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Entanglement is an essential resource in current experimental implementations for quantum information pro-
cessing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum
computing over quantum communication complexity to long-distance quantum communication. We then pro-
pose a set of feasible experiments, that will exploit the advantages of photonic entanglement for quantum in-

formation processing. © 2007 Optical Society of America
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1. INTRODUCTION

Quantum entanglementl has become an important re-
source for many practical tasks in quantum information
processing such as quantum computing, quantum com-
munication, or quantum metrology. From an early stage
on, entanglement proved to be an essential tool for quan-
tum physics, both in theory and experiment: Early experi-
mental realizations of entangled photon pairs were used
to demonstrate the quantum nature of polarization corre-
lations that can occur in decay processes,2’3 to confirm
quantum predictions of radiation theory and falsify semi-
classical models,*® or to test Bell’s theorem and exclude
local realistic descriptions of the observed quantum
phenomena.Gf9 It led to the development of quantum in-
formation science, partly triggered by the introduction of
quantum cryptography,'®? which has evolved to a
strongly expanding branch of science. There, entangle-
ment is a fundamental resource, as a quantum channel in
quantum communication (e.g., for quantum state
1:elep0rtation13’14 or quantum dense coding15’16) or as a
computational resource. Quantum computing with pho-
tons has recently experienced a new boom by discovering
the possibility of universal computing with linear optics
and measurements alone.'” Although it is still unclear
what the minimal resource requirements for optical quan-
tum computing are, the number of required optical ele-
ments per universal gate is constantly decreasing. An-
other appealing feature of photonic quantum computing
is the possibility of gate times much faster than in any
other physical implementation to date.
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In the following, we will discuss new examples involv-
ing experiments on entangled photons that underline the
importance of entanglement for quantum information
processing. Section 2 starts with an introduction to pho-
tonic one-way quantum computing, a new approach that
makes optimal use of entanglement as a resource. We lay
out an experiment to achieve deterministic quantum com-
puting, a unique feature of the one-way quantum com-
puter, by introducing active corrections during the compu-
tation. Section 3 describes experimental challenges and
perspectives when exploiting distributed entanglement
for quantum networking tasks, in particular, long-
distance quantum communication, higher-dimensional
quantum cryptography, and quantum communication
complexity.

2. TOWARD DETERMINISTIC ONE-WAY
QUANTUM COMPUTING WITH
ACTIVE FEEDFORWARD

Linear optical quantum computing (LOQC) is one of the
promising candidates for the physical realization of quan-
tum computers. LOQC employs photonic qubits as infor-
mation carriers, which have the immense advantage of
suffering negligible decoherence and providing high-
speed gate operations. It was shown that linear optics and
projective measurements allow for essential nonlinear in-
teractions and eventually for scalable quantum
computing.17 This has led to a flurry of research in both
theory and experiments. A recent and comprehensive
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overview can be found in Ref. 18. The intrinsic random-
ness of the projective measurements in linear optics, how-
ever, only allows for probabilistic gate operations, i.e., the
gate operations are successful only in a small fraction of
the time. The other times the outcomes need to be dis-
carded. Although the gate success probability increases
with additional resources (optical elements and/or ancilla
photons), such schemes achieve nearly deterministic gate
operations only in the asymptotic regime of infinite re-
sources, which is experimentally infeasible.

In contrast, the one-way quantum computer mode
an exciting alternative approach in LOQC, allows the re-
source for the quantum computation to be prepared off-
line prior to any logical operations. The computational re-
source is a highly entangled state (the so-called cluster
state). Once the cluster state is prepared, the computa-
tion proceeds deterministically, i.e., every measurement
produces a meaningful result, requiring only single-qubit
measurements and feedforward of the measurement re-
sult. Feedforward is the essential feature that makes one-
way quantum computing deterministic and can be seen as
an active correction of errors introduced by the random-
ness of measurement outcomes. We will argue in the fol-
lowing that present state-of-the-art technology allows for
a demonstration of deterministic one-way quantum com-
puting by implementing this active feedforward tech-
nique.

A cluster state is a network of entangled qubits and
represents a universal state for quantum computing. Uni-
versal means that any quantum logic operation can be
carried out on a sufficiently large and appropriately struc-
tured cluster state. These states arise when individual
qubits are prepared in the superposition state [+)=(]0)
+|1))/y2, where |0), |1) denote the computational basis
states, and connected by applying a controlled-PHASE op-
eration |j)| k) — (=1)%|j)| k) with (j,k € 0,1) between neigh-
boring qubits, effectively generating entanglement. Re-
cent experiments succeeded in creating cluster states
with various methods,?? including linear optical real-
izations of simple controlled-PHASE gates.M_26

Single-qubit measurements are essential in cluster
state quantum computing. The shape of the cluster state
and the nature of these measurements, i.e., the order of
measurements and the individual measurement bases are
determined by the desired algorithm. The input state |;,)
is always initialized as |+). It is important to note that
the entire information of the input state is initially stored
in the multiparticle correlations of the cluster, with the
individual physical qubits being completely undefined
and therefore not carrying any information about the in-
put state. In this sense, namely that properties of indi-
vidual subsystems are completely undefined, the cluster
state is a maximally entangled state. Well-known ex-
amples include two-qubit Bell states and three-qubit GHZ
states. Single-qubit measurements on the cluster process
the encoded input from one qubit to another analogous to
remote state preparation. In principle, two basic types of
single-particle measurements suffice to operate the one-
way quantum computer. Measurements in the computa-
tional basis {|0);,|1);} have the effect of disentangling, i.e.,
removing the physical qubit j from the cluster. This leaves
a smaller cluster state and thus gives the ability to shape
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the cluster in the specific algorithm. The measurements
that perform the actual quantum information processing
are made on the basis B(a)={|a,),|a_)}, where |a.)
=(|0y£e~i%|1))/\2 with a e[0,27]. For simplicity, we will
restrict our discussion to single-qubit gate operations, i.e.,
measurements on linear cluster states.?’ The argument
can be generalized in a straightforward manner. The
choice of measurement basis determines the single-qubit
rotation, Rz(a)zexp(—im_rZ/Z), followed by a Hadamard
operation, H=(o,+0,)/\2, on the input state (o, ay, 0,
being the Pauli matrices).

R(HW) = ) —RY|—H—|dud. (1)

The order and choices of these measurements determine
the unitary gates that are implemented and therefore the
algorithm that is computed. Rotations around the z axis
can be implemented through the identity HR,(a)H
=R,(a) so that two consecutive measurements on a linear
three-qubit cluster can rotate the input state to any arbi-
trary output state on the Poincare sphere:

R (0)HR.(B)H| ;)
= Rz(a)Rx(B)|¢m = |l/fin> ___“ |’7[/out>('2)

Until now, we have not incorporated the actual measure-
ment result in our analysis. Equation (1) only holds if the
outcome of the measurement s is as desired, say s=0. Due
to the intrinsic randomness of the quantum measure-
ment, it happens with equal probability that the mea-
surement yields the unwanted result s=1. In that case, a
well-known Pauli error ( 0,=—X}—) is introduced in the
computation, so that the single measurement in basis
Bj(a) rotates the qubit to

R(BHo ) = |¢in>—~——|wout>.(3)

Obviously, by adapting the measurement bases of subse-
quent measurements, these errors can be eliminated. In
the following, let us consider the general case of a single-
qubit operation by taking into account the feedforward
rules. If we choose consecutive measurements in bases
Bi(@) and By(B) on physical qubits 1 and 2 of a three-
qubit cluster, then we rotate the encoded input qubit |¢;,)
to the output state

[hue) = 02 HR, (- 1)18) 0" HR (a) | ;,)
= 0207 R, (- 1) AR, (a)| ), (4)

which is stored on qubit 3. The measurement outcome,
$;={0,1}, on the physical qubit i determines the measure-
ment basis for the next qubit and indicates any intro-
duced Pauli errors that have to be compensated for. This
idea can schematically be depicted as a circuit diagram,
as shown in Fig. 1. Single wires represent quantum chan-
nels, while double lines denote classical communication.
The ellipses in front of the measurement meters show the
measurement basis. No error correction is required for
the specific case where the outcomes of the first and sec-
ond qubit are s;=sy=0 and hence, as expected, |/,
=R.(B)R,(a)| ¥;,). However, if the outcome of the second
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Cluster

Fig. 1. Circuit diagram showing the principle idea of error cor-
rection via feed forward for one-way quantum computing.

Error Correction

Table 1. Compensation for Two Pauli Errors

on Qubit 3
Outcome Outcome Basis Error
Qubit 1 Qubit 2 Adaptation Correction
51=0 55=0 No: Bo(B) No
$1=0 $9=1 No: By(B) o,
s;=1 55=0 Yes: By(-p) o,
$1=1 $9=1 Yes: Bo(—B) 0.0,

qubit is s;=1 (s3=0), the measurement basis of the third
qubit has to be changed from By(B) to By(—B) and final-
ized by a Pauli-error correction, i.e., o, on the output qu-
bit, to get the desired output of the computation. This
yields |$,ue)=0,R(~B)R,(a)|;,). A similar correction is
required in the cases when the third qubit’s outcome is
Sg2= 1 (81=0) and hence ‘lr/lout>=o-sz(:8)Rz(a)| lr/ILn> Finauy’
if an unwanted projection occurs to both qubits, (s;=s9
=1), two Pauli errors, o, and o,, have to be compensated
for on qubit 3 yielding |,,.)=0,0.R.(-B)R,(a)|#;,). This
is summarized in Table 1.

Experimentally, feedforward can only be achieved by
recording both measurement outcomes, s;={0,1}. The re-
cent photonic realization of a one-way quantum
computer21 employed single-port polarizers, which are, al-
though sufficient to demonstrate the working principle,
not suited for this purpose. Simultaneous recording of the
measurement results can be achieved with polarizing
beam splitters (PBSs), preceded by half- and quarter-
wave plates to choose arbitrary measurement bases. The
basis of the measurements can be adapted by employing
fast-switching and low-loss electro-optical modulators
(EOMs), which, depending on the applied voltage, change
the photon’s state of polarization. Analogously, error cor-
rection can be performed on the output qubit if the EOMs
are aligned to apply o, and o, rotations, respectively.

In an experimental implementation of this scheme, the
individual photonic qubits must be delayed just long
enough so that the classical feedforward process can be
carried out, i.e., that an individual outcome can adapt the
measurement basis for the next measurement. The most
rudimentary “quantum memory” that can be used for
such a purpose is a single-mode fiber of a specific length,
which has negligible photon loss over moderate distances.
Every single feedforward process includes detection of the
photon, processing of the measurement result, and finally
switching of the modulator to adapt the measurement ba-
sis in real time and/or performing error correction on the
output qubit. A major advantage of optical quantum com-
putation is the unprecedented high speed of the gate op-
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eration. Various types of EOMs achieve low-loss and high
contrast switching with fidelities above 99%. Switching
times are well below 100 ns when combined with custom-
built drivers, and such devices have successfully been
implemented in early demonstrations of feedforward
control. 2% Currently available logic boards and single-
photon detectors have response times of approximately 10
and 30 ns, respectively, so that feedforward cycles of less
than 150 ns seem experimentally feasible. This time scale
corresponds to a single-mode fiber delay line of approxi-
mately 30 m. A gate time of 150—300 ns for one computa-
tional step is, to the best of our knowledge, approximately
3 orders of magnitude faster than the speeds achievable
in other physical realizations of quantum computers such
as in ion trapsBO’31 or in NMR.*?

Based on our recent successful demonstration of one-
way quantum computing,21 we have recently performed a
proof-of-concept demonstration of deterministic quantum
computing, i.e., implementation of active feedforward and
error correction in real time, on a four-photon cluster
state.? Conceptually, this presents a crucial step toward
realizing scalable optical quantum computing, showing
that it is indeed possible to build a deterministic quantum
computer, which uses both entanglement and the intrin-
sically random measurement outcomes as an essential
feature.

3. ENTANGLEMENT AS COMMUNICATION
CHANNEL—QUANTUM COMMUNICATION

A. Distributed Computing: Entanglement for

Quantum Communication Complexity

Although entanglement on its own cannot be used for
communication, it surprisingly can produce effects as if
information had been transferred. In a communication
complexity problem, separated parties performing local
computations exchange information in order to accom-
plish a globally defined task, which is impossible to solve
single-handedly.34’35 Remarkably, if the parties share en-
tanglement, the required information exchange in the
communication complexity problem can be reduced®® or
even eliminated.’” Such a reduction of communication
complexity might be important in the future for speeding
up distributed computations, e.g., within very large-scale
integration circuits.

Here, we will determine the experimental require-
ments for quantum communication complexity protocols
to outperform their classical counterparts in solving cer-
tain types of problems. This will include determination of
the required minimal visibility V' and the detection effi-
ciency 7 for the advantage. The type of problems consid-
ered here is as follows. There are n separated partners
who receive local input data x; such that they know only
their own data and not those of the partners. The goal is
for all of them to determine the value of a function
flx1,...,x,). Before they start the protocol, they are al-
lowed to share classically correlated random strings or
quantum entanglement. If only a restricted amount of
communication is allowed, we ask the question: What is
the highest possible probability for the parties to arrive at
the correct value of the function? We refer to this prob-
ability as the “success rate” of the protocol.
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Recently, it has been realized that communication com-
plexity problems are tightly linked to Bell’s theorem.® On
the basis of this insight, quantum protocols are developed
that exploit entanglement between qubits,38 qutrits,39
and higher-dimensional states.*’ The crucial idea is that
every classical protocol can be simulated by a local realis-
tic model, and thus, its success rate is limited by the Bell-
type inequalities.38 In contrast, the success rate of quan-
tum protocols—which make use of entangled states—can
exceed these limits, since entangled states are at variance
with local realism. More precisely, for every Bell
inequality—even those, which are not yet known—there
exists a communication complexity problem, for which a
protocol assisted by states, which violate the inequality
has a higher success rate than any classical protocol. Vio-
lation of Bell inequalities is thus the necessary and suffi-
cient condition for quantum protocols to beat the classical
ones.

Consider the general Bell inequality for correlation
functions:

1
> glxy, .. x)E(xy, ... ,x,) = B(n). (5)
x,=0

Xpe Xy

Here g is a real function, B(n) is a bound imposed by local
realism, and E(xq,...,x,) is the correlation function for
measurements on n particles, which involve, at each local
measurement station i, two alternative dichotomic ob-
servables, parameterized here by x;=0 and 1. In Ref. 38, it
was shown that this Bell’s inequality puts limits on the
success rate in computation of certain two-valued func-
tions f(xq,...,x,) with the inputs x;=0 or 1.*! The execu-
tion of the protocol is successful when all parties arrive at
the correct value of f.

The most interesting case found is for g
=\2"* cos[(m/2)(x1+ -+ +x,)], n odd, and B(n)=2" for
which the success probability of classical solutions cannot

be larger than
1 1
PC ass = = 1+ — 5 6
lass = 5 o (6)

whereas a quantum protocol solves the problem with cer-
tainty, i.e., qumt:l.41 This implies that in the limit of
very large n one has Pclass_)% which is not better than if
the partners simply agree beforehand to choose all the
same (random) value for the value of the function.
Without going into the details of the protocols, we men-
tion here that both in the classical and quantum cases,
the partners give all the same value for their guess of the
value of the function f. (This value is obtained as a prod-
uct of n locally produced values e;, where e; is broadcast
by party i. See Refs. 38 and 41 for details.) The important
difference is that in a quantum protocol, this value is ob-
tained from local results of the Bell experiment for n par-
ties, whereas in a classical protocol, it is obtained from
the results of local (classical) operations assisted by clas-
sical correlations. The maximal success rate of Pqyan;=1 of
the quantum protocol is obtained using the Greenberger—

Horne—Zeilinger state |GHZ)=(|0);--:|0),+|1);---|1),)/
5 42
V2.
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Fig. 2. Dotted volume indicates the region where the visibility
V, detection efficiency 7, and the number of partners n allow for
a multiparty quantum communication complexity protocol,
which is more efficient than any classical one for the same task.
The volume corresponds to that given by inequality (7).

For the quantum protocol to beat the best classical one,
we need a success higher than P,,,,. We now analyze de-
tectors with finite detection efficiency 7 and nonmaximal
visibility V due to experimental imperfections as modeled
by an admixture of white noise to the perfect state: p
=V|GHZYGHZ|+(1-V)I/2".

With a finite detector efficiency =1, the partners ob-
tain perfect quantum correlations in 7'V of the cases and
proceed with the quantum protocol with the success rate
Pguant=1. The partners must agree beforehand on a pro-
cedure for the case that their detectors fail. They are not
allowed to communicate the failure, as this would consist
of further bits of communication between the parties, but
the allowed communication is restricted. The most effec-
tive way for a partner is to proceed with the best classical
protocol in case her/his detector fails. It is assumed that
there are no experimental constraints for classical proto-
cols as they are based on manipulating and detecting clas-
sical systems (e.g., balls or pencils), which could be done
with very high efficiency.

Whenever all detectors fail, which happens in (1-7)" of
the cases, the partners will obtain the best classical suc-
cess rate P, . In the cases when some of the detectors
fail and the rest fire, the partners whose detectors fail
would start the best classical protocols, whereas those
whose detectors fire proceed with the quantum protocol.
Since the two protocols are completely independent, the
success rate is not better than the probability that all
partners give the same but random guess for the value of
the function. In the rest of the cases, all detectors fire
measuring white noise. Thus, in 1-7%"V-(1-%)" of the
cases, the success rate is Prand=%-

Taking all this into account, the condition for a higher-
than-classical success rate is

7'V + (1= 7)"Page+ (1= 7'V = (1= 9)")3 > Patges. (7)
A similar analysis for the special case of n=3 and special

function f was given by Galvao in Ref. 43. In Fig. 2, we
show the region in the parameter space of V, » and n that
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guarantees a higher-than-classical success rate. Taking
7=0.8 for the detector efficiency and visibility V=0.9, one
obtains n=4 for the minimal number of photons in the en-
tangled state, which is well within the scope of current
technology. Recently, a quantum communication complex-
ity protocol based on the sequential transfer of a single
qubit43 was experimentally implemented, and its advan-
tage over the classical counterpart was shown in the pres-
ence of the imperfections of a state-of-the-art setup.** It
can therefore be expected in the near future that
entanglement-based quantum communication complexity
protocols will become comparable to quantum key distri-
bution, the only commercial application of quantum infor-
mation science so far.

B. Distributed Entanglement in Higher Dimension:
Entangled Qutrit Quantum Cryptography
All quantum cryptography experiments performed so far
were based on two-dimensional quantum systems (qu-
bits). However, the use of higher-dimensional systems of-
fers advantages such as an increased level of tolerance to
noise at a given level of security and a higher flux of in-
formation compared to the qubit cryptography schemes.
In a recent experiment, we produced two identical keys
using, for the first time to the best of our knowledge, en-
tangled trinary quantum systems (qutrits) for quantum
key distribution.?® The advantage of qutrits over the nor-
mally used binary quantum systems is an increased cod-
ing density and a higher security margin of 22% (instead
of ~15%). The qutrits are encoded into the orbital angular
momentum of photons, namely, Laguerre—Gaussian
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modes with azimuthal index [ of +1, 0, or -1, respec-
tively. The orbital angular momentum is controlled by
static phase holograms. In an Ekert-type protocol, the vio-
lation of a three-dimensional Bell inequality verifies the
security of the generated keys. A key is obtained with a
qutrit error rate of approximately 10%. The security of
this key is ascertained by the violation of the generalized
Bell inequality, with S=2.688+0.171. In contrast to the
polarization degree of freedom, in principle, there is no
limitation on the dimension of the two-photon entangle-
ment with orbital angular momentum, and therefore, an
extension of the qutrit to a more general qudit case is fea-
sible. This opens up a new class of experiments with
higher-dimensional entanglement.

Spatial light modulators (SLM) promise a fascinating
new experimental approach for working with the orbital
angular momentum of photons. The main idea is to use
the SLM for applying computer calculated holograms to
the entangled photons (see Fig. 3) instead of static phase
plates. Thereby, we gain huge experimental flexibility,
since we are now able to superimpose several optical ele-
ments such as lens configurations, mirrors, and phase
singularity onto one active phase element, and fine-tune
the holograms simply by adjusting the parameters in the
calculation. This will open up possibilities of further
study of three-dimensional entanglement (or more dimen-
sions), which is an area with many unknown features. A
first successful demonstration of this method is shown in
Fig. 3 where we analyzed the correlation of entangled
photons, while the orbital angular momentum of one of
the photons is transformed via the SLM.
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Fig. 3. (Color online) (Left) Setup demonstrating the photon manipulation by a spatial light modulator (SLM) (Ref. 46). The photon
pairs produced by downconversion in a B-barium borate (BBO crystal; L, focusing lens) are entangled in their orbital angular momen-
tum, represented by the Laguerre—Gaussian mode functions. The mode index corresponds to the orbital angular momentum of each
photon. The transformation between different modes is performed by passing the photons through phase diffraction gratings containing
a phase singularity, which is generated by the SLM. Analyzer holograms in different modes behind beamsplitters (BS) are used to con-
firm the mode index. (Right) Demonstrating the transformation of the photon by the computer-calculated hologram on the SLM. The
coincidence between the detectors D0, and D1p is shown. Due to the initial correlation between the photons, there are little coincidence
counts, unless the SLM performs a —1 transformation. This clearly demonstrates that we are able to manipulate the orbital angular
momentum of the entangled photon by means of the computer-generated hologram.
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; GEO

Fig. 4. (Color online) Quantum communication links realized as uplinks from ground to space. Entangled photons or single photons are
generated on the ground and sent toward one or more space-based receivers. If only one receiver is available, link (a) will allow single
quantum communication. If this were a geostationary Earth orbit (GEO) satellite, several ground stations could see the very same re-
ceiver, for successive quantum key exchanges [link (d)]. If a second receiver were available, e.g., also in GEO [link (b)] or in low-Earth
orbit (LEO) [link (c)], also the study of fundamental aspects of quantum entanglement over large distances may be accomplished.

C. Distributed Entanglement: Long-Distance Quantum
Communication and Quantum Networking
Subsections 3.A and 3.B illustrate some of a range of
unique applications that emerge when entanglement
is shared between several wusers. Other examples
include quantum cryptography,11’12’47_49 quantum
teleportation,lza’14 or quantum dense coding.lS’16 Clearly,
there are important prerequisites to establishing net-
works of quantum communication, similar to classical
communication networks. It is particularly desirable to
establish entanglement between several users, with a
very flexible network hierarchy. For example, two users
who wish to share entangled particles might just call
their network operator, who performs the necessary set-
tings to accomplish this task. Likewise, if three users
wish to share GHZ states, again the network operator
performs the required operations for this task.
Fortunately, quantum physics allows us to perform
these tasks, if several users initially share entangled par-
ticles with a central network operator. Utilizing the pro-
cedure known as entanglement swatpping,f’o’51 the gener-
alization of quantum teleportation, the operator may
simply swap the entanglement between the particles en-
tangled with two different users, such that finally the par-
ticles of the two users get entangled. The operations that
the central node (operator) must perform are projection
measurements onto the desired entangled state. Since the
particles originally have no relation, the projective mea-
surement will give a random result, which must be com-
municated to the users, so they can use the entangled
particles. Entanglement swapping can, in principle, be
generalized to arbitrary quantum network sizes if the
network operator performs the swapping operations (e.g.,
projections onto Bell states, GHZ states), depending on
which users wish to communicate. This is at the heart of a
quantum repeater,52 which additionally makes use of en-
tanglement puriﬁcation53’54 and quantum memories to
faithfully transmit entanglement over arbitrary dis-
tances. Important experimental progress has been made
along this line, for example, by demonstrating quantum
teleportation over long distances®” or by realizing non-
classical interference of photons from completely indepen-
dent photon sources.’?

In the future, the use of satellite-based technology
could provide the means for distribution of quantum sig-
nals even on a global scale.’ 58 These schemes will in-
volve sources for entangled photons onboard satellites,
with optical receiver stations on other satellites as well as
on optical Earth-based ground stations. The principles of
this concept, free-space quantum communication, have
been demonstrated in various experiments both for faint-
pulse systems59*62 and for entangled photons.GS’66 The
current distance record has been only recently achieved in
a 144 km interisland link using entangled photons.65
These results are very promising for entanglement-based
free-space quantum communication in high-density ur-
ban areas and also for optical quantum communication
between ground stations and satellites, since the length of
our free-space link exceeds the atmospheric equivalent.

The clear aim in this research program of extending
quantum communication to space is to place an entangled
photon source onboard a low earth orbit (LEO) satellite or
the International Space Station (ISS) and to send the pho-
tons toward two receiving ground stations.®” The en-
tangled photons can thus be separated by distances up to
1500 km in a single shot, which is well above distances
that are possible with a ground-based architecture. This
will allow wunique long-distance quantum physics
experiments,68 and it will also provide a test bed for dem-
onstrations of quantum communication applications on a
global scale.

A very interesting approach, alternative to the ISS sys-
tem, is to implement quantum communication uplinks
from ground to satellites (see Fig. 4). This scheme is par-
ticularly interesting, as the technical complexity of a
space-based receiver is significantly simpler than for the
full quantum communication transmitter.

4. CONCLUSION

In summary, we have introduced and reviewed some re-
cent experimental progress in the understanding of pho-
tonic quantum entanglement as a resource for quantum
information processing. We have also provided an outlook
into future experiments that should be feasible with cur-
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rent technology and that will further highlight the dis-
tinctive role of entanglement. Besides the impressive
achievements in laboratories all over the world, there re-
main fascinating challenges for the future ranging from
the interfacing of photons to scalable and durable archi-
tectures, i.e., including quantum memories, over the
faithful production and characterization of multipartite
entangled states of significant particle number to the re-
alization of a full-scale quantum repeater.
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