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Поради ограничение в енергията на свързване на всяка самогравитираща материя, 

радиусът на всяко тяло е поне два пъти по-голям от радиуса на Шварцшилд. Цялата енергия 

е адсорбирана на повърхността на тялото, което води до повърхностно напрежение 

зависещо от размера. Тъй като температурата на Хокинг се явява критична, черните дупки 

притежават нулево повърхностно напрежение. Въведени са и микроскопични неутрино 

звезди. 

Roumen Tsekov, FROM BLACK HOLES TO NEUTRINO STARS 
 

Due to limitation of the binding energy of a self-gravitating matter, the radius of a body is at 

least twice larger than the Schwarzschild radius. The total energy is adsorbed at the body surface, 

giving rise of a size-dependent surface tension. Since the Hawking temperature appears to be the 

critical one, the black holes possess zero surface tension. Microscopic neutrino stars are also intro-

duced. 
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A black hole is so condensed that even light cannot escape due to the 

gravitational attraction. Leaving apart any resistance due to particle repulsion 

and exclusion the black hole formation seems also energetically impossible. 

Imagine a self-gravitating star, emitting radiation in all. The kinetic energy of 

the matter particles is continuously decreasing and the star is shrinking towards 

a black hole. However, due to the mass-energy equivalence, the star is losing its 

mass as well, thus reducing the inner strength of the self-gravitational attraction. 

As the Schwarzschild radius decreases also with decreasing mass, this Zeno 

effect leads to the conclusion that only an empty black hole could form with 

zero size, when the mass of the star becomes zero. 

To make the picture consistent, let us start from the Newton gravity. If 

the mass density   is radial-symmetrically distributed, the corresponding 

gravitational potential   obeys the Poisson equation 

 
2 2( ) / 4r rr r G       

2/r rGm r       (1) 

 

The second integral form involves the mass 
2

0
4

r

rm r dr   , enclosed within 

a central sphere with radius r . Naturally, m  contains the total mass 0M  of 

the self-gravitating matter. Using Eq. (1), one can calculate the overall potential 

energy 
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(1/ 2) 4 ( / 2) ( / )rU r dr G m r dr

 

         (2) 

 

where the factor ½ is a standard normalization for pairwise additive potential 

interactions. Since no other interactions are considered and the excess energy is 

freely released as radiation in vacuum, the body contracts permanently due to 

the gravitational attraction. At the end, a mass point is formed with 0rm M  

everywhere. According to Eq. (1), it corresponds to the classical Newton 

potential 0 /GM r   . As it is well known, U  diverges for a mass point, 

which indicates a generic problem of the Newton gravity. 

According to the Einstein special relativity theory, the total energy at 

rest 
2

0E M c U   is positively defined. The lowest value 0E   limits the 

binding energy to the maximal 100 % mass defect. The integral and differential 



forms of 
2

0/U c M   reads 

 

2
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( / 2) ( / ) ( )r r rG m cr dr m dr

 

    
2( / 2)( / )r r rm G m cr   (3) 

 

The integration Eq. (3) leads straightforward to the radial mass distribution 

 

0 0/ (1 / )rm M R r    
2

0 0 / 2R GM c    (4) 

 

which is not constant anymore due to the binging energy limitation. Substituting 

Eq. (4) in Eq. (1) yields after integration the restricted gravitational potential 

 
2

02 ln(1 / )c R r           (5) 

 

Far from the center it tends to the Newton potential, while near the center the 

logarithmic potential 
2

02 ln( / )c r R  is much weaker than 0 /GM r . That is 

why the potential energy (2) is finite. One can derive the mass density 

distribution by differentiating directly rm  from Eq. (4) 

 
2 2

0 0 0/ 4 ( )M R r r R          (6) 

 

If the mass 0M  is very small, Eq. (4) approaches a mass point as 

expected. In the opposite case of large masses, Eqs. (4) and (6) tends to 

0 0( / )rm M r R  and 
2

0 0/ 4M R r   , which are independent of the mass 

0M . They describe a compact body with radius 0R  and for 0r R  the density 

0   is zero and 0rm M . One can calculate the corresponding pressure p  

via the hydrostatic force balance 

 
2/r r rp Gm r            (7) 

 

It is zero outside the body but remarkably 
2p c   resembles inside an 

equation of state. As is seen, the limitation of the binding energy resolves the 



mass point singularity. However, since 0R  is one fourth of the Schwarzschild 

radius, a black hole singularity still holds. It points out that probably the 

maximal mass will prevent such a peculiarity as well. 

It is interesting what the effect would be of the binding energy 

limitation on black holes. To answer this question, we are going to repeat the 

analysis above, using the Einstein general relativity theory. In the frames of the 

latter, the problem is described by the Tolman-Oppenheimer-Volkoff (TOV) 

equations [1] 

 
3 2 2 2( 4 / ) / (1 2 / )r r rG m r p c r Gm c r       

2( / )r rp p c        (8) 

 

from which Eqs. (1) and (7) follow, respectively, in the non-relativistic limit. 

Note that the relativistic mass M  is smaller than 0M  and the difference 

2

0 /M M U c    is the binding energy mass defect. For a mass point, Eq. (8) 

reduces to 
2 2/ (1 2 / )r GM r GM c r    , since rm M , 0   and 0p  . 

Integrating this equation results straightforward in the well-known relativistic 

potential, where 
22 /sr GM c  is the Schwarzschild radius [2], 

 
22 / ln(1 / )sc r r          (9) 

 

Far from the center,   tends to the Newton potential /GM r . The singularity 

at sr  marks the event horizon [3], where the surface of the black hole takes 

place. 

Let us apply now the energy limitation to the TOV equations (8). In 

general, the pressure p X   is proportional to the energy density 
2c    and 

we got 1X   in the semi-relativistic analysis above. Introducing 
2p X c   in 

Eq. (8) yields 

 
3 2 2( 4 ) / (1 2 / )r r rG m X r r Gm c r        

2 (1 )r rXc X         (10) 

 

Searching for a black hole, we are looking for a compact body of self-

gravitating matter. For radii larger than the body radius R  the standard 



expressions rm M and 0   hold. It follows immediately from Eq. (10) that 

Eq. (9) is the potential outside the body. It is well known that inside the body 

( / )rm M r R  and 
2/ 4M Rr    are solutions of Eq. (10) [4], which is also 

supported by our semi-relativistic analysis. Introducing them in Eq. (10) leads 

to 

 
2/ 1 (1 ) / 4sR r X X    

22 ln( / ) / (1 )R c r R X X      (11) 

 

To determine the important value of the factor X , one can employ a 

general formula [4], relating the relativistic mass M  with the mass 0M  at the 

origin, 
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Fig. 1. Plot of / sR r  (solid) and 0 /M M  (dash) as a function of the factor X  

 

The positive ratios / sR r  from Eq. (11) and the real ratios 0 /M M  from Eq. 

(12) are plotted in Fig. 1. As is seen, there is no overlap between them for 

0X  . Moreover, the negative X  is always related to a negative mass defect, 

which indicates lack of bounded body for dark energy. Looking for a positive 

binding energy, the necessary inequality 0M M  imposes that 0X  . If the 

matter is super-relativistic with 1/ 3X  , the corresponding mass defect is 24.4 

%. If the particles are moving much slower than the speed of light, the doubled 

non-relativistic factor 2 / 3X   results in 28.6 % mass defect. The maximal 

mass defect about 29.3 % at 1X   should correspond to the lowest body 

temperature in order to prohibit any further energy loss by quantum reasons. It 

is less than 30 % and the matter particles are probably at rest. Logically, 1X   

corresponds to the minimal body radius 
22 4 /sR r GM c   from Eq. (11). 

According to Fig. (1), the radius of a self-gravitating body is at least twice 



larger than the Schwarzschild radius. 

 

 

Fig. 2. The dimensionless potential 
22 / c  from Eq. (13) (solid) and Eq. (9) 

(dash) versus /r R  

 

The finite value of the surface potential 
2 ln 2 / 2R c    follows from 

Eq. (9) at 2 sR r . Hence, the two potentials from Eqs. (9) and (11) can be 

merged into the overall form 

 
2 2 22 / ( ) ln( / 2 ) ( ) ln(1 / 2 )c H R r r R H r R R r        (13) 

 

where H  is the Heaviside step function. Its plot in Fig. 2 shows lack of 

singularity in contrast to the Schwarzschild potential (9). The potential (13) 

possesses a kink at R , which reflects the effect of a pressure jump at the body 

surface. Hence, the body possesses a capillary pressure, 
2 3/ 4Rp Mc R  , 



which is related to the surface tension via the Laplace law 2 /R Rp R    . 

The latter can be integrated directly under the constrain 
2 / 4M c R G  to 

obtain 
2 /Mc A  , where 

24A R   is the area of the body surface. It is a 

particular example of a size-dependent surface tension, described via the 

Tolman formula [5]. It vanishes at a flat surface and the bending elasticity 
42 / 8R c G    coincides with the universal Einstein expression. Remarkably, 

the full energy 
2Mc A   of the body is at the surface, which supports our 

expectation that the body is energetically empty and that is why it cannot shrink 

anymore. 

The problem now is what causes the pressure 
2p c   if the particles 

are not moving. This equation looks very similar to the ideal gas equation of 

state /Bp Nk T V  at constant temperature and we are going to explore such 

an identity. The characteristic potential of the body is the Helmholtz free energy 

( , , )F T V N  as a function of the natural parameters. Substituting the ideal gas 

pressure in the thermodynamic relation 
,( )V T Np F    allows direct 

integration to obtain 

 
3[ln(8 / ) 1 ( )]B PF Nk T l N V g T        (14) 

 

where 
3 1/2( / )Pl G c  is the Planck length and g  is an unspecified function. 

Using now the equivalence of the pressure and energy density at 1X   

determines the energy BE pV Nk T  . In the general case it reads 

/BE Nk T X . Substituting Eq. (14) into the thermodynamic relation 

,( )T V NE F T F    yields the unspecified function 
2ln( / 4 )P Bg m c k T  , 

where 
1/2( / )Pm c G  is the Planck mass. The Planck units are universal 

measures in the relativistic quantum gravity and thus Pl  and Pm  are natural 

parameters for rescaling the dimensionless logarithms above. So, the free 

energy reads 

 
2 2[ln(2 / ) 1]B BF Nk T G N c k TV        (15) 

 

Using this fundamental equation, one can calculate the chemical potential of the 



gas 

 
2

,( ) 2 ln( / 2 ) ln(8 / )N T V B B BF k T k T k T Gp c         (16) 

 

Considering the self-gravitating body with pressure 
2p c  , at 

constant temperature the gradients of the chemical and gravitational potentials 

cancel exactly in agreement with Eq. (10), 
2/ 2 / 0r B rk T c      . 

Integrating the latter equation yields the gravito-chemical potential 

 
22 / 2 ln( / 4 )B B Bk T c k T c Rk T          (17) 

 

which is constant everywhere in the body. Since the body is energetically 

hollow, the corresponding ( ) 0T   determines the temperature of the body 

 

/ 4 BT c Rk         (18) 

 

This is, in fact, the minimal energy-time Heisenberg relation. In black holes Eq. 

(18) reduces at sR r  to the Hawking temperature, / 4H s BT c r k   [6]. 

Therefore, due to 2 sR r  the temperature of the body is half of the Hawking 

temperature. The relation 
2Mc A   implies also that the body entropy 

compensates exactly the negative pressure-volume term / BS pV T Nk   to 

cancel the internal energy completely. Substituting here the temperature (18) 

yields that the body entropy coincides with the Bekenstein-Hawking one [7] 

 
2 2/ / 4B PS Mc T k A l        (19) 

 

Replacing this expression in the thermodynamic Maxwell equation 

T AS     allows direct integration to obtain the temperature dependence of 

the surface tension 
2( ) / 4B c Pk T T l    with the critical temperature cT . 

Substituting here 
2 /Mc A   and / 2HT T  yields straightforward that the 

critical temperature c HT T  is the Hawking one. Therefore, a black hole 

possesses zero surface tension 0  , which means a zero mass M . 



The mass of a gas particle 
2/ /Bm M N k T c   is extremely small at 

moderate temperatures. Because any movement in the body is frozen, 

temperature causes solely some energy fluctuation 
2mc  with lifetime 

2/ 2 2 /mc R c    . Since the mass and energy are synonyms, m  should 

be considered as the typical mass fluctuation as well. The temperature 

dependence of the free energy (15) follows directly from the following 

exponential Boltzmann distribution 

 
2 2( / )exp( / )m B Bf c k T mc k T       (20) 

 

Perhaps, the neutrino is the only known particle possible to transmit the energy 

fluctuations in a cold body. Moreover, 
2 /16Pm m M   could be explained via 

the seesaw mechanism [8]. From this perspective, it is interesting to consider a 

pure neutrino star. Measurements of the neutrino mass are very difficult, but 

important progress is achieved in the measurement of the difference in the 

squares of masses 
2 2 2

12 1 2m m m     via KamLAND [9]. Assuming 

logically independent neutrinos in the ideal gas, it follows 

 

1 2

2 2 2 2

12 1 2 1 2
0 0

3m mm m m f f dm dm m
 

         (21) 

 

Using the experimental value 
2

12 79m   meV2/c4, the corresponding 

temperature of the neutrino star 60T   K is low enough to neglect any motion. 

One can estimate further from Eq. (18) a very small radius 3R   µm of the 

neutrino micro-star, while its mass 
2110M   kg is 6000 times smaller than the 

mass of the Earth. The number of neutrinos in the star is 
2 59/ 10BN Mc k T   

and from the volume per a particle 
3 754 / 3 10v R N     m3 one can estimate 

the neutrino diameter as smaller than 
2510

 m. An interesting question is where 

the neutrino comes from. The Big Bang theory predicts a cosmic neutrino 

background, spanning the entire Universe from the very beginning. The 

evolution of stars starts from usual matter and generates neutrinos as well. 

Above the Chandrasekhar limit the gravitation is so strong that atoms cannot 

sustain the enormous pressure. Their nuclei capture the orbital electrons to give 



a birth of neutron stars. It is estimated that at this process an average supernova 

releases approximately 
5710  neutrinos. Neutron stars are also unstable beyond 

the TOV limit and transform to black holes. No one can say what is exactly the 

state inside a black hole but according to Fig. 1 it should be dark energy. 

According to astrophysics 85% of the Universe mass consists of non-baryonic 

dark matter and neutrinos are perfect candidate for its structural elements [10]. 

Perhaps the dark microscopic neutrino stars could be one of the structural 

bodies of the dark matter, explaining the paradox of the invisible galaxies 

masses. 

Obviously, the Fermi energy is huge due to the enormous density of the 

neutrino star and the tiny neutrino mass. This implies that the neutrinos form 

probably bosonic Cooper pairs (e.g. majorons) to avoid the fermionic repulsion 

due to the Pauli principle. Perhaps, this is the reason for the factor 2 in the 

gravito-chemical potential 2m     . Thus, the neutrino star is a Bose-

Einstein condensate, since T  is below the BEC critical temperature and 0  . 

That is why the body cannot emit energy anymore to collapse in a black hole. In 

a previous paper, we derived that a self-gravitating quantum matter should 

always form a central hollow cavity [11]. To examine this prediction, one can 

introduce now the exact relativistic density 
2/ 4M r R    into the Bohm 

quantum potential [12] to obtain 

 
2 2 1/2 2 1/2 2( / 2 ) ( ) / ( ) / 16 ( ) /r rQ m r r r mr GM r cr            (22) 

 

where   is the Dirac delta-function. Equation (22) describes an infinite 

repulsion in the body center. This singularity is much stronger than the 

gravitational one and it will definitely cause a central hollow cavity due to the 

Heisenberg constraint / rr m c  or 2 Pr l . It is also evident from the 

unphysical divergences of the gravitational potential   and the density   in the 

body center. 
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