where an
absorbing shutter opens the positive-z half-plane
at time zero.

An important question is that of the size of the
spatial lattice to be used. The amplitudes at the
outermost lattice sites can, in principle, not be
calculated within the program but have to be
chosen through boundary conditions and the
final results should not depend critically on the
choice made.

Concerning the boundary condition we can
discriminate four different ranges (fig. 1). Range
1 (k=0) contains the absorbing edge. At the
absorbing edge itself the amplitude was set iden-
tically equal to zero at all times. At the other
points of range 1 we have the incident wave
which we assume not yet to be influenced by the
absorbing edge and therefore of constant am-
plitude. From time step to time step the am-
plitude is multiplied by the phase factor
exp(—iw AT). Laterally, the lattice was chosen
large enough such that the influence of the ab-
sorbing edge on the amplitude at range 2 of the
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Fig. 1. Size and boundaries of the spatial lattice chosen for
the numerical calculations.

boundary (j,..=J) could be neglected, there-
fore there we set ¢, , , = @, , ;,- The most prob-
lematic boundary region was range 3 (k.. = K)
which was downstream from the absorbing edge.
It is the region where the diffraction pattern
arises finally. This problem was handled such
that the lattice was chosen to be large enough in
z-direction so that the amplitude at the range 3
lattice points was very small up to the last few
time steps. Additionally, the amplitude at k= K
was set such that ¢, ., = ¢, ¢, , exp(ikA) where
k=2m/X is the wave number of the neutrons.
Part 4 of the boundary which is the part with
J = Jmin Was well inside the geometric shadow and
therefore the wave amplitude there could be set
equal to zero at all times.

The boundary conditions mentioned above
were checked by varying the size of the lattice
used and by trying alternative choices. It was
found that with the parameters and the lattice
size chosen (fig. 1) the results were very stable
upon variation of these parameters. The same
holds for the step sizes finally used which were
A=A/T and AT =0.09A4/v,, with v, = w/k.

4. Numerical results

The calculations were made for a neutron
wavelength of A=20A which was the
wavelength of the earlier experiments. Fig. 2
shows the calculated intensity distribution at dif-
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Fig. 2. Intensity distributions behind the diffracting edge at different times after the start of the evolution both for the linear (left
column) and the nonlinear case (right column). The times are ¢t =0, 39, 78, 117, 156, and 195 ps, respectively, from top to bottom.

ferent times after the start of the evolution. As
mentioned above, at T =0 a shutter was opened
and at that time the intensity distributions are
identical by definition for both the linear case
(b=0) and the nonlinear case, i.e. the initial
conditions were identical. The part of the line
z=0 with zero intensity is the position of the
absorbing edge in all graphs. We should also

mention that only a part of the calculated inten-
sity patterns is shown, the lattice used was larger
than the one displayed.

Various features of the patterns of fig. 2 deser-
ve comment. Firstly, one can clearly see the
emergence of the Fresnel diffraction pattern not
only in y-direction, which is the conventional
direction along which diffraction patterns are
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scanned in experiment, but also in z-direction
(the propagation direction), a feature to our
knowledge never observed in a matter—wave ex-
periment until present. Another feature also not
observed in experiment yet is the emergence of a
Fresnel diffraction pattern at a given position as
a function of time as can be seen by comparing
the graphs for different times in fig. 2. These last
features need ultrafast chopping and detection
procedures in experiment. An important step in
this direction is being made presently by the
introduction of the quantum chopping technique
[7, 8].

When comparing in fig. 2 the evolution pat-
terns of the nonlinear case with the linear one,
one notices that the maxima are more pro-
nounced in the nonlinear solutions. This is to be
expected because one of the motivations for
introducing nonlinear terms in the Schrodinger
equation is to provide a mechanism preventing
the unlimited spreading of wave packets. Qual-
itatively, this may be understood as a mechanism
compressing the wave maxima spatially.

In the quantitative comparison of the linear
and the nonlinear cases (fig. 3), this enhance-
ment of the maxima and minima can be seen
very clearly. For the relation to the experiment
one notices that both the position of the 25%
intensity point P, and the position of the first
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Fig. 3. Comparison of the edge diffraction pattern calculated
for a nonlinear case with the one calculated for the linear
case.

maximum P, are shifted. Their relative shift is
then the sum of both these shifts (Y =Y, + Y,).

As also predicted by the closed-form approxi-
mation (eq. (3)) the distance Y between P, and
P, was found here too to vary linearily with the
magnitude of the nonlinearity constant b (fig. 4).
Yet, interestingly, the numerical method predicts
an effect about half as large as the closed-form
approximation for the same value of b. The
cause of this discrepancy is presently unknown to
us. Only detailed further studies could reveal
whether this discrepancy is due to the approxi-
mations made in the derivation of eq. (3) or
whether it is caused by the limitations of the
numerical calculations. Possible causes for the
discrepancy could certainly lie in the fact that for
the closed-form calculations the Fresnel approxi-
mation was used and in the fact that we only
compared solutions very close to the diffracting
edge. In view of this we find it remarkable that
we still obtain such an excellent qualitative and
relatively reasonable quantitative agreement at
all between the two methods. An_indication of
the reasonableness of the agreement between
both methods is the fact that in the numerical
method we also found the z°'* variation of Y
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Fig. 4. Distance Y between the position of the first maximum
of the diffraction pattern and the position of the point with
25% intensity as a function of the strength b of the nonlinear
term. Numerical results (circles) and closed-form approxima-
tion (solid line).
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Fig. 5. Distance Y between the maximum intensity point and
the 25% intensity point as a function of the propagation
distance z from the absorbing edge. In agreement with the
closed-form approximation a z*'* dependence is found.

with the distance from the absorbing edge (fig.
)

The observation of a numerical discrepancy of
a factor close to two has to be judged in relation
to the experiment. As long as the experiment
does not give a definitely nonzero value for b the
experimental result provides a limit only, imply-
ing that any value of b has to be much smaller
than that limit. In that situation it is doubtful
whether it is worthwhile to invest the effort and
the significant amount of computer time to resol-
ve a discrepancy between two results which are
of the same order of magnitude. Yet, the resolu-

tion of this discrepancy would be necessary in
the unlikely, but certainly extremely important,
case of an experimental confirmation of a break-
down of linearity.
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