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We report the first experimental demonstration of an all-optical one-way implementation of Deutsch’s
quantum algorithm on a four-qubit cluster state. All the possible configurations of a balanced or constant
function acting on a two-qubit register are realized within the measurement-based model for quantum
computation. The experimental results are in excellent agreement with the theoretical model, therefore
demonstrating the successful performance of the algorithm.

DOI: 10.1103/PhysRevLett.98.140501 PACS numbers: 03.67.Lx, 02.50.Le, 03.67.Mn, 42.50.Dv

The increasing interest in topics of quantum information
processing (QIP) and quantum computation has stimulated
considerable efforts in the realization of quantum hardware
based on various experimental settings. These efforts have
resulted in the realization of one and two-qubit logical
gates [1], even though the networking of these basic build-
ing blocks is still far from being practical. Nevertheless,
investigations in this direction, both at the experimental
and theoretical level are vital for the advancement of QIP.
The ultimate aim is the realization of multiqubit quantum
algorithms able to outperform their classical analogues
[1,2]. In this context, the implementation of few-qubit
quantum algorithms represents a step forward in the con-
struction of working processors based on quantum tech-
nology [3,4].

Very recently, a radical change of perspective in the
design of quantum computational protocols has been pro-
posed and formalized in the ‘‘one-way’’ model [5]. Here,
computation is not performed by inducing a sequence of
logical gates involving the elements of a quantum register,
as in the quantum circuit model [1]. In the one-way case, a
multipartite entangled state, the cluster state, is used as a
resource for running a ‘‘program’’ represented by single-
qubit measurements, performed in order to simulate a
given computational task [5]. This new paradigm for quan-
tum computation, which limits the amount of control one
needs over a register to the ability of performing single-
qubit measurements, has raised an enormous interest in the
physical community. It has triggered investigations di-
rected toward a better understanding of the model [6] and
also its practical applications [7,8]. The efforts produced so
far have culminated in the experimental demonstration of
the basic features of the model, the realization of a two-
qubit quantum search algorithm [7] and the theoretical
proposal for a measurement-based realization of a quantum
game [9]. The one-way model is also helping us to under-
stand the paramount role of measurements in the quantum
dynamics of a system.

Here, we report the first experimental demonstration of a
one-way based implementation of Deutsch’s algorithm [3].

It represents a simple but yet interesting instance of the role
that the inherent parallelism of quantum computation plays
in the speed-up characterizing quantum versions of classi-
cal problems. We have used an all-optical setup, where the
construction of cluster states has been successfully dem-
onstrated [7,8]. Negligible decoherence affecting qubits
embodied by photonic degrees of freedom ensure the per-
formance of the protocol in a virtually noise-free setting.
Although Deutsch’s algorithm has been implemented in a
linear optical setup before [10], our protocol represents its
first realization in the context of one-way quantum com-
putation. It is based on the use of an entangled resource
locally equivalent to the cluster state used previously for
performing a two-qubit search algorithm [7] and reinforces
the idea of the high flexibility of cluster resources. We
show that four qubits in a linear cluster configuration are
sufficient to realize all the possible functions acting on a
logical two-qubit register. Two of these result from the
application of an entangling gate to the elements of the
register. In principle, this gate can be realized by inducing
an interaction between the photonic qubits. In our cluster-
state approach, the required entangling operations are real-
ized by using the entanglement in the cluster resource and
the nonlinearity induced by detection. There is no need for
engineering it in a case by case basis [10], which is a very
important advantage. The density matrix of the logical
output qubits for the functions show excellent performance
of the algorithm in our setup.

Model.—The generalized version of Deutsch’s algo-
rithm, also known as the Deutsch-Josza algorithm [11],
takes an N-bit binary input x and allows one to distinguish
two different types of function f�x� implemented by an
oracle. A function is constant if it returns the same value
(either 0 or 1) for all possible inputs of x and balanced if it
returns 0 for half of the inputs and 1 for the other half.
Classically one needs to query this oracle as many as
2N�1 � 1 times in some cases. However the quantum
version requires only one query in all cases [11]. In the
two-qubit version [3], the algorithm implements the oracle
as a function f on a single query bit x using an input ancilla
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bit y. The applied unitary operation is given by jxijyi !
jxijy � f�x�i. Preparing the input state as j�ij�i, where
j�i � �j0i � j1i�=

���

2
p

and fj0i; j1ig is the single-qubit
computational basis, the oracle maps the state to �1=

���

2
p
��

	��1�f�0�j0i � ��1�f�1�j1i
j�i. By measuring the query
qubit in the fj�ig basis, one can determine which type of
function f�x� corresponds to. If f�x� is balanced (constant),
the query qubit is always j�i (j�i). Thus, only one query
of the oracle is necessary, compared to two in the classical
version.

The action of the above oracle is either preset or dictated
by the outcome of another algorithm. In order to imple-
ment all possible configurations that it might take in the
two-qubit version, we must be able to construct them using
a combination of quantum gates. In Fig. 1 we show all
possible oracles in terms of their quantum network. By
describing each as a ‘‘black box’’, one can see that all four
black boxes [BB(i)–(iv)] implement their respective oracle
operation. In order to carry out the algorithm using these
quantum gates, we use a cluster state and carry out one-
way quantum computation on it by performing a correct
program of measurements. No adjustment to the experi-
mental setup is necessary.

Given a cluster state, there are two types of single-qubit
measurements that allow a one-way quantum computer to
operate. First, by measuring a qubit j in the computational
basis it can be disentangled and removed from the cluster,
leaving a smaller cluster state of the remaining qubits.
Second, in order to perform QIP, qubits must be measured
in the basis Bj��� � fj��ij; j��ijg, where j��ij � �j0i �
ei�j1i�j=

���

2
p

(� 2 R). Choosing the measurement basis
determines the rotation Rz��� � exp��i��z=2�, followed
by a Hadamard operation H � ��x � �z�=

���

2
p

being simu-
lated on an encoded logical qubit in the cluster residing on
qubit j (�x;y;z are the Pauli matrices). With a large enough

cluster, any quantum logic operation can be performed
with a proper choice for the Bj���’s [12].

Experimental implementation.—For the entangled re-
source, in an ideal case, the following four-photon state
is produced by means of the setup shown in Fig. 2(a)
j�ci � �1=2��j0000i � j0011i � j1100i � j1111i�1234

with j0ij (j1ij) embodied by the horizontal (vertical) po-
larization state of one photon populating a spatial mode
j � 1; . . . ; 4. The preparation of the resource relies on
postselection: a four-photon coincidence event at the de-
tectors facing each spatial mode witnesses the preparation
of the state. This state is locally equivalent to a four-qubit
linear cluster state j�lini (the local operation being H1 �
12 � 13 �H4). The experimentally produced state % is

 

FIG. 1 (color online). Network diagrams for the black boxes in
Deutsch’s algorithm. We have BB�i� � 1 � 1, BB�ii� � 1 � �x,
BB�iii� � CNOT, and BB�iv� � �1 � �x�CNOT (CNOT denotes a
Control-NOT gate).

 

FIG. 2 (color online). (a) Experimental setup. An ultraviolet
pump laser performs two passages through a nonlinear beta-
barium-borate crystal (BBO) aligned to produce entangled pho-
ton pairs of the form �j00i � j11i�ab=

���

2
p

and �j00i � j11i�cd=
���

2
p

.
Compensators (Comp) are half-wave plates (HWP) and BBO
crystals used in order to counteract walk-off effects at the BBO.
By considering the possibility of obtaining a double-pair emis-
sion into the same pair of modes and the action of the polarizing-
beam splitters (PBS’s), the four terms entering j�ci are obtained
and their amplitudes and respective signs adjusted [7] with an
additional HWP in mode (a). The algorithm is executed by using
quarter-wave plates (QWPs), HWP’s, PBS’s, and photocounter
pairs fDj;Dj0 g for the performance of polarization measurements
in arbitrary bases of the photons in mode j. (b) Sketch of the
cluster-state configuration. Qubit 1 embodies the logical input
for jxi and its output. Qubit 4 (3) is the logical input (output) for
jyi, which is always found to be j�i3. (c) and (d): Real and
imaginary plots, respectively, of the reconstructed experimental
density matrix %.
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verified by means of a maximum-likelihood technique for
tomographic reconstruction [13] performed over a set of
1296 local measurements [7], each acquired within a time
window of 500 s. This provides information about the
overall quality of the experimental state on which the
algorithm is performed. We have used all the possible
combinations of the elements of the mutually unbiased
basis fj0i; j1i; j�i; j�i; jRi; jLigj with j�ij embodied by
the polarization state at �45� and jL=Rij � �j0i �
ij1i�j=

���

2
p

, corresponding to left- and right-circularly po-
larized photons. This over-complete state tomography has
the advantage of providing a more precise state estimation
and significantly smaller error bars [7]. The reconstructed
density matrix of % is shown in Figs. 2(c) and 2(d) and has
a fidelity with the ideal state j�ci of F � h�cj%j�ci �
0:62� 0:01. The error bar was estimated by performing a
100 run Monte Carlo simulation of the whole state tomog-
raphy analysis, with Poissonian noise added to the count
statistics in each run [13]. Obtaining a higher fidelity is
limited by phase instability during the lengthy process of
state tomography and nonideal optical elements. However,
it is well above the limit F � 0:5 for any biseparable four-
qubit state [14] and demonstrates the presence of genuine
four particle entanglement.

In order to perform Deutsch’s algorithm on the cluster
resource j�ci, we have used a specific set of measurement
bases for the qubits in each black box case. In Table I we
provide these basis sets (BBc) and feed-forward (FF) op-
erations used to carry out the black boxes on j�ci and also
j�lini (BB basis sets). As BB(ii) and BB(iv) are obtained
from BB(i) and BB(iii) by using alternative FF operations
(corresponding to adaptive measurements on the output
qubits [12]), in what follows we explicitly describe BB(i)
and BB(iii). Figure 2(b) shows the in-out logical states of
the algorithm, where the logical input state corresponding
to jxi � j�i is encoded on qubit 1. The state jyi � j�iwill
be encoded on qubit 3 by measuring qubit 4 in the B4���
basis during the implementation of the algorithm (de-
scribed next). This gives jxijyi 
 	1 � Rz���
j�ij�i.

Qubit 2 in j�lini plays the pivotal role of the oracle as it
performs a two-qubit gate on the logical input states jxi and
jyi. For BB(i), measuring qubit 2 in the computational
basis disentangles it from the cluster and j�lini is trans-

formed into j�i1�1=
���

2
p
��j0ij�i � j1ij�i�34 (� (�) for

outcome j0i2 (j1i2)). The effective operation performed
by this choice of the oracle’s measurement basis is 1 �
1. By including the H operation applied to the input state
jyi from the measurement of qubit 4, the overall computa-
tion results in �1 � 1�	1 �HRz���
j�ij�i which is
equivalent to jxijy � f�x�i � �1 � 1�j�ij�i up to a local
rotation H on physical qubit 3, applied at the FF stage.
Qubits 1 and 3 can now be taken as the output jxijy � f�x�i.
For BB(iii), upon measuring qubit 2 in the B2��=2� basis,
the oracle applies the gate 	Rz��=2� � Rz��=2�
CPHASE on
jxi and jyi (see Tame et al. in [6]), where CPHASE shifts the
relative phase of the state j1ij1i by �. This gives the
computation jxijy � f�x�i � CNOTj�ij�i 
 	Rz��=2� �
Rz��=2�
CPHASE	1 �HRz���
j�ij�i up to local rotations
Rz���=2� �HRz���=2� on qubits 1 and 3, applied at the
FF stage. The measurements and outcomes of qubits 1, 3,
and 4 constitute the algorithm. The additions to the FF
stages described above, together with the measurement of
qubit 2 should be viewed as being carried out entirely by
the oracle.

The results of our experiment are shown in Fig. 3, where
we fully characterize the output states of our quantum
computer by repeating the algorithm a large number of
times. A single run of the algorithm (measuring the output
qubit 1 in a specific basis only once) is sufficient in our
setup to carry out the quantum computation with suc-
cess rates as large as 90% (78%) for BB(i) [BB(iii)].

TABLE I. Measurement bases for the black boxes. The FF
operations are ��s2

x �1��
s4
x �3 for BBc (i) and ��s2�s4

z �1��
s4
x �3 for

BBc (iii). Here, sj is 0 (1) if the outcome is j��ij (j��ij) on
qubit j.

Measurement basis

BB(i) fB1�0�; fj0i2; j1i2g; fj0i3; j1i3g; B4���g
BBc (i) ffj0i1; j1i1g; fj0i2; j1i2g; fj0i3; j1i3g; fj1i4; j0i4gg
BB (iii) fB1��=2�; B2��=2�; fj0i3; j1i3g; B4���g
BBc (iii) fB1�3�=2�; B2��=2�; fj0i3; j1i3g; fj1i4; j0i4gg

 

FIG. 3 (color online). The output density matrices for cluster
qubits 1 and 3 when BB(i) and BB(iii) are implemented. Panels
(a) and (c) show the real parts of the two-qubit density matrix
elements as obtained from a maximum-likelihood reconstruction
for the no-FF cases of BB(i) and BB(iii), respectively. Panels (b)
and (d) show the corresponding plots for the FF case, due to the
randomness of measurement outcomes for qubits 2 and 4. In all
four cases the imaginary parts are zero in theory and negligible
in the experiment (average values <0:02).
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However, repeating it several times allows us to verify the
density matrix for the quantum state of qubits 1 and 3
reconstructed through a maximum-likelihood technique
[13]. Although only the logical state residing on qubit 1
provides the outcome of the algorithm, it is useful for the
characterization of the quantum computer’s performance
to also determine the state residing on qubit 3. Ideally, the
joint state of qubits 1 and 3 should be the product state
jxijy � f�x�i. By obtaining both correct logical output
states, we can confirm that the algorithm will run correctly
if included in a larger protocol. Figure 3 shows the output
density matrices for BB(i) and BB(iii). Both the no-feed-
forward (no-FF) and FF situations are shown. In the latter
case, the state of the output qubits is corrected from the
randomness of the measurements performed on the physi-
cal qubits 2 and 4. From the previous analysis, we know
that the expected outcome from a single run, when a
constant (balanced) function is applied is j�;�i13

(j�;�i13). Evidently, the reconstructed density matrices,
both in the FF and no-FF cases, show a very good per-
formance of the algorithm when compared with the
theoretical expectations. The real parts are dominated by
the correct matrix elements and no significant imaginary
parts are found. Quantitatively, the fidelity with the desired
state in the case of a constant (balanced) function is found
to be as large as 0:90� 0:01 (0:78� 0:01) for the FF case
and 0:82� 0:01 (0:63� 0:01) for the no-FF one.
Moreover, no entanglement is found in any of the joint
output states, as witnessed by the negativity of partial
transposition criterion [15]. The small admixture of the
undesired j�;�i13 to the expected j�;�i13 state when a
balanced function is applied [Fig. 3(c)] is due to the non-
ideal fidelity of the experimental cluster state with j�ci.
This is more pronounced for BB(iii) than for BB(i), where
the measurement basis of qubit 2 breaks the channel be-
tween jxi and jyi resulting in a protocol-dependent noise-
inheritance effect for imperfect cluster states (see Tame
et al. in [6]).

Remarks.—We have designed, demonstrated, and char-
acterized the performance of the first experimental realiza-
tion of Deutsch’s algorithm on a four-qubit cluster state.
Our experiment is one of the few quantum algorithms
entirely implemented utilizing the one-way model [7,9].
The agreement between the experimental data and theory
is excellent and only limited by the overall quality of the
entangled resource in the experiment.
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