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Abstract. This paper presents an extension of Gentzen’s LK, called
LPGK, which is suitable for expressing projective geometry and for de-
ducing theorems of plane projective geometry. The properties of this
calculus are investigated and the cut elimination theorem for LPGK is
proven. A formulization of sketches is presented and the equivalence be-
tween sketches and formal proofs is demonstrated.

1 Introduction

Sketches are very useful things to illustrate the facts of a proof and to make the
idea of a proof transparent. But sketches need not only be just a hint, they can,
in certain cases, be regarded as a proof by itself. Projective geometry1 is best
for analyzing this relation between sketches and proofs.

The purpose of this paper is to bring an idea of what a sketch can do and to
explain the relations between sketches and proofs. Therefore we extend Gentzen’s
LK to LPGK and use the properties of LPGK to formalize the concept of a
sketch. We will then present a result on the equivalence of sketches and proofs.

2 A Short Introduction to Projective Geometry

The root of projective geometry is the parallel postulate introduced by Euclid
(c. 300 b.c.). The believe in the absolute truth of this postulate remains unshak-
able till the 19th century when the founders of non-Euclidean geometry—Carl
Friedrich Gauss (1777–1855), Nicolai Ivanovitch Lobachevsky (1793–1856), and
Johann Bolyai (1802–1860)—concluded independently that a consistent geome-
try denying Euclid’s parallel postulate could be set up. Nevertheless projective
geometry was developed as an extension of Euclidean geometry; i.e., the parallel
postulate was still used and a line was added to the Euclidean plane to contain
the “ideal points”, which are the intersection of parallel lines. Not till the end
of the 19th century and the beginning of the 20th century, through the work of
Felix Klein (1849–1925), Oswald Veblen (1880–1960), David Hilbert, and oth-
ers, projective geometry was seen to be independent of the theory of parallels.

? Supported by the Austrian Research Fund (FWF Projekt P11934-MAT)
?? University of Technology, Vienna, Austria
1 We will understand under “projective geometry” the plane projective geometry and

will loose the “plane” for simplicity.



Projective geometry was then developed as an abstract science based on its own
set of axioms. For a more extensive discussion see [4], [3].

The projective geometry deals, like the Euclidian geometry, with points and
lines. These two elements are primitives, which aren’t further defined. Only the
axioms tell us about their properties. We will use the expression Point (note the
capital P) for the objects of projective geometry and points as usual for e.g. a
point in a plane. The same applies to Line and line. The only predicate beside
the equality is called Incidence and puts up a relation between Points and Lines.

Furthermore we must give some axioms to express certain properties of Points
and Lines and to specify the behavior of the incidence on Points and Lines:

(PG1) For every two distinct Points there is one and only one Line, so that
these two Points incide with this Line.

(PG2) For every two distinct Lines there is one and only one Point, so that this
Point incides with the two Lines2.

(PG3) There are four Points, which never incide with a Line defined by any of
the three other Points.

2.1 Examples for Projective Planes

The projective closed Euclidean plane ΠEP The easiest approach to pro-
jective geometry is via the Euclidean plane. If we add one Point “at infinity” to
each line and one “ideal Line”, consisting of all these “ideal Points”, it follows
that two Points determine exactly one Line and two distinct Lines determine
exactly one Point3. So the axioms are satisfied.

This projective plane is called ΠEP and has a lot of other interesting prop-
erties, especially that it is a classical projective plane.

The minimal Projective Plane One of the basic properties of projective
planes is the fact, that there are seven distinct Points. Four Points satisfying ax-
iom (PG3) and the three diagonal Points ([A0B0][C0D0]) =: D1 etc. (see. fig. 1).
If we can set up a relation of incidence on these Points such as that the axioms
(PG1) and (PG2) are satisfied, then we have a minimal projective plane. Fig. 1
defines such an incidence-table. This table has to be read carefully: The straight
lines and the circle symbolize the Lines and the labeled points the Points of
the minimal projective plane. There are no more Points, Lines, especially no
intersections as the holes in the figure should suggest.

3 The Calculus LPGK

The calculus LPGK is based on Gentzen’s LK, but extends it by certain means.
The usual notations as found in [6] are used.
2 “one and only one” can be replaced by “one”, because the fact that there is not

more than one Point can be proven from axiom (PG1).
3 More precise: The “ideal Points” are the congruence classes of the lines with respect

to the parallel relation and the “ideal Line” is the class of these congruence classes.
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Fig. 1. Incidence Table for the minimal Projective Plane

3.1 The Language LPG for LPGK

The language for LPGK is a type language with two types, Points and Lines.
These two types will be denoted with τP and τL, respectively. There are four
individual constants of type τP : A0, B0, C0, D0, two function constants (the
type is given in parenthesis): con:[τP , τP → τL], intsec:[τL, τL → τP ], and two
predicate constants (the type is given in parenthesis): I:[τP , τL], =.

There are free and bound variables of type τP and τL, which are Pi (free
Points), Xi (bound Points), gi (free Lines), xi (bound Lines) and we will use the
logical symbols ¬ (not), ∧ (and), ∨ (or), ⊃ (implies), ∀τP (for all Points), ∀τL
(for all Lines), ∃τP (there exists a Point), ∃τL (there exists a Line).

The constants A0,. . . ,D0 are used to denote the four Points obeying (PG3).
We will use further capital letters, with or without sub– and superscripts, for
Points4 and lowercase letters, with or without sub– and superscripts, for Lines.

Furthermore we will use the notation [PQ] for the connection con(P, Q) of
two Points and the notation (gh) for the intersection intsec(g, h) of two Lines to
agree with the classical notation in projective geometry. Finally I(P, g) will be
written PIg.

We also lose the subscript τP and τL in ∀τP , . . . , since the right quantifier is
easy to deduce from the bound variable.

The formulization of terms, atomic formulas and formulas is a standard tech-
nique and can be found in [6].

4 Capital letters are also used for formulas, but this shouldn’t confuse the reader, since
the context in each case is totally different.



3.2 The Rules and Initial Sequents of LPGK

Definition 1. A logical initial sequent is a sequent of the form A → A, where
A is atomic.
The mathematical initial sequents are formulas of one of the following forms:

1. → PI[PQ] and → QI[PQ].
2. → (gh)Ig and → (gh)Ih.
3. → x = x where x is a free variable.

The initial sequents for LPGK are the logical initial sequents and the mathe-
matical initial sequents.

The first two clauses are nothing else then (PG1) and (PG2). (PG3) is realized
by a rule. The fact that X = Y → for X, Y ∈ {A0, B0, C0, D0} and X 6= Y can
be deduced from this rule. The rules for LPGK are structural rules, logical rules,
cut rule (taken from LK for many-sorted languages), the following equality rules:

Γ → ∆, s = t s = u, Γ → ∆

t = u, Γ → ∆
(trans:left)

Γ → ∆, s = t Γ → ∆, s = u

Γ → ∆, t = u
(trans:right)

s = t, Γ → ∆

t = s, Γ → ∆
(symm:left)

Γ → ∆, s = t

Γ → ∆, t = s
(symm:right)

Γ → ∆, s = t sIu, Γ → ∆

tIu, Γ → ∆
(id-IτP :left)

Γ → ∆, s = t Γ → ∆, sIu
Γ → ∆, tIu (id-IτP :right)

Γ → ∆,u = v sIu, Γ → ∆

sIv, Γ → ∆
(id-IτL :left)

Γ → ∆,u = v Γ → ∆, sIu
Γ → ∆, sIv (id-IτL :left)

Γ → ∆, s = t

Γ → ∆, [su] = [tu]
(id-con:1)

Γ → ∆,u = v

Γ → ∆, [su] = [sv]
(id-con:2)

Γ → ∆, g = h

Γ → ∆, (tg) = (th)
(id-int:1)

Γ → ∆, g = h

Γ → ∆, (gt) = (ht)
(id-int:2)

and the mathematical rules: (PG1-ID) and (Erase)

Γ → ∆,PIg Γ → ∆,QIg P = Q,Γ → ∆

Γ → ∆, [PQ] = g
(PG1-ID)

Γ → ∆,XI[Y Z]
Γ → ∆

(Erase)

where 6=(X, Y, Z) and X,Y, Z ∈ {A0, B0, C0, D0}
Finally proofs are defined as usual.



3.3 Sample Proofs in LPGK

The Diagonal-points We will proof that the diagonal-point D1 (cf. 2.1) is
distinct from A0, . . . , D0.

....
→ A0 6= D1

....
→ B0 6= D1

....
→ C0 6= D1

....
→ D0 6= D1

→6= (A0, B0, C0, D0, D1)

Each of the proof-parts is similar to the following for → A0 6= D1

A0 = ([A0B0][C0D0])→ A0 = ([A0B0][C0D0]) → ([A0B0][C0D0])I[C0D0]
A0 = ([A0B0][C0D0])→ A0I[C0D0]

(atom)

A0 = ([A0B0][C0D0])→ (Erase)

→ A0 6= ([A0B0][C0D0])
(¬:right)

Identity of the Intersection-point We will proof the fact, that there is only
one intersection-point of g and h, i.e, the dual fact of (PG1-ID).

PIg → PIg → (gh)Ig P = (gh) → P = (gh)

PIg → P = (gh), [P (gh)] = g
(atom)

PIh → PIh → (gh)Ih P = (gh) → P = (gh)

PIh → P = (gh), [P (gh)] = h
(atom)

PIg, PIh → P = (gh), g = h
(atom)

g 6= h, PIg, PIh → P = (gh)
(¬:left)

PIg ∧ PIh ∧ g 6= h → P = (gh)
(∧:left)

→ PIg ∧ PIh ∧ g 6= h ⊃ P = (gh)
(⊃:right)

→ (∀X)(∀u)(∀v)(XIu ∧XIv ∧ u 6= v ⊃ X = (uv))
(∀:right)

4 On the Structure of Proofs in LPGK

4.1 The Cut Elimination Theorem for LPGK

We will refer to the equality rules, (PG1-ID) and (Erase) as (atom)-rules, because
they only operate on atomic formulas and therefore they can be shifted above
any logical rule (see Step 1 below). We will now transform any given proof in
LPGK step by step into another satisfying some special conditions, especially
that the new one contains no (Cut).

First we reduce the problem to a special class of proofs, the proofs in normal
form5. A proof in this class is split into two parts P1 and P2

.... P1

.... P2

Π → Γ
5 This nomenclature is used only in this context and has no connection with any other

“normalization”.



where P1 is an (atom)-part with (atom)- and structural rules only and P2 is a
logical part with logical and structural rules only. In the first part geometry is
practiced in the sense that in this part the knowledge about projective planes
is used. The second part is a logical part connecting the statements from the
geometric part to more complex statements with logical connectives. It is easy
to see, that for every proof in LPGK there is a proof in normal form of the same
endsequent.

Lemma 1. For every proof in normal form with only one cut there is a proof
in normal form of the same endsequent without a cut.

Proof (Sketch, detailed exposition in [1]):
Step 1: We will start with the cut-elimination procedure as usual in LK as

described e.g. in [6]. This procedure shifts a cut higher and higher till the cut is
at an axiom where it can be eliminated trivially. Since in our case above all the
logical rules there is the (atom)-part, the given procedure will only shift the cut
in front of this part.

Step 2: Now the cut is already in front of the (atom)-part:

.... P1

Π1 → Γ1, P (t, u)

.... P2

P (t, u),Π2 → Γ2

Π → Γ
(Cut)

First all the inferences not operating on the cut-formulas or one of its prede-
cessors are shifted under the cut-rule. Then the rule from the right branch over
the cut-rule are shifted on the left side by applying the dual rules6 in inverse
order. Finally we get on the right side either a logical axiom or a mathematical
axiom. The case of a logical axiom is trivial, in case of the mathematical axiom
the rules from the left side are applied in inverse order on the antecedent of the
mathematical axiom which yields a cut-free proof. 2

Example: A trivial example should explain this method: The proof

x2 = x3 → x2 = x3

x1 = x2 → x1 = x2 x1 = u→ x1 = u
x1 = x2, x1 = u→ x2 = u

x2 = x3, x1 = x2, x1 = u→ x3 = u x3 = u→
x2 = x3, x1 = x2, x1 = u→ (Cut)

will be transformed to

x1 = x2 → x1 = x2

x2 = x3 → x2 = x3 x3 = u→
x2 = x3, x2 = u→

x1 = x2, x2 = x3, x1 = u→

♥

6 E.g. (trans:left) and (trans:right) are dual rules



Theorem 1 (Cut Elimination for LPGK). If there is a proof of a sequent
Π → Γ in LPGK, then there is also a proof without a cut.

Proof: By the fact that everything above a given sequent is a proof of this
sequent and by using Lemma 1 and induction on the number of cuts in a proof
we could eliminate one cut after another and end up with a cut-free proof. 2

Example: We will now present an example proof and the corresponding proof
without a cut. We want to prove that for every line there is a point not on that
line, in formula: (∀g)(∃X)(XI| g).

We will first give the proof in words and then in LPGK.

Proof: (Words) When A0I| g then take A0 for X. Otherwise A0Ig. Next if B0I| g
take B0 for X. If also B0Ig then take C0, since when A0 and B0 lie on g, then
g = [A0B0] and C0I| [A0B0] = g by (PG3). 2

Proof: (LPGK)

A0Ig → A0Ig

→ A0Ig, A0I| g
→ A0Ig ∨ A0I| g

A0Ig → A0Ig

A0I| g → A0I| g
A0I| g → (∃X)(XI| g)

B0Ig → B0Ig

→ B0Ig, B0I| g
→ B0Ig ∨ B0I| g

B0Ig → B0Ig

B0I| g → B0I| g
B0I| g → (∃X)(XI| g)

.

.

.

.
Π1

A0Ig, B0Ig → (∃X)(XI| g)

B0Ig ∨ B0I| g, A0Ig → (∃X)(XI| g)

A0Ig → (∃X)(XI| g)
(Cut)

A0Ig ∨ A0I| g → (∃X)(XI| g)

→ (∃X)(XI| g)
(Cut)

→ (∀g)(∃X)(XI| g)

Π1 :

A0Ig → A0Ig B0Ig → B0Ig A0 = B0 →
A0Ig, B0Ig → g = [A0B0]

C0I[A0B0]→ C0I[A0B0]
C0I[A0B0]→

(Erase)

A0Ig, B0Ig, C0Ig →
A0Ig, B0Ig → (∃X)(XI| g)

2

The cut-elimination procedure7 yields a cut-free proof of the same end-
sequent:

A0Ig → B0Ig B0Ig → B0Ig A0 = B0 →
A0Ig, B0Ig → g = [A0B0]

C0I[A0B0]→ C0I[A0B0]
C0I[A0B0]→

(Erase)

A0Ig, B0Ig, C0Ig →
→ A0I| g,B0I| g, C0I| g

→ (∃X)(XI| g), (∃X)(XI| g), (∃X)(XI| g)
→ (∃X)(XI| g)
→ (∀g)(∃X)(XI| g) ♥

7 or a close look



With the cut-elimination theorem there are some consequences following,
e.g. the mid-sequent-theorem for LPGK and the term-depth-minimization of
minimal proofs as found in [5].

5 The Sketch in Projective Geometry

Most of the proofs in projective geometry are illustrated by a sketch. But this
method of a graphical representation of the maybe abstract facts is not only used
in areas like projective geometry, but also in other fields like algebra, analysis
and I have even seen sketches to support understanding in a lecture about large
ordinals, which is highly abstract!

The difference between these sketches and the sketches used in projective
geometry (and similar fields) is the fact, that proofs in projective geometry deal
with geometric objects like Points and Lines, which are indeed objects we can
imagine and draw on a piece of paper (which is not necessary true for large
ordinals).

So the sketch in projective geometry has a more concrete task than only
illustrating the facts, since it exhibits the incidences, which is the only predi-
cate constant besides equality really needed in the formulization of projective
geometry. It is a sort of proof by itself and so potentially interesting for a proof-
theoretic analysis.

As a first example I want to demonstrate a proof of projective geometry,
which is supported by a sketch. It deals with a special sort of mappings, the so
called “collineation”. This is a bijective mapping from the set of Points to the
set of Points, which preserves collinearity. In a formula:

coll(R, S, T ) ⊃ coll(Rκ, Sκ, Tκ)

(Functions in projective geometry are written behind the variables!) The fact we
want to proof is

¬coll(R, S, T ) ⊃ ¬coll(Rκ, Sκ, Tκ)

That means, that not only collinearity but non-collinearity is preserved under a
collineation.

The proof is relatively easy and is depicted in fig. 2: If Rκ, Sκ and Tκ
are collinear, then there exists a Point X ′ not incident with the Line defined
by Rκ, Sκ, Tκ. There exists a Point X, such that Xκ = X ′. This Point X
doesn’t lie on any of the Lines defined by R, S, T . Let Q = ([RT ][XS]) then
QκI[RκSκ] and QκI[SκXκ], that is QκI[SκX ′] (since collinearity is preserved).
So Qκ = Sκ (since Qκ = ([RκSκ][SκX ′]) = Sκ), which is together with Q 6= S
a contradiction to the injectivity of κ.

This sketch helps you to understand the relation of the geometric objects
and you can follow the single steps of the verbal proof.

If we are interested in the concept of the sketch in mathematics in general
and in projective geometry in special then we must set up a formal description
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Fig. 2. Sketch of the proof ¬coll(R, S, T ) ⊃ ¬coll(Rκ, Sκ, Tκ)

of what we mean by a sketch. This is necessary if we want to be more concrete
on facts on sketches.

We will give only a short description of what a sketch is and refer the inter-
ested reader to [1] for a detailed exposition of the formulization.

A sketch is coded as a quadruple (M, E+, E−, Q), whereM is a set of terms
with certain limitations, E+ is a set of positive atomic formulas with the predicate
I over the set M, E− is a set of negated atomic formulas with the predicate I
over the set M and Q is a set of equalities. All these sets have to obey certain
requirements ensuring the consistency.

But a sketch is only a static concept, nothing could happen, we cannot “con-
struct”. So we want to give some actions on a sketch, which construct a new
sketch with more information. These actions on sketches should reflect the ac-
tions done by geometrician when drawing, i.e. developing, a sketch. After these
actions are defined we can explain what we mean by a construction in this cal-
culus for construction.

The actions primarily operate on the set E+, since the positive facts are those
which are really constructed in a sketch. But on the other hand there are some
actions to add negative facts to a sketch. This is necessary for formalizing the
elementary way of proving a theorem by an indirect approach.

The actions are:

– Connection of two Points X, Y
– Intersection of two Lines g, h
– Assuming a new Object C in general position
– Giving the Line [XY ] a name g := [XY ]
– Giving the Point (gh) a name P := (gh)
– Identifying two Points u and t
– Identifying two Lines l and m
– Using a “Lemma”: Adding a positive literal tIu
– Using a “Lemma”: Adding a negative literal tI|u
– Using a “Lemma”: Adding a negative literal t 6= u

To deduce a fact with sketches we connect the concept of the sketch and the
concept of the actions into a new concept called construction. This construction
will deduce the facts.



A construction is coded as a rooted and directed tree with a sketch attached
to each node8 and certain demands on its structure.

Finally it is possible to define what a construction deduces by observing the
formulas in the leafs of the tree.

We want to mention that great parts of the actions can be automatized so
that the constructor can concentrate on the construction. We want to develop a
program incorporating these ideas which produces a proof from a sketch.

6 An Example of a Construction

In this section we want to give an example proved on the one hand within
LPGK and on the other hand within the calculus of construction given in the last
section. Although a lot of the concepts mentioned in this part weren’t introduced,
we give the full listing to give the reader a hint on what is really happening.

We want to prove the fact that the diagonal-point D1 := ([A0B0][C0D0])
and the diagonal-point D2 := ([A0C0][B0D0]) are distinct. See fig. 3 for the final
sketch, i.e. we have already constructed all the necessary objects from the given
Points A0, B0, C0, D0. This step is relatively easy and there are no problems with
any of the controls.

The construction tree is depicted in fig. 3 and the respective labels can be
found in the table on p. 11. Note the bold formulas in E5

+, E5
− and in E6

+, E6
−,

which yield the contradiction.
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Fig. 3. Sketch and Construction Tree

In the following lists and in the figure not all formulas are mentioned, es-
pecially such formulas unnecessary for the construction are not listed. For the
8 Actually a semisketch, but don’t bother about . . .



construction tree compare with fig. 3. We can see, that the case-distinction after
D1 = D2 yields a contradiction in any branch, therefore we could deduce with
the construction that D1 6= D2, since this formula is in all leafs, which are not
contradictious.

a1 = ([A0B0][C0D0])

M0
= {A0, B0, C0, D0, [A0B0], . . . } M1

= {A0, B0, C0, D0, [A0B0], . . . , ([A0B0][C0D0])}
E0
+ = {A0I[A0B0], . . . } E1

+ = {A0I[A0B0], . . . , ([A0B0][C0D0])I[A0B0], . . . }
E0
− = {A0 6= B0, . . . , A0I| [C0D0]} E1

− = {A0 6= B0, . . . , A0I| [C0D0]}
Q

0
= {A0 = A0, . . . , [A0B0] = [A0B0], . . . } Q

1
= Q

0 ∪ {([A0B0][C0D0])}

a2 = ([A0C0][B0D0])

M2
= {A0, B0, C0, D0, [A0B0], . . . , ([A0B0][C0D0]), ([A0C0][B0D0])}

E2
+ = {A0I[A0B0], . . . , ([A0B0][C0D0])I[A0B0], ([A0C0][B0D0])I[A0C0], . . . }
E2
− = {A0 6= B0, . . . , A0I| [C0D0]}

Q
2

= Q
1 ∪ {([A0C0][B0D0])}

a3 = g := [A0B0], h := [C0D0], l := [A0C0], m := [B0D0], D1 := (gh), D2 := (lm)

M3
= {A0, B0, C0, D0, g, h, l, m, D1, D2}

E3
+ = {A0Ig, B0Ig, C0Ih, D0Ih, A0Il, C0Il, B0Im, D0Im, D1Ig, D1Ih, D2Il, D2Im}
E3
− = {C0I| g, D0I| g, A0I|h, B0I|h, B0I| l, D0I| l, A0I|m, C0I|m, A0 6= B0, . . . }

Q
3

= {A0 = A0, . . . , g = g, h = h, l = l, m = m, D1 = D1, D2 = D2}
a4 = D1 = D2

E4
+ = {A0Ig, B0Ig, C0Ih, D0Ih, A0Il, C0Il, B0Im, D0Im, D1Ig, D1Ih, D1Il, D1Im}
E4
− = {C0I| g, D0I| g, A0I|h, B0I|h, B0I| l, D0I| l, A0I|m, C0I|m, A0 6= B0, . . . }

Q
4

= {A0 = A0, . . . , g = g, h = h, l = l, m = m, D1 = D1, D2 = D2, D1 = D2}
a5 = g = l

E5
+ = {A0Ig, B0Ig, C0Ih, D0Ih, C0Ig, B0Im, D0Im, D1Ig, D1Ih, D1Im}
E5
− = {C0I| g, D0I| g, A0I|h, B0I|h, B0I| g, D0I| g, A0I|m, C0I|m, A0 6= B0, . . . }

Q
5

= {A0 = A0, . . . , g = g, h = h, l = l, m = m, D1 = D1, D2 = D2, D1 = D2, g = l}
a6 = A0 = D1

E6
+ = {A0Ig, B0Ig, C0Ih, D0Ih, A0Il, C0Il, B0Im, D0Im, A0Ih, A0Im}
E6
− = {C0I| g, D0I| g, A0I|h, B0I|h, B0I| l, D0I| l, A0I|m, C0I|m, A0 6= B0, . . . }

Q
6

= {A0 = A0, . . . , g = g, h = h, l = l, m = m, D1 = D1, D2 = D2, D1 = D2, A0 = D1, A0 = D2}
a7 = D1 6= D2

E7
+ = {A0Ig, B0Ig, C0Ih, D0Ih, A0Il, C0Il, B0Im, D0Im, D1Ig, D1Ih, D2Il, D2Im}
E7
− = {C0I| g, D0I| g, A0I|h, B0I|h, B0I| l, D0I| l, A0I|m, C0I|m, A0 6= B0, . . . , D1 6= D2}

Q
7

= {A0 = A0, . . . , g = g, h = h, l = l, m = m, D1 = D1, D2 = D2}

Table 1. Table of the construction tree nodes



We will now give also a short description of what is happening in this tree:
The initial sketch is

M = {A0, B0, C0, D0, [A0B0], . . . }
E+ = {A0I[A0B0], . . . , D0I[C0D0]}
E− = {A0I| [B0C0], . . . , D0I| [A0B0]}

After constructing the points D1 and D2 and with the shortcuts [A0B0] = g,
[C0D0] = h, [A0C0] = l, [B0D0] = m we obtain

M = {A0, B0, C0, D0, g, h, l,m, D1, D2, . . . }
E+ = {A0Ig,B0Ig, C0Ih,D0Ih,

A0Il, C0Il, B0Im,D0Im,

D1Ig, D1Ih,D2Il, D2Im}
E− = {C0I| g, D0I| g, A0I|h,B0I|h,

B0I| l,D0I| l, A0I|m, C0I|m,

A0 6= B0, . . . }
We now want to add D1 6= D2. For this purpose we identify D1 and D2 and

put the new sets through the contradiction procedure. We will now follow the
single steps:

D2 ← D1 (1)

and as a consequence

D2Il⇒ D1Il (1a)
D2Im⇒ D1Im (1b)

and so we get the critical constellation (A0, D1; g, l)

A0Ig, A0Il, D1Ig, D1Il (C)

Inquiring the first solution g = l yields

l← g (1.1)

and as a consequence

C0Il⇒ C0Ig (1.1a)

which is a contradiction to

C0I| g ∈ E− (1.1b)

Inquiring the second solution D1 = A0 yields

D1 ← A0 (1.2)



and as a consequence

D1Im⇒ A0Im (1.2a)

which is a contradiction to

A0I|m ∈ E− (1.2b)

Since these are all the critical constellations and a contradiction is derived
for each branch, the assumption that D1 = D2 is wrong and D1 6= D2 can be
added to E−.

We will now give a proof in LPGK which corresponds to the above construc-
tion. The labels in this proof will not be the rules of LPGK, but references to
the above lines.

Π1 :
(1.1)

g = l→ g = l → C0Il
g = l→ C0Ig (1.1a)

g = l→ (1.1b)

Π2 :

(1.2)
A0 = D1 → A0 = D1

(1)
D1 = D2 → D1 = D2 → D2Im

D1 = D2 → D1Im (1b)

A0 = D1, D1 = D2 → A0Im (1.2a)

A0 = D1, D1 = D2 → (1.2b)

Π3 :

→ A0Ig → A0Il
(1.1)

g = l → g = l

→ g = l, A0 = (gl)

→ D1Ig

(1)
D1 = D2 → D1 = D2 → D2Il

D1 = D2 → D1Il
(1a)

(1.1)
g = l → g = l

D1 = D2 → g = l, D1 = (gl)

D1 = D2 → g = l, A0 = D1

D1 = D2 → g = l ∨ A0 = D1

Π1 examines the branch when g = l, Π2 examines the branch when A0 = D1,
and Π3 deduces that either g = l or D1 = A0 under the assumption that
D1 = D2 has to be true. The final proof is

.... Π3

D1 = D2 → g = l ∨A0 = D1

.... Π1

g = l→
.... Π2

A0 = D1, D1 = D2 →
g = l ∨A0 = D1, D1 = D2 →

D1 = D2 → (Cut)

From this example we can see that construction and proof are very similar
in this case. In the next section we want to prove the general result that any
construction can be transformed into a proof and vice versa.



7 The Relation between Sketches and Proofs

It is possible to translate a “proof” by construction into a proof in LPGK and
it is also possible to show the equivalence of these to concepts.

Theorem 2. For any sequent proven in LPGK there is a set of constructions
deducing the same sequent and vice versa.

Proof: The proof depends on Herbrand’s theorem in the original form and can
be found in [1].

According to Tarski (cf. [7]) the abstract theory of projective geometry is
undecidable. This result should yield interesting consequences on the relation
between sketches and proofs.

8 Closing Comments

We hope that this first analysis of projective geometry from a proof-theoretic
point of view opens up a new interesting way to discuss features of projective
geometry, which is widely used in a lot of applied techniques. Especially the
fact, that the sketches drawn by geometers have actually the same strength as
the proofs given in a formal calculus, puts these constructions in a new light.
Till now they were considered as nothing more then hints to understand the
formal proof by exhibiting you the incidences. But they can be used as proves
by themselves.

Therefore we want to develop an automatic sketching tool producing proofs
in LPGK and further analyze LPGK, since e.g. the various interpolation theo-
rems and the discussion of Beth’s definability theorem should yield interesting
consequences on projective geometry and the way new concepts are defined in
projective geometry.

Furthermore we want to discuss some other systems, especially for a trea-
tise on generalized sketches, which should compare to generalizations of proofs
(see [2]).
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