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Abstract. The minimal extension of intuitionistic propositional lan-
guage is characterized, where propositional quantifier are eliminable w.r.t.
Kripke frames of type ω.

1 Introduction

In this paper we discuss semantics for quantified propositional logics derived
from Kripke frames and demonstrate quantifier elimination for propositional
quantifiers w.r.t. Kripke frames of type ω. The language admitting quantifier
elimination is the usual language of intuitionistic propositional logic extended
by ◦, ◦y representing ∀x(x ∨ x → y), the residuum. We derive a sound and
complete axiomatization.

1.1 Layout of the article

This paper will present some new logical systems, derived from Intuitionistic
Propositional Logic and Intuitionistic Quantified Propositional Logic by restrict-
ing the accessibility relation to the order-type ω.
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The logic IPL Intuitionistic Propositional Logics is well known and well studied.
The logic IQPL Intuitionistic Quantified Propositional Logic as presented in
this article was introduced and studied by Gabbay [Gab81] (as 2h and C2h).
We will introduce syntax and semantics for these logics and present a complete
axiomatization in Section 2, where also a discussion on different definitions of
semantics for Intuitionistic Quantified Propositional Logic is given.
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The logics in the second row are obtained by restricting the possible Kripke
frames to ω orderings. Some results about these logics are presented in Section 3.

We extend the language with an additional operator to obtain the logics of
the last row and discuss these logics in Section 4. Finally, Section 5 will show
that quantifier elimination can be obtained for IQPL◦

ω with respect to IPL◦
ω,

thus also obtaining an axiomatization of IQPLω.

2 Intuitionistic (Quantified) Propositional Logics (IPL
and IQPL)

We will introduce all the definitions for the propositional and the quantified
propositional in parallel.

2.1 Syntax and semantics

Definition 1 The basic language L (Lq) consists of the constant ⊥, countably
many propositional variables X = (X1, X2, . . .) and the connectives ∧, ∨ and
→ (and ∀ and ∃). The set Frm(L) (Frm(Lq)) of well formed formulas is defined
as the smallest set satisfying the following conditions: ⊥ and all the Xi are
contained in Frm(L), and if A and B are in Frm(L) (Frm(Lq)), then also A∧B,
A ∨B, A→ B (and ∃XA and ∀XA).

Definition 2 We introduce the following notations

> :↔ ⊥→ ⊥
¬A :↔ A→ ⊥

A ≺ B :↔ (B → A)→ B

A↔ B :↔ (A→ B) ∧ (B → A)

The following definitions introduce the semantics for the logics under discus-
sion.

Definition 3 Let (W,R) be a partial order. A subset X ⊆W is called upwards
closed w.r.t. R iff for all w,w′, if w ∈ X and w R w′, then w′ ∈ X. The set of
all subsets of W which are upwards closed w.r.t. R is denoted with Up(W,R).

Definition 4 A intuitionistic Kripke frame is a triple K = (W,R,P), where
(W,R) is a partial order, i.e. R is a reflexive, transitive and antisymmetric binary
relation on the set W , and P is a subset of Up(W,R). As usually we drop the
phrase ’intuitionistic’ and simply speak about Kripke frames. A Kripke frame is
linear if (W,R) is a linear order.

Definition 5 An intuitionistic model is a pair (K,ϕ) where K = (W,R,P) is a
intuitionistic Kripke frame, and ϕ a mapping from the set of variables X to P.
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The set P is the set of propositions, i.e. subsets of W where variables and ⊥
are true in the usual interpretation in Kripke models. It is important to mention
that this definition of semantics introduces an additional degree of freedom in
choosing the set P, the set of propositions. The usual definition would specify
P as the set of all possible propositions Up(W,R). This motivates the following
definition.

Definition 6 Let K = (W,R,P). A model M = (K,ϕ) with a maximal set of
propositions P = Up(K) is complete, otherwise partial.

A model is safe if for every formula A there is an X such that M(A) = ϕ(X).

With M [P/X] we will denote the model M ′ = (K ′, ϕ′) obtained from M =
(K,ϕ) where K ′ = K and ϕ′(X) = P , ϕ′(X ′) = ϕ(X ′) for X 6= X ′.

Definition 7 Given a model M = (K,ϕ) and a formula A, we define M(A) as
follows:

M(X) = ϕ(X), for propositional variables X

M(⊥) = ∅
M(A ∧B) = M(A) ∩M(B)

M(A ∨B) = M(A) ∪M(B)

M(A→ B) = {w ∈W : ∀v with w R v, if w ∈M(A) then v ∈M(B)}

M(∀XA) =
⋂{

M [P/X](A) : P ∈ P
}

M(∃XA) =
⋃{

M [P/X](A) : P ∈ P
}

A formula A is validated by M , written M 
A, if W = M(A). A formula A is
valid, if A is validated by all models M .

2.2 Propositional Logic

Definition 8 The set of all valid formulas from Frm(L) is designated with IPL.

Definition 9 We denote with IPL the following deduction system consisting of
the axiom schemes

(P1) A→ (B → A)

(P2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(P3) (A ∧B)→ A; (A ∧B)→ B

(P4) A→ (B → (A ∧B))

(P5) A→ (A ∨B); B → (A ∨B)

(P6) (A→ C)→ ((B → C)→ ((A ∨B)→ C))

(P7) ⊥ → A

and the rule (MP) from A and A→ B deduce B.
If a formula is derivable using this deduction system we denote this with

IPL`A.
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In the propositional case the additional distinction in partial and complete
models, i.e. the freedom to choose the set of propositions, is superfluous. The
proof is straightforward by using a counter example in a partial model as a
counter example in a complete model.

Proposition 10 The propositional logics of complete and partial models coin-
cide.

The above proposition allows us to state the following completeness theorem
without proof, as there are several completeness proofs for intuitionistic propo-
sitional logic with respect to Kripke semantics in the literature, e.g. [Tak87].

Theorem 11 For all formulas A ∈ Frm(L), IPL
A if and only if IPL`A.

From now on we will use the completeness of IPL by asserting that a sentence
of IPL is provable by demonstrating that it is valid.

2.3 Quantified Propositional Logic

Definition 12 The set of all valid formulas from Frm(Lq) is designated with
IQPL−. The set of all valid formulas with respect to safe models is designated
with IQPL.

The property of being a safe model induces the validity of the full compre-
hension scheme and ensures that all images of M actually exist in P, i.e. in a
safe mode, M(A) is an element of P for all A.

The logics IQPL− and IQPL have been introduced by Gabbay [Gab81],
where the following complete axiomatizations were given:

Definition 13 Let IQPL− denote the deduction system obtained from the de-
duction system IPL by the extension with the following axiom schemes and rules:

(Q1) ∀XA(X)→ A(Y ) (axiom)

(Q2) A(Y )→ ∃XA(X) (axiom)

(Q3)
A(X)→ B

∃XA(X)→ B
, X not free in B, (provability rule)

(Q4)
B → A(X)

B → ∀XA(X)
, X not free in B, (provability rule)

(Q5) ∀X(B ∨A(X))→ (B ∨ ∀XA(X)) (axiom)

and IQPL denote the deduction system by additionally adding

(Q6) ∃X(X ↔ A), X not free in A, (axiom)

If a formula is derivable using these deduction systems we denote this with
IQPL`A and IQPL− `A, respectively.
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This particular axiom system has been introduced by Gabbay [Gab81] and
the full comprehension scheme (Q6) is used to distinguish between safe and
unsafe models. Furthermore, the existence of this full comprehension scheme
allows us to use the substitution rule:

Proposition 14 For all formulas A(X) and formulas F from Lq where the free
variable of F do not occur in A(X), we can deduce A(F ) from A(X) and IQPL.

Proof. The formula (X ↔ F ∧A(X))→ A(F ) is provable for all A by induction
on formulas. From this and (Q6) we obtain the proposition. �

Another option to obtain the substitution rule would have been to add schemata
similar to (Q1) and (Q2) with arbitrary formulas for Y . But then we would have
to add a distinction on the structure of the formulas Y to draw the distinction
between the safe and unsafe models.

In his examination Gabbay proved that the present systems are sound and
complete for the respective logics:

Theorem 15 ([Gab81] p. 160, Thm. A & B) For all A ∈ Frm(Lq), IQPL`A
if and only if IQPL
A, and IQPL− `A if and only if IQPL−
A.

This result is in sharp contrast to the following theorem of Kremer:

Theorem 16 ([Kre97]) The class of all complete models is recursively isomor-
phic to full second order classical logic.

The reason for the difference is the additional degree of freedom allowed in
choosing sets of propositions for models.

The result of Kremer depends on the presence of wide trees induced by R of
complete models (W,R,P, ϕ), cf. the following theorem of Zach:

Theorem 17 ([Zac04]) The class of complete models (W,R,P, ϕ), where R
induces trees of arity and width ≤ ω, is decidable.

3 ω-frames

In the following we will restrict the accessibility relation to ω. In these cases we
will denote the accessibility relation with ≤. Furthermore we will only consider
safe models, and we will show that the notion of validity with respect to safe
and with respect to complete models coincide.

Definition 18 If (W,≤) has the order-type of ω, then a model based on a the
Kripke frame K = (W,≤,P) is called ω-model. A is ω-valid iff A is validated by
every safe ω-model. The set of all ω-valid sentences from Frm(L) is designated by
IPLω. The set of all ω-valid sentences from Frm(Lq) is designated by IQPLω.

Notice that we restrict validity to safe models (comparable to IQPL). In the
case of ω-models this boils down to the very simple property that W and ⊥ are
in the range of ϕ:

5



Lemma 19 An ω-model M = (W,R,P, ϕ) is safe iff there are variables X>
and X⊥ such that ϕ(X>) = W and ϕ(X⊥) = ∅, and thus also W, ∅ ∈ P.

Proof. By induction on the complexity of formulas: For variables and proposi-
tional formulas it is obvious that M(A) = ϕ(X). Consider ∀XA(X):

M(A) =
⋃
{M [P/X](A) : P ∈ P}

by induction M [P/X](A) = Pi ∈ P

=
⋃
i∈I

Pi

which is either one of the Pi or the empty set, thus

= ϕ(X) for an X ∈ X .

For ∃XA(X) we get that M(A) is either one of the Pi or W . Thus, the model
is safe iff W and ∅ are in the range of ϕ. �

Remark 20 In the case of a linear order of type ω we can uniquely specify
elements of Up(W,≤) by giving the smallest element, which always exists. Thus,
we can write every set P ∈ Up(W,≤) as P = w↑ = {v : w ≤ v}.

We extend a deduction system for intuitionistic propositional logic to a de-
duction system for the logic given above.

Definition 21 We will call the deduction system obtained from IPL extended
by the linearity axiom scheme (lin) (A→ B) ∨ (B → A), with IPLω.

The following theorem is a consequence of the equivalence of infinite valued
propositional Gödel logics and linear Intuitionistic Propositional Logic, as ex-
hibited already in [Baa96], where also the completeness for propositional Gödel
logics is shown.

Theorem 22 For all A ∈ Frm(L), IPLω 
A if and only if IPLω `A.

If we consider propositional logics of general linear orders, not necessarily of
type ω, the respective logic IQPLlin coincides with IPLω.

We will use the completeness of IPLω by asserting the derivability of a
sentence by stating its validity.

3.1 Quantified Propositional Logic

Interestingly, it is possible to show that in the ω case the notion of validity with
respect to safe and complete models coincide also for quantified propositional
logics.
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Definition 23 The filtration of a partial linear model (W,≤,P, ϕ) is a structure
(W ′,≤′,P ′, ϕ′) where

[w] = {v : ∀P ∈ P (v ∈ P ↔ w ∈ P )}
W ′ = {[w] : w ∈W}

[w] ≤′ [v]⇔ w ≤ v
P ′ = {{[w] : w ∈ P} : P ∈ P}

ϕ′(X) = {[w] : w ∈ ϕ(X)}

Lemma 24 Let M be an ω-model and M ′ its filtration. (a) M ′ is a linear model.
(b) If P is infinite, then M ′ is an ω-model, otherwise M ′ is a finite linear model.
(c) M(A) = W iff M ′(A) = W ′. (d) If M is safe, then M ′ is complete.

Proof. (a) We have to show that (i) [w] is well defined, (ii) ≤′ is well defined and
a linear ordering, (iii) P ′ is a subset of Up(W ′,≤′), (iv) ϕ′(X) is well defined.

Ad (i): If v ∈ [w], then ∀P ∈ P (v ∈ P ↔ w ∈ P ), thus also w ∈ [v],
i.e. [v] = [w]. Ad (ii): Well-definedness, reflexivity and linearity are obvious.
Antisymmetry: w ≤ v iff (w ∈ P → v ∈ P ), thus if both w ≤ v and v ≤ w, we
have [w] = [v]. Ad (iii): We have to show that P ′ is upward closed. Assume that
[w] ∈ P ′, [w] ≤′ [v], and that P ′ = {[u] : u ∈ P}. From [w] ≤′ [v] we know that
w ≤ v, thus if w ∈ P , then v ∈ P , and together that [v] ∈ P ′. Ad (iv): We have
to show that ϕ′(X) ∈ P ′, but this is obvious from ϕ(X) ∈ P and the definition
of ϕ′(X).

(b) Obvious. (c) by straightforward induction.
(d) Assume that P ′ /∈ P ′, and that P ′ = [w]↑ (see Remark 20). Furthermore

assume that P ′ is chosen minimal under all elements of Up(W ′,≤′) \ P ′. Thus
there is a Q′ ∈ P ′ such that Q′ is the predecessor of P ′ (in the worst case this
predecessor is W ′, predecessor and successor in the well defined sense of total
linear orders). Let Q′ = [v]↑. Then [v] ≤′ [w]. But for all P ∈ P, it is also
true that v ∈ P ↔ w ∈ P , thus [v] = [w] and also [v]↑ = Q′ = P ′ = [w]↑,
contradiction. �

Using Lemma 24 we can show that for ω-models it is enough to consider
complete models:

Lemma 25 Every ω-model with infinite P is isomorph to a complete ω-model.

Proof. The filtration of an ω-model with infinite P is again an ω-model, P ′ is
also infinite, and it is complete. �

We are aiming at the quantifier elimination of propositional quantifiers from
IQPLω. It will be shown that such an reduction without an extension of the base
language cannot be achieved. From now on we will concentrate on ω-models and
start with the introduction of the new operator ◦. After we have shown quanti-
fier elimination we will derive a complete axiomatization of IQPLω (c.f. Corol-
lary 56).
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4 Extensions with ◦

4.1 Propositional Logic

Definition 26 The language L◦ is obtained from L by adding the unary con-
nective ◦.

Definition 27 A model for intuitionistic propositional logic with ◦ is a ω-model
extended with the following definition of M for the operator ◦:

M(◦A) = {n ∈ N : n+ 1 ∈M(A)}

Definition 28 The set of all ω-valid sentences from Frm(L◦) is designated by
IPL◦

ω.

Definition 29 Let IPL◦ω be the Hilbert system obtained from the Hilbert system
IPLω for IPLω by extending it with the following axioms:
(◦a) ◦⊥ ↔ ⊥
(◦b) ◦(A ? B)↔ (◦A ? ◦B) for ? ∈ {∧,∨,→}.
(◦c) ¬A ∨ (A ≺ ◦A)
(◦d) (A ≺ B)→ (◦A→ B)
(◦e) (A ≺ ◦B)→ ((A→ B) ∨A)

We will refer to these five axioms (◦a)-(◦e) as ◦-axioms. We will show that IPL◦ω
is sound and complete for IPL◦

ω, i.e. that IPL◦
ω 
A if and only if A is provable

in IPL◦ω (in symbols, IPL◦ω `A).

Theorem 30 (Soundness) If IPL◦ω `A then IPL◦
ω 
A.

Proof. By induction on the length of proofs. �

Let A◦ be the formula which results from A by shifting ◦ as far as inside
possible. We abbreviate ◦ . . . ◦A (n occurrences of ◦) by ◦nA.

Proposition 31 For every n ≥ 0, IPL◦ω ` > ↔ ◦n> and IPL◦ω ` ⊥ ↔ ◦n⊥.

Proof. By

◦> ↔ ◦(⊥ ↔ ⊥) Definition

↔ (◦⊥ ↔ ◦⊥) (◦b)

↔ (⊥ ↔ ⊥) (◦a)

↔ > Definition

and induction. �

Proposition 32
1. IPL◦ω `A→ ◦A
2. IPL◦ω `¬¬A ∨ (◦A→ A)
3. IPL◦ω `A↔ A◦

8



4. IPL◦ω `(A ? B)→ (◦A ? ◦B) for ? ∈ {∧,∨,→,≺}
5. IPL◦ω `¬¬A↔ ((◦k+n+1A→ ◦kA)→

∧n
v=0 ◦k+vA)

6. IPL◦ω `¬◦mA→ ¬◦nA (for all n ≤ m)
7. IPL◦ω `F ↔ ((¬A ∧ F ) ∨ (¬¬A ∧ F ))

Proof. 1. The following equations are valid in IPL, and due to the completeness
also provable in IPL:

> ↔ A→ > by IPL

↔ A→ (⊥ → ◦A) by IPL

↔ (A→ ⊥)→ (A→ ◦A) by IPL

↔ ¬A→ (A→ ◦A) by definition of ¬

From (◦c) ¬A ∨ (A ≺ ◦A), and by IPL ¬A ∨ (A → ◦A). By IPL, (A →
◦A) ∨ (A→ ◦A), so (A→ ◦A).

2. From (P7) ⊥ → A and the definition of ¬A as A→ ⊥ we obtain that ¬A→
(A ↔ ⊥), using (◦b) and Proposition 31 (◦⊥ ↔ ⊥) we obtain (*) ¬A →
(◦A↔ ⊥). Again from the definition of the negation we have ¬A→ (⊥ → A)
where we can substitute for ⊥ the formula ◦A due to (*), thus ¬A→ (◦A→
A). Using the theorem of IPLω that ¬A∨¬¬A and by IPL, ¬¬A∨(◦A→ A).

3. by induction on the complexity of formulas, using (◦b).
4. from (1) and (◦b)
5. Let F = (◦k+n+1A→ ◦kA)→

∧n
v=0 ◦k+vA. We will show that ¬A→ (F ↔

¬¬A) and ¬¬A→ (F ↔ ¬¬A) from which we obtain (F ↔ ¬¬A). First for
¬A → (F ↔ ¬¬A): As in the proof of 2. we see that ¬A → (◦nA ↔ ⊥) for
all n, and in a similar way, that ¬A → (¬¬A ↔ ⊥), which is equivalent to
¬A→ (¬¬A↔ (⊥ → ⊥)→

∧n
v=0⊥) where we then fill in the right ◦nA to

obtain ¬A→ (¬¬A↔ F ).
Concerning ¬¬A → (F ↔ ¬¬A): The one direction is an axiom, the other
direction ¬¬A → (¬¬A → F ) is equivalent to ¬¬A → F . Expanding ≺ in
axiom (◦c) together with the assumption ¬¬A we obtain ¬¬A → ((◦A →
A) → ◦A), thus also ¬¬A → ((◦A → A) → ((◦A → A) ∧ ◦A)) and ¬¬A →
((◦A → A) → A). Using this, induction on n and the shifting of ◦ over all
propositional connectives we obtain the result.

6. From axiom (◦c) we obtain ¬A ∨ (¬◦A → ¬A), together with the axiom
¬A → (¬◦A → ¬A) we deduce ¬◦A → ¬A. Together with the shifting of ◦
we obtain the result.

7. The following equivalences are trivial consequences of the axioms:

F ↔ (> ∧ F )↔ ((¬A ∨ ¬¬A) ∧ F )↔ ((¬A ∧ F ) ∨ (¬¬A ∧ F )) �

Definition 33 Let X = {X1, . . . , Xn} be a finite set of variables and let

ΓXm = {◦kX : X ∈ X , 0 ≤ k ≤ m} ∪ {⊥,>}.

A ◦-chain on X is an expression

(⊥ on1 A1) ∧ (A1 on2 A2) ∧ . . . ∧ (An(m+1) onn(m+1) >)
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where oni∈ {↔,≺}, oni=≺ for at least one i, all the Ai are different, and

{⊥, A1, . . . , An(m+1),>} = ΓXm .

The set of all chains based on X is denoted with C(X ).
The notion X (A) for any formula A denotes the set of variables occurring in

A.
We say that A and B from ΓXm are equivalent w.r.t. to a ◦-chain C of there

are B1,. . . , Bn such that A ↔ B1, B1 ↔ B2,. . . , Bn ↔ B (or their symmetric
equivalents) are conjuncts in C. The set of all B equivalent to A w.r.t. C is
denoted by [A]C . Obviously, the equivalence of formulas in ΓXm w.r.t. C is an
equivalence relation, and the [A]C provide a partition of ΓXm .

The equivalence relation induced by [A]C also provides an ordering of the
equivalence classes in the natural way: [A]C on [B]C iff A on B. Exhibiting the
well-definedness is straight-forward.

Definition 34 A ◦-chain on X is said to be an m-chain on X if the additional
conditions hold:
1. ◦iX is in the equivalence class of ⊥ iff all ◦kX for 0 ≤ k ≤ m are in the

equivalence class of ⊥.
2. Assume there are l equivalence classes and that X ∈ X is in the k-th equiv-

alence class. Then ◦iX is in the k + i-th equivalence class if k + i ≤ l, and
in the equivalence class of > otherwise.

The set of all m-chains based on X is denoted with Cm(X ).

Remark 35 Henceforth we will freely identify chains which coincide w.r.t. equiv-
alence classes. Furthermore, we will use m-chains as definition of models (resp.
counter examples) in the following way: Choose ϕ(X) = ϕ(Y ) for all X ∈ [Y ]C .
Furthermore, if [X]C ≺ [Y ]C then choose ϕ(X) ⊂ ϕ(Y ). It is easy to show by
induction that this defines a model.

m-chains extend chains used in [Baa96] to provide a finitary completeness
proof of IPL plus (A → B) ∨ (B → A) with respect to linearly ordered Kripke
semantics.

Lemma 36 (Order Theoretic ‘Tertium non datur’) For all X and m,

IPL◦ω `
∨

C∈Cm(X )

C

where Cm(X ) is the set of all m-chains over X .

Proof. The formula (A ≺ B) ∨ (A ↔ B) ∨ (B ≺ A) is valid in IPLω, thus also
provable from IPLω. Substituting formulas containing ◦ does not destroy this
property of being provable. Thus by Proposition 45

IQPLω `
∧

Ai,Aj∈ΓX
m

(Ai ≺ Aj ∨Ai ↔ Aj ∨Aj ≺ Ai).
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Distribute this formula to a disjunction of conjunctions. Replace ⊥ → A with
>, A→ > with >. Using (> → ⊥)⇔ ⊥ and transitivity of ≺ and →, we obtain
a disjunction of ◦-chains, i.e. an ordering of the equivalence classes of ΓXm , where
⊥ is the minimal class, > is the maximal class and there are at least two classes.
We have to transfer those ◦-chains into m-chains, i.e. reducing the number of
‘violations’ of properties (1) and (2) from Definition 34.

We use the correction steps (a)-(c) below to ensure (1) and (2). Every cor-
rection step reduces the number of violations or transforms the ◦-chain into ⊥.

(a) If ◦kX occurs in the equivalence class of ⊥ and ◦lX occurs in a higher equiv-
alence class, then we delete the ◦-chain C (from ¬◦kX → ¬◦lX (Proposi-
tion 32.6), and C → ¬◦kX we get C → ¬◦lX, but also C → ¬¬◦lA).

All remaining ◦-chains fulfill (1).

(b) If ◦k+l+1X occurs in an equivalence class r not containing ⊥, with r less or
equal to the equivalence class of ◦kX, then we adjoin all equivalence classes
≥ r to the equivalence class of > (C → ◦k+l+1X → ◦kX, C → ¬¬◦kX,
C → ◦kX ≺ ◦k+l+1X and using the scheme (A ≺ B)∧(B → A)→ (A∧B)).

(c) If ◦kX occurs in the equivalence class r, ◦k+1X occurs in the equivalence
class of r + 2 + i for some i ≥ 0, then we adjoin all equivalence classes
≥ r to the equivalence class of > (C → ◦kX ≺ E ∧ E ≺ ◦k+1X it follows
C → ◦k+1X → E ∧ E ≺ ◦k+1X by axiom (e)).

(d) If > and ⊥ are in the same class, we delete the ◦-chain C. �

We are now ready to prove the completeness of IPL◦ω with respect to IPL◦
ω:

Theorem 37 (Completeness) If IPL◦
ω 
A then IPL◦ω `A.

Proof. Let A◦ consist of variables X = {X1, . . . , Xn} and components of ◦kX,
X ∈ X with k ≤ m. Let C be an m-chain, i.e. C ∈ Cm(X ). By induction on
formulas we can show that for all E,F ∈ ΓXm :

IPL◦ω `C → (¬E ↔ >) or IPL◦ω `C → (¬E ↔ ⊥)

IPL◦ω `C → (E → F ↔ >) or IPL◦ω `C → (E → F ↔ F )

IPL◦ω `C → (E ∧ F ↔ E) or IPL◦ω `C → (E ∧ F ↔ F )

IPL◦ω `C → (E ∨ F ↔ E) or IPL◦ω `C → (E ∨ F ↔ F )

Therefore, C → (A↔ D) for some D ∈ ΓXm by Proposition 32.3. D is called the
evaluation of A under C (valC(A)). The valuation of a formula is well-defined,
and for valid formulas A, valC(A) is contained in the equivalence class of >,
because otherwise C provides a counterexample (see Remark 35).

Now let A be a tautology, we know from Lemma 36 that

IPL◦ω `
∨
C∈C

C

11



where C is the set of all m-chains over X. From this we obtain

IPL◦ω `
∨
C∈C

(C ∧ >) by IPL

⇔ IPL◦ω `
∨
C∈C

(C ∧ valC(A)) since valC(A) ∈ [>]C

⇔ IPL◦ω `
∨
C∈C

(C ∧A) by IPL

⇔ IPL◦ω `(
∨
C∈C

C) ∧A by IPL

⇔ IPL◦ω `A by IPL �

Corollary 38 For every A either

IPL◦ω `A↔ ⊥

or there is a subset ∆ ⊆ C(X (A)) such that

IPL◦ω `A↔
∨
C∈∆

C.

Proof. The formula C∧valC(A) where valC(A) 6∈ [>]C collapses to another chain
C ′ by adjoining all equivalence classes greater or equal to the equivalence class
of valC(A). �

Remark 39 The completeness is a weak one, i.e. it shows that all tautologies
are derivable. But the system is not strongly complete, i.e. with respect to en-
tailment, as the entailment is not compact [BZ98].

4.2 Quantified Propositional Logic

Definition 40 The language Lq◦ is obtained from Lq by adding the unary con-
nective ◦.

Definition 41 The set of all ω-valid sentences from Frm(Lq◦) is designated by
IQPL◦

ω.

Definition 42 Let IQPL◦ω be the Hilbert system obtained from the Hilbert sys-
tem IQPLω for IQPLω by extending it with the ◦-axioms (see Def. 29, p. 8) and
the axioms

(nx) ∃X(◦X ↔ A)

(dis) ¬∀X(X ∨ ¬X)

Thus, the system IQPL◦ω consists of the rules for intuitionistic propositional
logic (Def. 9), together with linearity, the Q-axioms (Def. 13), the ◦-axioms
(Def. 29) and the two axioms from above.

12



Remark 43 The axiom (dis) is not valid if we do consider models which are
not complete. But due to Lemma 24 (c) we can restrict ourselves to complete
models. Furthermore, note that the logic IQPLω is not an intermediate logic.

By induction using (nx) we obtain the following Lemma:

Lemma 44 IQPL◦ω `∃X(◦kX ↔ A) for all k.

Due to the fact that we consider only complete models, it is easy to show by
induction on proofs that the substitution property holds also for the extended
language:

Proposition 45 If IQPL◦ω `A(X) and the free variables of F do not occur
bound in A(X), then also IQPL◦ω `A(F ).

We will prove soundness and completeness of this system via quantifier elim-
ination in Section 5. This is not a trivial corollary and it seems that it will be
hard to get a different completeness proof.

Theorem 46 For all formulas A ∈ Frm(Lq◦), IQPL◦
ω 
A if and only if IQPL◦ω `A.

The proof of this theorem will be given at the end of the next section.

5 Quantifier Elimination for IQPL◦
ω

We reduce a formula from Frm(Lq◦) to Frm(L◦).

Remark 47 We will use the following method several times in proofs: If we
have to exhibit that

IQPL◦ω `(E ∧ ∃XA(X))↔ (E ∧B)

(IQPL◦ω `(E ∧ ∀XA(X))↔ (E ∧B))

we proceed as follows: For the left-to-right (right-to-left) direction we search for
a suitable tautology (E∧A(X))→ (E∧B) (resp. (E∧B)→ (E∧A(X))), which
can be derived due to the propositional completeness as shown above. Using the
quantifier introduction rule we obtain E ∧ ∃XA(X) (resp. E ∧ ∀XA(X)).

For the right-to-left (left-to-right) direction we introduce the existential quan-
tifier (resp. instantiate the universal quantifier).

Proposition 48 (α) Let H(X) be

¬¬A ∧ ¬¬B ∧ (A ≺ X) ∧ (X ≺ ◦X) ∧ . . . ∧ (◦k−1X ≺ ◦kX)∧
∧ (◦kX ↔ B) ∧ . . . ∧ (◦k+lX ↔ ◦lB)

and H ′(X) be

¬¬A ∧ ¬¬B ∧ (◦kA ≺ B) ∧ (◦kX ↔ B),

then
IQPL◦ω `H(X)↔ H ′(X).

13



(β) Let G(X) be

¬A ∧ ¬¬B ∧ (A ≺ X) ∧ (X ≺ ◦X) ∧ . . . ∧ (◦k−1X ≺ ◦kX)∧
∧ (◦kX ↔ B) ∧ . . . ∧ (◦k+lX ↔ ◦lB)

and G′(X) be
¬A ∧ ¬¬B ∧ (◦kX ↔ B),

then
IQPL◦ω `G(X)↔ G′(X).

Proof. (α) →: IQPL◦ω `A ≺ X → ◦kA ≺ ◦kX, deletion.←: IQPL◦ω `(F ↔ G)→
(◦F ↔ ◦G), thus, the equivalence classes of X, ◦X, . . . , ◦k−1X have to be
between A and ◦kX.

(β) →: deletion. ←: IQPL◦ω `F ↔ G → ◦F ↔ ◦G, as B is non-zero (i.e., ¬¬B
is provable: IQPL◦ω `¬¬B), X, ◦X, . . . , ◦kX have to be non-zero, too. �

Remark 49 Note that if we write H(x) as ¬¬A ∧ F , we can write G(x) as
¬A ∧ F , thus,

H(x) ∨G(x)↔ (¬¬A ∧ F ) ∨ (¬A ∧ F )↔ F

according to Proposition 32.7.

Lemma 50 For all quantifier-free A there is a quantifier-free A′ whose free
variables are among the free variables of ∃XA, such that

IQPL◦ω `∃XA↔ A′.

Proof. We start with constructing for A an equivalent disjunction of chains∨
C∈∆ C (or ⊥) (see Corollary 38) and distribute the existential quantifier over

the
∨

. Thus, it suffices to consider formulas of the form ∃XC, where C is an
m-chain, or ∃x⊥, which can be replaced by ⊥.

Case (1): Assume that X, ◦X, . . . , ◦mX occur in the equivalence class of ⊥.
Then IQPL◦ω `∃XC(X) ↔ C(⊥), which can be trivially deduced from ⊥ ↔ X,
which is contained in C, and the substitution rule.

Case (2): If not (1), assume the X, ◦X, . . . , ◦mX occur all in singular equiv-
alence classes, i.e. classes which do not contain any other formula. Thus, the
chain looks like

C ↔ C ′ ∧ (E ≺ X) ∧ (X ≺ ◦X) ∧ . . . ∧ (◦mX ≺ G) ∧ C ′′

for some E and G. We know from Proposition 32.7 that

∃XC ↔ (¬E ∧ ∃XC) ∨ (¬¬E ∧ ∃XC)

and will prove

¬E ∧ ∃XC ↔ ¬E ∧ C ′ ∧ E ≺ G ∧ C ′′

¬¬E ∧ ∃XC ↔ ¬¬E ∧ C ′ ∧ ◦m+1E ≺ G ∧ C ′′
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which allows the elimination of the quantifier. Consider the former formula: Since
¬E ∧ C ↔ ¬E ∧ C ′ ∧ E ≺ G ∧ C ′′ is a tautology, it is provable, and thus, also
the former formula. The same procedure succeeds for the later formula.

Case (3): Neither (1) nor (2) holds. Let k be the smallest number such that
the equivalence class of ◦kX is not singular, and let B be a formula from this
equivalence class. From Proposition 48 and Remark 49 we know that

IQPL◦ω `∃XC ↔ ∃XH(X) or IQPL◦ω `∃XC ↔ ∃XG(X)

Using the axiom IQPL◦ω `∃X(B ↔ ◦kX) (from the axiom ∃X(◦X ↔ A)) we
prove

IQPL◦ω `∃XH(X)↔ H ′? and IQPL◦ω `∃XG(X)↔ G′?

where H ′? (G′?) arise from H ′ (G′) by deleting B ↔ ◦kX (Lemma 44). �

Corollary 51 Assume

IQPL◦ω `∀XA(X, ◦kZ)↔ A′(◦kZ)

for some free variable Z and some k, A and A′ quantifier free, and assume that
all free variables in A′(◦kZ) occur in ∀XA(X, ◦kZ). Then for all G there is a
quantifier free AG, where all free variables in AG occur in ∀XA(X, ◦kZ) and

IQPL◦ω `∀XA(X,G)↔ AG

Proof. By Lemma 44 and Lemma 50:

IQPL◦ω `∀XA(X,G)↔ ∃Z(G↔ ◦kZ) ∧ ∀XA(X,G)

IQPL◦ω `∀XA(X,G)↔ ∃Z((G↔ ◦kZ) ∧ ∀XA(X, ◦kZ))

IQPL◦ω `∀XA(X,G)↔ ∃Z((G↔ ◦kZ) ∧A′(◦kZ))

IQPL◦ω `∀XA(X,G)↔ AG �

Lemma 52 Fix a finite set of variables X . Every ◦-chain C ∈ C(X ) is equiv-
alent to a formula where every variable X ∈ X only occur in at most 2 atomic
formulas, and these formulas are of the form ◦kX C E or E′ C ◦kX, where
C ∈ {≺,→}, and the formulas E and E′ are of the form ◦lZ with Z 6= X.

Proof. Case (1): AssumeX occurs in the equivalence class of⊥, then IQPL◦ω `C ↔
(X → ⊥) ∧ FC , where FC does not contain X.

Case (2): If not (1), assume thatX, . . . , ◦mX occur all in singular equivalence
classes, thus, the chain looks like

C ↔ C ′ ∧ E ≺ X ∧X ≺ ◦X ∧ . . . ∧ ◦mX ≺ G ∧ C ′′

then
IQPL◦ω `C ↔ (E ≺ X) ∧ ◦mX ≺ G ∧ FC

where FC does not contain X, since this is tautologically equivalent.
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Case (3): Neither (1) nor (2) holds. Let ◦kX be the formula with minimal k
such that some B is in its equivalence class. Thus, the chains looks like

C ′ ∧ (A ≺ X) ∧ (X ≺ ◦X) ∧ . . . ∧ (◦k−1X ≺ ◦kX)∧
∧ (◦kX ↔ B) ∧ . . . ∧ (◦k+lX ↔ ◦lB) ∧ C ′′

which is tautologically equivalent to

(¬A ∧ ¬¬B ∧ C) ∨ (¬¬A ∧ ¬¬B ∧ C)

due to Proposition 32.7 and the fact that X is in the same equivalence class
as B, but not in the equivalence class of ⊥ (Case (1)), thus, also B is not in
the equivalence class of ⊥. Now we can reduce the two disjunction terms of the
above formula according to Proposition 48 which yields

¬A ∧ ¬¬B ∧ (◦kX ↔ B)

for the former and

¬¬A ∧ ¬¬B ∧ (◦kA ≺ B) ∧ (◦kX ↔ B)

for the latter. These two formulas can be combined using Proposition 32.1 to

¬¬B ∧ (◦kA ≺ B) ∧ (◦kX ↔ B)

which can be written as

FC ∧ (◦kX → B) ∧ (B → ◦kX). �

Lemma 53 For all quantifier-free A there is a quantifier-free A′ whose free
variables are among the free variables of ∀XA, such that

IQPL◦ω `∀XA↔ A′.

Proof. We start with constructing for A an equivalent disjunction of chains as
in Lemma 50. Then we use Lemma 52 to obtain a disjunction of expressions
where X occurs only in the form ◦kX → D, D → ◦kX, ◦kX ≺ D, D ≺ ◦kX.
We treat these expressions and FC of Lemma 52 as atomic formulas, i.e. we do
not expand the definitions, but treat these formulas as if ≺ would be part of
the language. Distributing ∀ over ∧ and confining the range of the quantifier, we
arrive at formulas

∀X((E1 C1 ◦k1X) ∨ . . . ∨ (En Cn ◦knX)∨
(◦l1X C′1 G1) ∨ . . . ∨ (◦lvX C′v Gv)∨
(◦m1X C′′1 ◦n1X) ∨ . . . ∨ (◦mwX C′′w ◦nwX))

whereCi,C′j ,C
′′
m ∈ {→,≺}. The relations whereX occurs on both sides (◦miXC′′i

◦niX) can be reduced to either > or > → ◦sX (for some s) depending on the
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relation of mi and ni. Further confining the range of the quantifier we obtain
formulas of the form

∀X((E1 C1 ◦k1X) ∨ . . . ∨ (En Cn ◦knX)∨
(◦l1X C′1 G1) ∨ . . . ∨ (◦lvX C′v Gv))

Using (Ei → Ej)∨(Ej → Ei) respectively (Gi → Gj)∨(Gj → Gi) all inequalities
are reducible to at most one upper and one lower inequality in the following way:
Assume for the sake of explanation that we have

∀X(E → ◦2X) ∨ (F → ◦3X) ∨ (X → G).

Using the Proposition 32.4 we get

∀X(◦E → ◦3X) ∨ (F → ◦3X) ∨ (X → G),

introducing the case distinction of linearity

[(◦E → F ) ∨ (F → ◦E)] ∧ ∀X(◦E → ◦3X) ∨ (F → ◦3X) ∨ (X → G).

Distributing the conjunction and reducing the implications we arrive at

(◦E → F ) ∧ ∀X(E → ◦2X ∨X → G)

∨
[(F → ◦E) ∧ ∀X(F → ◦3X ∨X → G)]

In a similar way we can reduce all pairs of inequalities, i.e. occurrences of formulas
F CG, of the same kind to only one occurrence. Thus, we arrive at the following
eight cases:

1. ∀X(E ≺ ◦lX)
2. ∀X(E → ◦lX)
3. ∀X(◦kX ≺ G)
4. ∀X(◦kX → G)
5. ∀X((E → ◦lX) ∨ (◦kX → G))
6. ∀X((E ≺ ◦lX) ∨ (◦kX → G))
7. ∀X((E → ◦lX) ∨ (◦kX ≺ G))
8. ∀X((E ≺ ◦lX) ∨ (◦kX ≺ G))

which we will prove in turn: According to Lemma 44 we may assume, that G is
of the form ◦kG′.

(ad 1) IQPL◦ω `∀X(E ≺ ◦lX)↔ ⊥,

(ad 2) IQPL◦ω `∀X(E → ◦lX) ↔ ¬E, both trivially proven by substituting
⊥ for X.
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(ad 3) Using Proposition 32.7 we split up the formula (7):

∀X(◦kX ≺ G)

l
∀X(◦kX ≺ ◦kG′)

l
(¬◦kG′ ∧ ∀X(◦kX ≺ ◦kG′)) ∨ (¬¬◦kG′ ∧ ∀X(◦kX ≺ ◦kG′))

What is left is to show that

¬◦kG′ ∧ ∀X(◦kX ≺ ◦kG′) ↔ ⊥
¬¬◦kG′ ∧ ∀X(◦kX ≺ ◦kG′) ↔ ¬¬◦kG′ ∧ ◦kG′ (↔ ◦kG′)

are provable. First consider the former formula: For the left-to-right direction
substituting > for X yields ¬◦kG′ ∧ (> ≺ ◦kG′), which is tautologically equiva-
lent to ⊥. The right-to-left direction is trivial, since ⊥ implies everything.

Now consider the latter formula: For the left-to-right direction substituting
G′ for X yields ¬¬◦kG′ ∧ (◦kG′ ≺ ◦kG′), which implies the given right side. For
the right-to-left direction consider, that the right side implies ¬¬◦kG′∧((◦kG′ →
◦kX)→ ◦kG′), from which the left hand side follows by quantifier introduction.

(ad 4) Again using Proposition 32.7 we can assume

∀X(◦kX → G)

l
∀X(◦kX → ◦kG′)

l
(¬◦kG′ ∧ ∀X(◦kX → ◦kG′)) ∨ (¬¬◦kG′ ∧ ∀X(◦kX → ◦kG′))

Using the same argumentation as above, but substituting in the second case not
G′ but ◦G′ instead we can deduce the following equivalences using the scheme
¬u ∧ (v ≺ u)↔ ⊥:

¬◦kG′ ∧ ∀X(◦kX → ◦kG′) ↔ ⊥
¬¬◦kG′ ∧ ∀X(◦kX → ◦kG′) ↔ ¬¬◦kG′ ∧ ◦kG′

and obtain, again as above,

∀X(◦kX → ◦kG′)↔ ¬¬◦kG′ ∧ ◦kG′

(α) Dealing with (5)–(8), we again distinguish according to ¬◦kG′ and ¬¬◦kG′,
and in every case

¬◦kG′ ∧ ∀X((E C ◦lX) ∨ (◦kX ≺ ◦kG′)) (1)

reduces to (by the same scheme as above)

¬◦kG′ ∧ ∀X(E C ◦lX)
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by substituting > as above, yielding a variant of (1) or (2).
(β) Now consider

¬◦kG′ ∧ ∀X(E → ◦lX ∨ ◦kX → ◦kG′) (2)

and let v = max{l, k}. The following are provable equivalences

(2) ↔ ¬◦kG′ ∧ ∀X(E → ◦vX ∨ ¬◦vX)

↔ ¬◦kG′ ∧ (E → ∀X(◦v(X ∨ ¬X)))

↔ ¬◦kG′ ∧ (E → ◦v∀X(X ∨ ¬X))

↔ ¬◦kG′ ∧ (E → ◦v⊥)

↔ ¬◦kG′ ∧ ¬E

(4)

The first implication is obtained from the tautological equivalence of the two
formulas without quantifier.

(γ) Considering ¬◦kG′ ∧ ∀X(E ≺ ◦lX ∨ ◦kX → ◦kG′) we again make a case
distinction after ¬◦kG′ and define the following two formulas

∆ :↔ ¬E ∧ ¬◦kG′ ∧ ∀X(E ≺ ◦lX ∨ ◦kX → ◦kG′)
Γ :↔ ¬¬E ∧ ¬◦kG′ ∧ ∀X(E ≺ ◦lX ∨ ◦kX → ◦kG′)

Therefore,

¬◦kG′ ∧ ∀X(E ≺ ◦lX ∨ ◦kX → ◦kG′)↔ ∆ ∨ Γ

We want to reduce ∆ and Γ , first consider ∆:

¬¬X ∨ ¬X, (¬¬X ∨ ¬X)→ (¬¬◦lX ∨ ¬◦kX),

¬E ∧ (¬¬◦lX ∨ ¬◦kX)→ ¬E ∧ (E ≺ ◦lX ∨ ◦kX → ◦kG′)

thus,

∆↔ ¬E ∧ ¬◦kG′.

Considering Γ , we can repeat the computation from paragraph (β) above for

∀X(E ≺ ◦lX ∨ ◦kX → ◦kG′)→ (1)

which, together with eq. 4, yields ¬E, thus

Γ ↔ ¬◦kG′ ∧ ¬¬E ∧ ¬E ↔ ⊥.

Now we are ready to finish the proofs for the remaining cases (5) to (8).
(ad 5 and 6) We have already dealt with

(¬◦kG′ ∧ ∀X(E C ◦lX ∨ ◦kX → ◦kG′))

in paragraphs β an γ for C =→ and C =≺, respectively.
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Considering on the other hand

(¬¬◦kG′ ∧ ∀X(E C ◦lX ∨ ◦kX → ◦kG′))

we can prove

¬¬◦kG′ ∧ ∀X(E C ◦lX ∨ ◦kX → ◦kG′)
l

¬¬◦kG′ ∧ (E C ◦l+1G′ ∨ ◦kG′)

by using the scheme (E C ◦H → E C F ∨ F → H) and substituting ◦G′ for X
for the ↓ direction, and for the ↑ direction, by considering that ∆(◦G′) → ∆X is
a tautology.

(ad 7 and 8) We have already dealt with

¬◦kG′ ∧ ∀X(E C ◦lX ∨ ◦kX ≺ ◦kG′)

in paragraph α. Now consider

∀X(¬¬◦kG′ ∧ (E C ◦lX ∨ ◦kX ≺ ◦kG′))

It is easy to see that with setting

Γ (X)↔ ¬¬◦kG′ ∧ (E C ◦lX ∨ ◦kX ≺ ◦kG′)

we can prove

∀X(¬¬◦kG′ ∧ (E C ◦lX ∨ ◦kX ≺ ◦kG′))↔ ∀XΓ (X)

l
¬¬◦kG′ ∧ (E C ◦lG′ ∨ ◦kG′)↔ Γ (G′)

by substituting G′ for X for the ↓ direction, and for the ↑ direction, by consid-
ering that Γ (G′)→ Γ (X) is a tautology.

This completes the proof of the lemma. �

As a consequence of Lemma 50 and Lemma 53 we state the central theorem:

Theorem 54 Quantified propositional logic of linearly ordered well founded Kripke
frames of type ω, IQPLω, admits quantifier elimination.

Corollary 55 (1) IQPL◦ω `A or IQPL◦ω `¬A for all closed formulas.
(2) IQPL◦ω `A ∨ ¬A for all closed formulas.

Proof. (ad 1) IQPL◦ω `A↔ A′,A′ quantifier free and variable free, thus, IQPL◦ω `A′′ ↔
A′ where A′′ consists only of >, ⊥, ∧, ∨, →.

(ad 2) consequence of (1). �
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Corollary 56 The ◦-free fragment of IQPL◦
ω, that is IQPLω, is axiomatized

by IQPL◦ω when all occurrences of ◦ are replaced by its definition:

◦A⇔ ∀X(X ∨X → A). (5)

Proof. If IQPLω `A, then also IQPL◦ω `A. Within the proof in this system we
can substitute all occurrences of ◦A as given above in eq. 5. The substitutions
of all the axioms and rules can be proven, thus we obtaining a proof in IQPLω.�

This provides also a proof of Theorem 46.

6 Conclusion

Studies in quantified propositional logics can be considered as approaches to re-
fine the semantic-syntax relation. Quantified propositional formulas can be used
to discriminate between various adequate concepts of semantics. Consider e.g.
∃x∀y((y → x) → (¬y ∨ x ↔ y))1 expressing in Kripke notation that there is at
least one branch with a maximal world. This sentence is valid in all finite Kripke
structures, but not valid in the general case. It is therefore unwise to specify
one single quantified propositional logic as quantified propositional intuitionistic
logic.
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