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Abstract: A dialogue game for fuzzy logic, based on the comparison of truth
degrees, is presented. It is shown that the game is adequate for G4

∞, i.e., intu-
itionistic fuzzy logic enriched by the projection operator 4. Any given counter-
model to a formula can be used to construct a winning strategies for one of the
players, called Opponent. Conversely, counter-models can be extracted from
each winning strategy for Opponent. Winning strategies for the other player,
Proponent, correspond to proofs of validity. The systematic construction of
so-called complete dialogue trees can be viewed as tableau style proof search
procedure.
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1. Introduction
Fuzzy logic, in general, is based on the observation
that truth often seems to come in degrees. Suppose
that Chris is 175 cm tall and weighs 66kg, and sup-
pose that Norbert is 183cm tall and weighs 73kg.
Consider the statements:

C = ‘Chris is a big man’
and

N = ‘Norbert is a big man’.

In many context it will be inadequate to evaluate
these statements as either being absolutely true or
absolutely false. However, it seems acceptable to
call N ‘truer’ than C . Similarly, we may reasonably
claim that N is at least as true as C . (If putting ‘true’
into comparative mode causes offense, one may re-
place ‘truer’ by ‘true to a higher degree’, which in
turn may be explained, e.g., as: ‘stated to be true
with a higher level of confidence’.)

Motivated by such examples, one usually models
degrees of truth (truth values) by real numbers from
the closed unit interval [0, 1], with 1 referring to ‘ab-
solute truth’ and 0 referring to absolute falsity. The
natural order < on [0, 1] is intended to reflect the or-
der on all possible degrees of truth. Moreover, one
frequently assumes that the semantics of conjunction
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is modeled by an appropriate t-norm; and that the
other connectives can be derived from this t-norm as
well, following some general principles on defining
truth functional connectives.

It turns out, that all such t-norm based logics can
be represented as ordinal sums of just three basic t-
norm based logics, namely Łukasiewicz logic [19],
Product logic [17] and intuitionistic fuzzy logic, also
called Gödel logic G∞, respectively. (See, e.g., [16]
for details.) From these three logics, intuitionistic
fuzzy logic G∞ can be singled out as the only one
where the definition of truth functions can be stated
without any reference to arithmetical operations on
truth values, but solely in reference to the order of
truth values, including the endpoints 0 and 1.

Given the importance of G∞ it is not surprising
that many proof systems for it have been presented
in the literature (see, e.g., [1, 2, 3, 4, 12, 8, 20].) In
[14] (see also [13]) we have presented a characteriza-
tion of Gödel logic (i.e., intuitionistic fuzzy logic) in
terms of parallelized Lorenzen style dialogue games.
Among other things, the results of [14] provide an
alternative computational interpretation for Avron’s
hypersequent calculus HLC [2] for logic G∞. How-
ever, the dialogue game of [14] does not relate in any
direct manner to the underlying semantics of G∞ in
terms of comparisons of degrees of truth.



Motivated by the challenge to provide a formal
foundation for (analytic) reasoning in intuitionistic
fuzzy logic that refers directly to its semantics in
terms of comparisons of degrees of truth, we present
a dialogue game for G4

∞ that is quite different from
the ones described in [14] and [13], but is related to
the proof systems presented in [8] and [7]. We will
show that our dialogue game not only is sound and
complete for G4

∞, but moreover provides a frame for
computionally adequate, tableau style proof search
in intuitionistic fuzzy logic.

The paper is organized as follows. After shortly
reviewing the basic definitions for logic G∞ we look
(in Section 3) at a way to express simple statements,
called assertions, that express the relative truth of
formulas. This will also motivate us to extend G∞

to logic G4
∞ by including a natural projection opera-

tor in the set of connectives. In Section 4 we present
our dialogue game for G4

∞. We also provide a formal
definition of dialogue trees. Winning strategies for
the two players – Proponent P and Opponent O – will
formally appear as special cases of dialogue trees. In
Section 5 we show how to construct a winning strat-
egy for O in a game starting with P’s claim that a
formula F is valid, given a counter-model to F . The
converse operation, i.e., the extraction of a counter-
model from a given winning strategy for O is pre-
sented in Section 6. In Section 7 we show that win-
ning strategies for P can be viewed as proofs of the
validity of the formula which P states at the begin-
ning of the dialogue. Rather than simply relying on
Zermelo’s celebrated theorem [23] about the deter-
minedness of zero-sum two-person games of finite
depth, we present a self-contained proof of this cen-
tral fact. In Section 9 we explain the relation be-
tween winning strategies for P and derivations in an
extended version of the proof system RG4

∞ presented
in [7]. We conclude by pointing out open problems
and tasks for future work.

2. Intuitionistic fuzzy logic G∞

The logic G∞ arguably is one of the most interesting
non-classical logics. It is known under various dif-
ferent names, including Gödel logic (see, e.g., [16]),
Dummett’s LC (after [10]), Gödel-Dummett logic,
and intuitionistic fuzzy logic (see [21]). This cor-
responds to the fact that it naturally turns up in dif-
ferent fields in logic and computer science. Already
in the 1930’s Gödel [15] used it (implicitly) to shed
light on aspects of intuitionistic logic; later Dunn and
Meyer [11] pointed out its relevance for relevance
logic; Visser [22] employed it in investigations of
the provability logic of Heyting arithmetic; and even-
tually it was recognized as one of the most useful

species of ‘fuzzy logic’ (see [16, 21]).

Considered as a fuzzy logic, (propositional) G∞

is characterized by interpretations v of the proposi-
tional variables in the real closed unit interval [0, 1],
and the following extension of interpretations to
compound formulas:

v(A ∧ B) = min(v(A), v(B)) v(⊥) = 0

v(A ∨ B) = max(v(A), v(B)) v(>) = 1

v(A ⊃ B) =

{
1 if v(A) ≤ v(B)

v(B) otherwise

¬A is defined as A ⊃ ⊥; i.e., v(¬A) = 1 if
v(A) = 0 and v(¬A) = 0 in all other cases. Proposi-
tional variables, as well as ⊥ and > are called atoms.
All other formulas are compound. As usual, a for-
mula F is called valid if v(F) = 1 for all interpreta-
tions v. If v(F) < 1 then v is called a counter-model
to F .

As was pointed out, e.g., in [16], G∞ is one of just
three fundamental fuzzy logics, when ‘fuzzy logics’
are stipulated to be truth-functional, t-norms based
logics. All other t-norm based logics can be repre-
sented as defined piecewise on subintervals of [0, 1],
such that on each interval the logic is identical to ei-
ther Gödel logic, or Łukasiewicz logic [19], or Prod-
uct logic [17]. (See [16] for a detailed exposition.)

3. Comparing degrees of truth
As we have just seen, G∞ only refers to the order re-
lation on [0, 1] and its endpoints for the definition of
truth functions. In contrast, the corresponding defini-
tions for Łukasiewicz logic and Product logic refer to
arithmetical operations on [0, 1]. However, we can-
not fully express the natural order on truth degrees
within the object language of G∞ itself. More ex-
actly (as can be easily checked by induction on the
complexity of formulas) we have:

Proposition 1 In G∞ there exists no formula F,
with occurrences of propositional variables A and
B, such that for all interpretations: v(F) = 1 if
v(A) < v(B) and v(F) = 0 otherwise. The same
holds if < is replaced by ≤.

Observe that F = (B ⊃ A) ⊃ B ‘almost’ ex-
presses < in the sense that: v(F) = 1 iff either
v(A) < v(B) or v(A) = v(B) = 1. However the
reference to the special case v(A) = v(B) = 1 can-
not be eliminated. This motivates the following def-
initions of truth functions for additional unary con-



nectives 4 and 5, as follows (compare [5]):

v(4A) =

{
1 if v(A) = 1
0 otherwise

v(5A) =

{
1 if v(A) 6= 0
0 otherwise

5A can be defined in G∞ as ¬¬A[= (A ⊃ ⊥) ⊃

⊥]; whereas 4A cannot be defined in G∞.
To enhance the expressibility of G∞ we extend it

to G4
∞ by including the 4-connective (like in [5]).

Moreover we will consider statements, called asser-
tions, of form A < B and A ≤ B, for formulas A, B
of G4

∞, denoting v(A) < v(B) and v(A) ≤ v(B),
respectively. We do not introduce < and ≤ as con-
nectives in G4

∞ (i.e., < and ≤ will not occur in nested
form), but we will make assertions our basic units of
reasoning.

A finite set of assertions {A1 �1 B1, . . . , An �n

Bn}, where �i ∈ {<, ≤} for 1 ≤ i ≤ n, is said to be
satisfied by a valuation v if v(Ai ) �i v(Bi ) holds for
all 1 ≤ i ≤ n. The set is called unsatisfiable if no
such valuation exists.

4. Comparison based dialogues
Already in the 1950s Paul Lorenzen (see, e.g., [18])
and his students developed an important approach to
face the challenge of justifying and deriving logical
rules from first principles about correct reasoning.
Lorenzen’s main idea is to identify logical validity
a formula F with the existence of a winning strat-
egy for a proponent in an idealized confrontational
dialogue game, in which P tries to uphold F against
corresponding attacks on F by an opponent O. (The
roles of P and O may switch in the course of a dia-
logue.)

In [14] (see also [13]) we have presented a char-
acterization of Gödel logic (i.e., intuitionistic fuzzy
logic) in terms of parallelized Lorenzen style dia-
logue games. Among other things, the results of
[14] provide an alternative computational interpreta-
tion for Avron’s hypersequent calculus HLC [2] for
logic G∞. However, the relation between the rules of
the game and the truth degree based semantics of G∞

(as defined in Section 2) was left unclear. In partic-
ular, no (direct) connection between counter-models
to F and winning strategies for the opponent in a di-
alogue game for F was provided. It remains open
whether any direct connection of this kind exists at
all for Lorenzen style dialogue games.

Here, we aim at a characterization of logical va-
lidity for intuitionistic fuzzy logic based on the com-
parison of truth degrees. For this purpose, we define
a quite different type of game, which is founded on

the idea that any logical connective ◦ of G∞ can be
characterized via an adequate response by a player X
to player Y’s attack on X’s claim that a statement of
form (A ◦ B) � C or C � (A ◦ B) holds, where �

is either < or ≤. (The resulting dialogue rules are
related to the calculi of [8, 7].)

An assertion F �G is atomic if both, F and G, are
atoms; otherwise it is a compound assertion. Atomic
assertions of form A < A, A < ⊥, > < A or > ≤ ⊥

are called elementary contradictions. An elemen-
tary order claim is a set of two assertions of form
{E �1 F, F �2 G}, where E , F , and G are atoms,
and �1, �2 ∈ {<, ≤}.

Following the tradition alluded to above, we call
the player that initially claims the validity of a chosen
formula the Proponent P, and the player that tries to
refute this claim the Opponent O. The dialogue game
proceeds in rounds as follows:

1. A dialogue starts with P’s claim that a formula
F is valid. O answers to this move by contra-
dicting this claim with the assertion F < >.

2. Each following round consists in two steps:

(i) P either attacks a compound assertion or
an elementary order claim, contained in
the set of assertions that have been made
by O up to this state of the dialogue, but
that have not yet been attacked by P.

(ii) O answers to the attack by adding a set of
assertions according to the rules of Table 1
(for compound assertions) and Table 2 (for
elementary order claims).

3. The dialogue ends with P as winner if O has
asserted an elementary contradiction. Other-
wise, O wins if there is no further possible at-
tack for P.

Remark. Instead of considering the rules of Table 1
and 2 as derived from the truth functions for G4

∞,
one may argue that the dialogue rules are derived
from fundamental principles about reasoning in a
truth functional, order based fuzzy logic.

Consider the example of conjunction. We contend
that anyone who claims ‘A ∧ B is at least as true as
C’ (for any concrete statements A, B, and C) has to
be prepared to defend the claim that ‘A is at least as
true as C’ and the claim that ‘B is at least as true as
C’. On the other hand, the claim that ‘C is at least
as true as A ∧ B’, arguably, should be supported ei-
ther by ‘C is at least as true as A’ or by ‘C is at least
as true as B’. (Likewise, if we replace ‘at least as
true’ by ‘truer than’.) One may then go on to argue
that this reading of the rules for ∧ in Table 1 com-
pletely determines correct reasoning about assertions



Table 1: Rules for connectives

P attacks: O asserts as answer:

A ∧ B � C {A � C} or {B � C}

C � A ∧ B {C � A, C � B}

A ∨ B � C {A � C, B � C}

C � A ∨ B {C � A} or {C � B}

A ⊃ B < C {B < A, B < C}

C < A ⊃ B {C < B} or {A ≤ B, C < >}

A ⊃ B ≤ C {> ≤ C} or {B < A, B ≤ C}

C ≤ A ⊃ B {A ≤ B} or {C ≤ B}

4A < C {A < >, ⊥ < C}

C < 4A {> ≤ A, C < >}

4A ≤ C {A < >} or {> ≤ C}

C ≤ 4A {> ≤ A} or {C ≤ ⊥}

In the first four lines, � denotes either < or ≤, con-
sistently throughout each line. Assertions, which in-
volve a choice of O in the answer (indicated by ‘or’)
are called or-type assertions. All other assertions are
of and-type.

Table 2: Rules for elementary order claims

P attacks: O asserts as answer:

{A ≤ B, B ≤ C} {A ≤ C}

{A < B, B � C} {A < C}

{A � B, B < C} {A < C}

where � is either < or ≤.
————————————————————–

of this form. Form this assumption, one can derive
that v(A ∧ B) = min(v(A), v(B)) is the only ade-
quate definition for the semantics of conjunction in
this setting.

The case for disjunction is very similar. Implica-
tion, as usual, is more controversial. However, it is
easy to see that there are hardly any reasonable al-
ternatives to our rules, if the truth of any assertion
involving a formula A ⊃ B should only depend on
the relative degree of truth of A and B (but should
not depend on the result of an arithmetical operations
that had to be performed on the values of A and B,
respectively). In fact, it can be shown that the con-
straints for the truth function of implication, that are
expressed by the rules in Table 1, are unavoidable if
the resulting fuzzy logic is to enjoy Craig’s interpo-
lation property. (See [16].)

To assist precise argumentation we introduce the
following formal notions for dialogues and winning
strategies.

A dialogue tree (on F) is a finitely branching,

downward rooted tree. Along each branch the nodes
of the tree alternate strictly between P-nodes and O-
nodes. The P-nodes and O-nodes correspond to di-
alogue game moves by P and O, respectively. Ev-
ery P-node (except the root node) is labeled either
by a single compound assertion or by an elementary
order claim, that P chooses to attack in the corre-
sponding state of the dialogue. Every O-nodes is la-
beled by the set of as-yet-unattacked assertions that
O has made up to the corresponding state of the di-
alogue. We use 3(ρ) to denote the label of node ρ.
The root is a P-node, labeled with the formula F ; it
has a single child node ρ, which is an O-node with
3(ρ) = {F < >}.

The labels for the remaining nodes are defined in-
ductively as follows:

• If ω is an O-node then every child node π of
ω is a P-node. 3(π) is either a compound as-
sertion ∈ 3(ω) or an elementary order claim
⊆ 3(ω).

• If π is a P-node then every child node of π is
an O-node. In the following let ω′ be the parent
node of π :

– If 3(π) is a compound assertion of and-
type, then π has a single child node ω with
3(ω) = (3(ω′)−{3(π)})∪α(π), where
α(π) is the answer to the attack on 3(π)

by P, according to Table 1.

– If 3(π) is a compound assertion of or-
type, then π has either ω1 or ω2 or both,
as child nodes, where 3(ωi ) = (3(ω′) −

{3(π)})∪βi (π), for i ∈ {1, 2}; β1(π) and
β2(π) stand the two sets of assertions, re-
spectively, that O may state according to
Table 1 as answer to P’s attack on 3(π).

– If 3(π) is an elementary order claim (con-
tained in 3(ω′)) that has not yet been at-
tacked by P, then π has a single child node
ω with 3(ω) = 3(ω′)∪α(π), where α(π)

is the answer to the attack on the order
claim 3(π) by P, according to Table 2.

Observe that the branches of a dialogue tree corre-
spond to dialogues, as defined informally earlier.

Proposition 2 Every dialogue tree is finite.

Proof: Since dialogue trees are finitely branching
the claim follows from the following observations:
(1) No new propositional variables are introduced by
the rules of Table 1 and 2.
(2) In each move by player O that answers to P’s at-
tack on a compound assertion G � F , this assertion



is replaced by (either one or two) assertions, which
are strictly smaller, if we measure the size of an as-
sertion by the number of occurrences of connectives
in it.
(3) There are only finitely many different atomic as-
sertions that can occur in a dialogue tree. Since each
elementary order claim can only be attacked once in
a dialogue, there are only finitely many such attacks
possible in each dialogue (branch of the tree). 2

An O-node ω, whose label 3(ω) contains an el-
ementary contradiction, is called a winning node
for P. If 3(ω) consists of atomic assertions only, but
does not contain an elementary contradiction, then it
is a winning node for O if all elementary order claims
⊆ 3(ω) have already been attacked by P.

Note that the winning conditions for P and O are
complementary in the following sense. If a dialogue
cannot be continued at an O-node ω – i.e., if 3(ω)

consists only of atomic assertions and is closed under
applications of rules for elementary order claims –
then ω is either a winning node for P or for O, but
not for both players simultaneously.

A winning strategy for O is a dialogue tree, where
all leaf nodes are winning nodes for O, and which
satisfies the following conditions:

1. Each P-node has exactly one child node.

2. Each non-leaf O-node ω has a child P-node for
each F�G ∈ 3(ω), as well as for each elemen-
tary order claim ⊆ 3(ω), that has not yet been
attacked by P. (The child nodes are labeled ac-
cordingly.)

A winning strategy for P is a dialogue tree, which
satisfies the following conditions:

1. Each O-node is either a winning node for P, or
has exactly one child node.

2. Each P-node labeled by an assertion of or-type
has exactly two child nodes; all other P-nodes
have exactly one child node.

Winning strategies for a player X in a zero-sum
two-person game are more commonly described as
functions assigning a move by X to each state of the
game, taking into account all possible moves of the
other player. Observe that our ‘tree form’ of a win-
ning strategy just describes the corresponding func-
tion in a manner that makes the step-wise evolution
of permissible dialogues more explicit.

We illustrate the concept of a dialogue tree by
sketching a winning strategy for P on the formula
(A ⊃ B) ∨ (B ⊃ A):
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m(A ⊃ B) ∨ (B ⊃ A)

m(A ⊃ B) ∨ (B ⊃ A) < >

m(A ⊃ B) < >

m(B ⊃ A) < >

m{B < A, A < B}

m{(A ⊃ B) ∨ (B ⊃ A) < >}

m{(A ⊃ B) < >, (B ⊃ A) < >}

m{B<A, B<>,
(B⊃A)<>}

m{B<A, B<>,
A<B, A<>}

m{ B < B , B<A, A<B,

B<>, A<>}

m(B ⊃ A) < >

m(A ⊃ B) < >

m{A < B, B < A}

m{A<B, A<>,
(A⊃B)<>}

m{A<B, A<>,
B<A, B<>}

{A<>, B<>,

A<B, B<A, A < A }

Since all dialogues are finite (Proposition 2) and
the winning conditions for P and O are complemen-
tary, it already follows from Zermelo’s well-known
Theorem on two-person games [23] that for every F
there is either a winning strategy for P or a winning
strategy for O. However, we want to relate win-
ning strategies for O to counter-models, and winning
strategies for P to proofs in calculi for G4

∞, more ex-
plicitly.

5. Winning strategies for Opponent in-
duced by counter-models

We show the soundness of our dialogue game with
respect to logic G4

∞ in the following form: any
given counter-model to a formula F can be used by
player O to choose his answer to any attack by P
in such a way that O is guaranteed to win all corre-
sponding dialogues starting with P’s claim that F is
valid.

Theorem 1 For every counter-model to a formula F
of G4

∞ one can construct a winning strategy for P in
the dialogue game on F.



Proof: Let v be the given counter-model, i.e.,
an interpretation for which v(F) < 1. We construct
a dialogue tree T for F , that is, a winning strategy
for P, as follows.

The root of T is a P-node labeled by F , followed
by an O-node labeled by {F < >}. The child nodes
of all O-nodes in T are already determined by the
definition of a winning strategy for P: there is one
child node for each possible move by P.

It remains to pick a single child O-node ω to each
P-node π , and to show that v(F) � v(G) for all as-
sertions F � G ∈ 3(π). The proof is by induc-
tion on the length of a path in T from the root node
to ω. We proceed by cases according to the form
of 3(π) (i.e., the compound assertion or elementary
order claim attacked by P in the move corresponding
to π ). Let ω′ denote the parent node of π . We only
present some of the cases; the others are very similar.

3(π) = A ∧ B < C: By induction hypothesis
3(ω′) is satisfied by v. Since 3(π) ∈ 3(ω′),
we have: v(A ∧ B) < v(C). Since v(A ∧ B)

is defined as min(v(A), v(B)) it follows that
either

(i) v(A) < v(C), or
(ii) v(B) < v(C),

(or both). In case (i) we set 3(ω) = (3(ω′) −

{A ∧ B < C}) ∪ {A < C}. In case (ii) we set
3(ω) = (3(ω′) − {A ∧ B < C}) ∪ {B < C}.
(If both, (i) and (ii), hold we can choose freely
among these two options.) In any case, 3(ω) is
satisfied by v.

3(π) = A ∨ B ≤ C: By induction hypothesis
3(ω′) is satisfied by v. Since 3(π) ∈ 3(ω′),
we have: v(A ∨ B) ≤ v(C). Since
v(A ∨ B) = max(v(A), v(B)) this im-
plies v(A) ≤ v(C) as well as v(B) ≤ v(C). We
set 3(ω) = (3(ω′) − {A ∨ B ≤ C}) ∪ {A ≤

C, B ≤ C}. It follows that 3(ω) is satisfied
by v.

3(π) = C < A ⊃ B: By induction hypothesis
3(ω′) is satisfied by v. Since 3(π) ∈ 3(ω′),
we have: v(C) < v(A ⊃ B). By the definition
of the truth function for implication, we have
either

(i) v(C) < v(B), or
(ii) v(A) ≤ v(B) and v(C) < 1,

(or both). In case (i) we set 3(ω) =

(3(ω′) − {C < A ⊃ B}) ∪ {C < B}. In
case (ii) we set 3(ω) = (3(ω′) − {C < A ⊃

B}) ∪ {A ≤ B, C < >}. (If both, (i) and (ii),
hold we can choose freely among these two
options.) In any case, 3(ω) is satisfied by v.

3(π) = 4A < C: By induction hypothesis 3(ω′)

is satisfied by v. Since 3(π) ∈ 3(ω′), we have:
v(4A) < v(C). By the definition of 4, this im-
plies that v(A) < 1 as well as 0 < v(C). We set
3(ω) = (3(ω′) − {4A < C}) ∪ {A < >, ⊥ <

C}. It follows that 3(ω) is satisfied by v.

3(π) = {A < B, B ≤ C}: By induction hypothesis
3(ω′) is satisfied by v. Since 3(π) ∈ 3(ω′),
we have: v(A) < v(B) and v(B) ≤ v(C).
This implies v(A) < v(C). Therefore we set
3(ω) = 3(ω′) ∪ {A < C}, which is satisfied
by v.

We have thus shown that all sets of assertions that
label O-nodes are satisfied by v. In particular also
all labels at leaf nodes of T are satisfiable. Therefore,
they cannot contain an elementary contradiction, and
consequently are winning nodes for O. 2

6. Extracting counter-models from win-
ning strategies for Opponent

We complete the proof of the adequateness of our di-
alogue game by showing the converse of Theorem 1.

Theorem 2 Every leaf node of a winning strategy T
for O on F induces a counter-model to F.

Proof: Let ω be a leaf node of T . By definition
of a winning strategy for P, 3(ω) is a non-empty set
of atomic assertions that does not contain an atomic
contradiction. Moreover, 3(ω) is closed with respect
to applications of rules for order claims (see Table 2).
Let us call all sets of assertions fulfilling these con-
ditions consistently saturated.

Let 0 be a consistently saturated set of atomic as-
sertions. We first prove by induction on the num-
ber p0 of propositional variables in 0 that there is an
interpretation v which satisfies 0.

p0 = 0: Since 0 is not empty, but does not con-
tain ⊥ < ⊥, or > < >, or > < ⊥, we have
0 = {⊥ < >}, which clearly is satisfied by all
interpretations.

p0 > 0: Let A be a propositional variable occur-
ring in 0 and let 0−A be the set of assertions
obtained from 0 by removing all assertions of
form A � F or F � A (� ∈ {<, ≤}) from it,
and adding ⊥ < > to it (if it is not yet present).
By induction hypothesis, there is an interpreta-
tion v that satisfies 0−A. v can be extended to
include an assignment of a truth value to A as
follows. We define

P≤A
={B|B ≤ A∈0 or B < A∈0, A 6= B}∪{⊥},



P≥A
={B|A≤ B ∈0 or A< B ∈0, A 6= B}∪{>}.

P=A, defined as P≤A
∩ P≥A, is not empty in

general. However, from the fact that 0 is closed
with respect to applications of rules for order
claims, it follows that {B ≤ C, C ≤ B} ⊆ 0 if
B, C ∈ P=A. Consequently, v(B) = v(C) for
all B, C ∈ P=A. Obviously, we can extend v

to assign the (unique) value v(B) to A, if B ∈

P=A. If, however, P=A is empty then any r
fulfilling

max{v(B)|B ∈ P≤A
}<r <min{v(B)|B ∈ P≥A

}

can be assigned to A. That such values r exist
is, again, guaranteed by the fact that 0 is con-
sistently saturated.

Since for any leaf node ω in T , the set of assertions
3(ω) labeling ω is, by definition, consistently satu-
rated, we have shown how to extract interpretations
for all such 3(ω) from T . It remains to show that
these interpretations satisfy other labels of O-nodes
in T too. To this aim we apply backward induction
(from the leaves up to the root of T ).

Let π be a P-node of T , but not its root, and let
ω′ be its parent (O-)node. By definition of a winning
strategy for O, π has a single child (O-)node ω. We
show that if 3(ω) is satisfied by the interpretation v,
then v also satisfies 3(ω′). The transition from ω′ to
ω via π corresponds to a single round in the dialogue
game. The required property of the labels is easily
checked by inspection of the rules of Table 1 and 2.
We present only a few cases for illustration.

3(π) = C < A ∧ B: By definition of a dialogue
tree we have 3(ω) = (3(ω′)−{C < A∧ B})∪

{C < A, C < B}. If v satisfies 3(ω) then,
in particular, v(C) < v(A) and v(C) < v(B).
Therefore also v(C) < min(v(A), v(B)) =

v(A ∧ B); which implies that v satisfies 3(ω′).

3(π) = C < A ⊃ B: We have either 3(ω) =

(3(ω′)−{C < A ⊃ B})∪{C < B} or 3(ω) =

(3(ω′)−{C < A ⊃ B})∪{A ≤ B, C < >}. In
the first case note that v(A ⊃ B) either equals
1 or v(B). Therefore v(C) < v(B) implies that
v(C) < v(A ⊃ B), as required for v to sat-
isfy 3(ω′). For the second case it suffices to
note that v(A) ≤ v(B) implies v(A ⊃ B) = 1.
Therefore v(C) < v(A ⊃ B) follows from the
assumption that v(C) < v(>) = 1.

If 3(π) is an elementary order claim then the claim
follows trivially since, in that case, we have
3(ω′) ⊆ 3(ω).

It follows that the label of the O-node ω0 that is the
child node of the root node of T is satisfied by all
interpretations that satisfy a label at a leaf node of T .
Since 3(ω0) = {F < >}, all such interpretations are
counter-models to F . 2

Remark. Instead of presenting single interpreta-
tions for a formula F as mappings from the propo-
sitional variables into reals ∈ [0, 1], one may specify
classes of interpretations by order constraints of form

0 FG0 v(A1) FG . . . FGn v(An) FGn 1,

where FGi∈ {<, =}, for 0 ≤ i ≤ n, and where
A1, . . . , An enumerates the propositional variables
occurring in F (compare [9].)

It is not difficult to see that one can extract such
specifications from the leaf nodes of a winning strat-
egy T for O, too. In fact, the labels at all leaf nodes
of T jointly represent a complete specification of all
counter-models to the formula F at the root node.

7. Winning strategies for Proponent as
proofs of validity

We call a dialogue tree T complete if all child nodes
to a node ρ in T reflect all possible moves to con-
tinue the dialogue at the corresponding state. In other
words, complete dialogue trees are defined exactly as
winning strategies for P at all P-nodes, and exactly
as winning strategies for O at all O-nodes. Since a
complete dialogue tree takes into account all possible
moves for both players, there is a unique complete
dialogue tree T c

F for each formula F .
Let us say that a dialogue tree T contains a dia-

logue tree T ′ if T ′ can be obtained from T by re-
moving some nodes from T , together with the sub-
trees rooted at the removed nodes. It follows from
Theorem 1 that T c

F contains a winning strategy for O
whenever F is not valid. On the other hand, Theo-
rem 2 implies that no winning strategy for O can be
contained in T c

F if F is valid. We show that, in the
latter case, T c

F contains a winning strategy for P.

Theorem 3 A complete dialogue tree T c
F contains a

winning strategy for P iff it does not contain a win-
ning strategy for O.

Proof: By definition, every leaf node of T c
F is

either a winning node for P or a winning node for O,
but no leaf node can be a winning node for both play-
ers. It follows that T c

F cannot contain winning strate-
gies for both players simultaneously.

Since T c
F is finite (by Proposition 2) we can ap-

ply Zermelo’s Theorem [23] – implying that all two-
person zero-sum games of finite depth are deter-
mined – to obtain a proof of the theorem. However,



to keep this exposition self-contained, we reproduce
the central argument here. More exactly, we show
how to extract a winning strategy for either P or O
from T c

F . First, color all winning nodes for O black
and all winning nodes for P white. Then repeat the
following until all nodes of T c

F are colored: for all
nodes ρ that are not yet colored, but where all child
nodes are already colored,

• if ρ is a P-node and all child nodes of ρ are
white then color ρ white, otherwise color ρ

black,

• if ρ is an O-node and all child nodes of ρ are
black then color ρ black, otherwise color ρ

white.

It is easy to see that if a node in T c
F is colored black

then this means that the corresponding state of the
dialogue game is such that O can win the dialogue
for every choice of moves by P. The same holds for
white nodes with O and P interchanged. In other
words: if the root of T c

F is black then T c
F contains a

winning strategy for O. It can be extracted from T c
F

by removing all white nodes and additionally remov-
ing all, but one, black nodes that succeed any given
P-node (if there is more than one child node to this
P-node). If the root of T c

F is white, a winning strat-
egy for P can be extracted analogously. 2

Theorems 1, 2 and 3 jointly imply:

Corollary 1 A formula F is valid in G4
∞ iff there ex-

ists a winning strategy for P on F.

Proof:
If: By Theorem 3, the existence of a winning strat-

egy for P implies that the complete dialogue tree T c
F

does not contain a winning strategy for O. Since,
by definition, T c

F contains all possible strategies we
conclude that no winning strategy for O exists for a
game on F . By Theorem 1 it follows that no counter-
model to F exists. But this implies that F is valid.

Only if: If F is valid then there is no counter-
model to F . Hence, by Theorem 2 and the defini-
tion of a complete dialogue tree, no winning strategy
for O is contained in T c

F . By Theorem 3 this implies
that there exists a winning strategy for P on F . 2

8. Construction of complete dialogue
trees as proof search

It is well known that deciding validity in logic G∞

is a co-NP-complete problem (see, e.g., [16]). The
complexity level does not increase if the 4-operator
is added. (This can also be seen from Proposition 3,
below.) In other words, the asymptotic complexity

of (propositional) fuzzy logic is the same as for clas-
sical logic.

Some important calculi for G∞ (and, by exten-
sion, G4

∞) are based on the fact that G∞ can be ob-
tained from intuitionistic logic by adding the linear-
ity axiom (A ⊃ B)∨ (B ⊃ A). In particular, Avron’s
elegant hypersequent calculus HLC for G∞ contains
Gentzen’s celebrated sequent calculus LJ for intu-
itionistic logic as a sub-calculus and adds an addi-
tional layer of context which allows to form rules
that correspond to the linearity axiom. However, the
validity problem for intuitionistic logic is PSPACE-
complete (and therefore expected to be strictly more
complex than that for G∞). As a consequence, proof
search for intuitionistic fuzzy logic that is based on
Avron’s calculus and related systems can hardly be
expected to be computationally adequate.

Returning to our dialogue game, observe that the
systematic construction of the complete dialogue tree
for F can be viewed as tableau style proof search
for F . In fact, we could have presented the rules of
Tables 1 and 2 as tableau construction rules, and con-
sequently refer to the definition of a dialogue tree as
the specification of a tableau system. (We prefer the
dialogue game format mainly for its more explicit
reference to fundamental principles of correct rea-
soning.)

We have already seen in Proposition 2 that all dia-
logue trees are finite. Therefore, Corollary 1 implies
that the systematic construction of T c

F constitutes a

decision procedure for logic G4
∞.

To demonstrate, that – in contrast to other systems
mentioned above – this form of proof search is com-
putionally adequate we show that each branch of a
complete dialogue tree T c

F is of polynomial length in
the size of F . (By the size of a formula we mean the
number of symbols occurring in it; by the length of a
branch of a tree we mean the number of nodes in it.)
Remember that each branch of a dialogue tree corre-
sponds to a single dialogue. T c

F is just a systematic
representation of all possible dialogues on F .

Proposition 3 For all G4
∞-formulas F each branch

of T c
F can be constructed in (deterministic) polyno-

mial time in the size of F.

Proof: Since a single move in the dialogue game
can clearly be recorded unambiguously in polyno-
mial time, it suffices to show that each branch b of
T c

F is of polynomial length, with respect ‖F‖, the
number of symbols occurring in F .

We use SF(F) to denote the set of all subformu-
las of F united with {⊥, >}. aSF(F) is used to de-
note the set of propositional variables occurring in F ,
again united with {⊥, >}.



Observe that the label 3(π) at a P-node π of
b is either of form G � H or of form {A �1
B, B �2 C}, where G, H ∈ SF(F), A, B, C ∈

aSF(F), and �, �1, �2 ∈ {<, ≤}. Since there are at
most 2| SF(F)|2 labels of the first type and at most
4| aSF(F)|3 labels of the second type, the claim fol-
lows from | aSF(F)| ≤ | SF(F)| ≤ ‖F‖ + 2. 2

9. Dialogue states as relational sequents
We have already remarked in Section 4 that our com-
parison based dialogue game is related to the so-
called sequent of relations systems introduced in [8]
for a range of logics including G∞, and further in-
vestigated and extended to G4

∞ in [6, 7].
In fact, the sequent of relation system RG4

∞ is also
based on finite sets of assertions. However, the sets
of assertions, called relational sequents in RG4

∞, are
written in form

F1 �1 F2 | . . . | Fn �n Fn+1

and interpreted as disjunctions (rather then conjunc-
tions) of assertions. Still, the logical rules of RG4

∞

are systematically related to those of Table 1, above.
E.g., the RG4

∞-rule for implication at the left argu-
ment place of ‘≤’ in a relational sequent is:

> ≤ C | B < A | H B ≤ C | H
(A ⊃ B) ≤ C | H (⊃:≤: l)

where H denotes a so-called side-sequent, i.e., a
(possible empty) set of assertions. The RG4

∞-rule
for introducing implication at the right hand side of
‘<’ is

C < > | H A ≤ B | C < B | H
C < (A ⊃ B) | H (⊃:<: r)

To see the correspondence to the dialogue game, we
define the dual of an assertion F � G as [F � G]

d
=

G �d F for � ∈ {<, ≤}, where <d
=≤

d and ≤
d
=<.

The RG4
∞-rule for introducing an assertion F � G in

a relational sequent can be obtained from the possi-
ble answers by O (according to Table 1) to P’s attack
on assertion [F � G]

d , by dualizing the answered
assertions and placing them in the context of a side-
sequent as appropriate. E.g., the two premises of rule
(⊃:<: r) correspond to the dual versions of the two
possible answers {> ≤ C} and {B < A, B ≤ C} by
O to an attack on [C < (A ⊃ B)]d

= A ⊃ B ≤ C
by P.

The close correspondence between RG4
∞ and our

dialogue game breaks down at the level of axioms.
The axioms of RG4

∞ are the relational sequents that
are of one of the following forms:

(a) A1 �n An | . . . | A3 �2 A2 | A2 ≤ A1, where
�i ∈ {<, ≤} and the case n = 1 is defined as
A1 ≤ A1,

(b) An ≤ An−1 | An−1 < An−2 | . . . | A1 < >,
where the case n = 1 is defined as A1 ≤ >,

(c) ⊥ < An | . . . | A3 < A2 | A2 ≤ A1, where the
case n = 1 is defined as ⊥ ≤ A1,

(d) ⊥ < A1 | A1 < A2 | . . . | An < >, where the
case n = 0 is defined as ⊥ < >.

In RG4
∞ axioms need not be atomic, i.e., the formu-

las occurring in axioms can be compound.
To be able to transform proofs in system RG4

∞ into
winning strategies for P in the dialogue game, we
have to enrich RG4

∞ with new rules, which we call
expansion rules:

A ≤ B | H
A ≤ C | C ≤ B | H

(expand≤)

A < B | H
A �1 C | C �2 B | H (expand<)

where �1, �2 ∈ {<, ≤}, but at least one of the two
is <. It is easy to see that all axioms of RG4

∞ can be
derived from the singleton sequents, called reduced
axioms, that are of form A ≤ A, A ≤ >, ⊥ ≤ A,
or ⊥ < > respectively, using expansion rules only.
These reduced axioms are the dual forms of the el-
ementary contradictions that determine the winning
conditions for the dialogue game. Moreover, note
that the expansion rules correspond (via duality) to
the dialogue game rules for elementary order claims,
if only atomic assertions are considered.

RG4
∞ also contains the following ‘structural’ rule:

H
A | H weakening

However, this rule is not needed if we extend the def-
inition of axioms to include all those relational se-
quents that contain an original axiom as subset.1

Summarizing, there is a one-to-one correspon-
dence (via duality) between winning strategies for P
in our dialogue game and proofs from reduced ax-
ioms in a weakening-free version of RG4

∞ with ex-
pansion rules, where the axioms and the exhibited
assertions in the expansion rules are atomic. The re-
sults of this paper imply the soundness and complete-
ness of this special version of RG4

∞.

1The original version of system RG4
∞ also contains a contrac-

tion rule. However, this rule disappears in our version of RG4
∞

since we consider relational sequents as sets and not as multi-sets.



10. Open questions and future work
We have demonstrated that a simple dialogue game,
based on comparisons of degrees of truth, is adequate
for intuitionistic fuzzy logic. We conclude by posing
a few open questions, which hopefully stimulate fur-
ther research on the topic:

• Can the dialogue games be modified in a
straightforward manner to support reasoning
also in finitely valued Gödel logics and related
logics?

• Can one lift the game from propositional to the
first-order level?

• Is there a direct relation between winning strate-
gies for P and proofs in other calculi for G∞

(like, e.g., those in [1, 4, 12, 20])?

Finally we mention that we plan to implement the
proof search procedure via systematic construction
of dialogue trees, that was indicated in Section 8.
The proof search should also be able to proceed in an
interactive mode. In particular, a graphic user inter-
face should enable to actually play the dialogue game
against the computer, alternatively as P(roponent) or
O(pponent) of a formula.
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