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Abstract. This paper presents an analysis of Gödel logics with count-
able truth value sets with respect to the topological and order the-
oretic structure of the underlying truth value set. Gödel logics have
taken an important rôle in various areas of computer science, e.g.
logic programming and foundations of parallel computing. As shown
in a forthcoming paper all these logics are not recursively axiomati-
zable. We show that certain topological properties of the truth value
set can distinguish between various logics. Complete separation of a
class of countable valued logics will be proven and direction for fur-
ther separation results given.

1 Gödel logics

Gödel logics, as introduced by Gödel in [Göd33] and later generalized by
Dummett in [Dum59], are well known in computer science as they have
been recognized as one of the most important formalizations of fuzzy logic
[Háj98].

The unique property of Gödel logics in the group of many valued logics is
the fact that the truth functions do not “compute” as in other many-valued
logics, but are just projections onto one of the arguments. This implies
that the truth value of a formula in a Gödel logic is solely defined by the
topological and order theoretic structure of the underlying truth value set.

This interesting property naturally leads to a program of connecting log-
ical properties with topological and order theoretic properties of the truth
value set. The basic idea behind this paper is the description of Cantor-
Bendixon ranks [Kec95] in logical terms. While this is of great interest by
itself, the real aim of this program is the decision whether there are un-
countable many first order Gödel logics or not. While this can be shown for
logics defined by the entailment relation, it is not known for logics defined
by the tautologies.

The separation within the class G↓∗ of Gödel logics as given below is an
orthogonal result to the one obtained by Baaz in [Baa96], where he sepa-
rates logics with different numbers of limit points, while herein the Cantor-
Bendixon rank of the truth value set is raised.
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The truth-values for Gödel logics can be taken from a set V such that
{0,1} ⊆ V ⊆ [0,1] with the designated truth value of 1. In the case of
countable truth values some basic sets would be V↑ = {1−1/i : i ≥ 1}∪{1}
and V↓ = {1/n : n ≥ 1} ∪ {0}.

First-order Gödel logics are given by a first-order language, truth func-
tions for the connectives and quantifiers, and a set of truth values. The
language contains countably many free (a, b, c, . . . ) and bound (x, y , z,
. . . ) variables, predicate symbols (P , Q, R, . . . ), connectives (¬, ∧, ∨, ⊃) and
quantifiers (∃, ∀)

Interpretations are defined as usual:

Definition 1. Let V ⊆ [0,1] be some set of truth values which contains
0 and 1 and is closed under supremum and infimum. A many-valued inter-
pretation I = 〈D, s〉 based on V is given by the domain D and the valuation
function s where s maps atomic formulas in Frm(LI) into V , n-ary function
symbols to functions from Dn to D, and free variables to elements of D.

s can be extended in the obvious way to a function on all terms. The
valuation for formulas is defined as follows:

1. A ≡ P(t1, . . . , tn) is atomic: I(A) = s(P)(s(t1), . . . , s(tn)).
2. A ≡ ¬B:

I(¬B) =
{

0 if I(B) ≠ 0

1 otherwise.

3. A ≡ B ∧ C : I(B ∧ C) = min(I(B), I(C)).
4. A ≡ B ∨ C : I(B ∨ C) = max(I(A), I(B)).
5. A ≡ B ⊃ C :

I(B ⊃ C) =
{

I(C) if I(B) > I(C)
1 if I(B) ≤ I(C).

The set {I(A(d)) : d ∈ D} is called the distribution of A(x), we denote
it by DistrI(A(x)). The quantifiers are, as usual, defined by infimum and
supremum of their distributions.

(6) A ≡ ∀xB(x): I(A) = inf DistrI(B(x)).
(7) A ≡ ∃xB(x): I(A) = sup DistrI(B(x)).

I satisfies a formula A, I î A, if I(A) = 1.

2 Topology of closed countable sets

All the following notations, lemmas, theorems are carried out within the
framework of polish spaces, which are separable, completely metrizable
topological spaces. For our discussion it is only necessary to know that R
is such a polish space. In the presentation we follow [Kec95] where all the
proofs are given, if not otherwise indicated.



Definition 2 (limit point, perfect space). A limit point of a topological space
is a point that is not isolated, i.e., for every open neighborhood U of x there
is a point y ⊂ U with y 6= x.

A space is perfect if all its points are limit points.

Polish space can be partitioned into a perfect kernel and a countable
rest. This is the well known Cantor-Bendixon Theorem:

Theorem 1 (Cantor-Bendixon). Let X be a polish space. Then X can be uniquely
written as X = P ∪C , with P a perfect subset of X and C countable open. The
subset P is called perfect kernel of X.

As a corollary we obtain that any uncountable polish space contains a
perfect set, and therefor has cardinality 2ℵ0 .

2.1 Cantor-Bendixon Derivatives and Ranks

Definition 3 ((iterated) Cantor-Bendixon derivative). For any topological
space X let

X′ = {x ∈ X : x is limit point of X}.
We call X′ the Cantor-Bendixon derivative of X.

Using transfinite recursion we define the iterated Cantor-Bendixon deriva-
tives Xα, α ordinal, as follows:

X0 = X
Xα+1 = (Xα)′

Xλ =
⋂
α<λ

Xα, if λ is limit ordinal.

It is obvious that X′ is closed, that X is perfect iff X = X′ and that (Xα)
for α ordinal is a decreasing transfinite sequence of closed subsets of X.

Theorem 2. Let X be a polish space. For some countable ordinal α0, Xα =
Xα0 for all α ≥ α0 and Xα0 is the perfect kernel of X.

Thus is is possible to obtain the perfect kernel in a more constructive
way. This leads to the definition of the Cantor-Bendixon rank:

Definition 4 (Cantor-Bendixon rank). For any polish space X, the least or-
dinal α0 as above is called the Cantor-Bendixon rank of X and is denoted
by |X|CB. We will denote the perfect kernel of X with X∞ or X|X|CB .

2.2 The structure of countable compact topological spaces

If the space X is countable then X∞ = ∅, since every nonempty perfect set
has at least cardinality of the continuum. Now it is possible to give a finer
characterization of these countable sets by analyzing their structure under
the CB-derivations. See [Win99] for a more detailed explanation.



Definition 5 (rank of an element, topological type of X). For any x ∈ X,
we can define its (Cantor-Bendixon-)rank

rg(x) = sup{α : x ∈ Xα}.

Thus we also can define the rank of X equivalently with

|X|CB = sup{rg(x) : x ∈ X}.

If X is countable we call

τ(X) = (α,n), with α = α(X) = |X|CB, n = n(X) = |X|X|CB|

the topological type of X.

3 Separating Gödel logics with truth values sets of different
type

In the previous part we described a topological structuring of the countable
closed subsets of the [0,1] interval. Gödel logics are in a sense “topological”
that the absolute truth values are not of primary interest, but the order of
the truth values. This is due to the fact that the truth functions do not “com-
pute” as in other many-valued logics, but are just projections onto one of
the arguments. Therefor it is of interest to analyze how many properties of
the underlying truth value set can be represented in the logical framework.
Similar ideas have been used in [BV98] to prove that there are uncountable
many quantified propositional Gödel logics.

To come back to [Baa96] where Baaz proves separation of certain logics,
we see now that the distinct logics in the paper all have Cantor-Bendixon
rank 1, or more specific, a topological type of τ = (1, n). In this paper we
will restrict ourself to a second component of 1, while the separation is
in the first component, i.e. the truth value set of the logics separated here
have topological type τ = (n,1), which justifies the notion of orthogonality
to [Baa96] given in the introduction.

3.1 The class G↓∗ of descending logics

As already mentioned in the first section the logic G↓ is defined as the Gödel
logic over the truth value set V↓ with

V↓ = {1/n : n ≥ 1} ∪ {0}.

This truth value set has topological type (1,1). We will extend this truth
value set by approximating every truth value in V↓ from above and iterating
this procedure. Thus we obtain a truth value set with topological type (n,1).
Unfortunately the characterization by its topological type (n,1) is still too
coarse, because it does not distinguish between approximations from above,
below or both sides.



Definition 6. Let N′ be the set of natural numbers without 0 and 1, i.e.

N′ = N \ {0,1},

then we define the sets Sn, S and S↓n as follows:

Sn = N′n S =
⋃
n≥0

Sn S↓n=
n⋃
k=0

Sk

On the set S we can define the following function f mapping into the unit
interval:

f(()) = 0 f( ---------→sn, sn+1) = f( ---------→sn)+
1∏n
i=1 s

2
i
· 1
sn+1

(with the definition of
∏0
i=1 = 1)

The definition of the function f has been chosen such that each descend-
ing sequence f( ---------→sn, sn+1) is in the interval right to f( ---------→sn). A sketch of a small
part of f(S) is shown in fig. 1 below.

0 1

f(2,2)
f (2,3)

f (2)

f (3,2)
f (3,3)

f (3)
f ( --------→sn)

Fig. 1. The set {f(s) : s ∈ S}

We use the abbreviation f( ---------→sn) for f(s1, . . . , sn). As a convenient nota-
tional shortcut we will sometimes write f( ------------------------------------------------------------------→sn−1, sn − 1). Since sn ∈ N′ this
is for sn = 2 defined as f( ------------------------------------------------------------------→sn−2, sn−1 − 1), which in turn may be defined by
such a term. The base case for this definition is f(s1 − 1) with s1 = 2 is
defined as f(s1 − 1) = 1. This definition just gives the next greater truth
value from the set of the same or greater rank.

The image of S↓n under f is a set as described above, i.e. it is a set of
limit points of limit points etc.

Lemma 1. The following properties hold

1. f( ---------→sn) < f( ---------→sn, sn+1) < f(
------------------------------------------------------------------→sn−1, sn − 1)

2. infsn+1∈N′ f(
------------------------------------------------------------------→sn+1) = f( ---------→sn)

Proof: ad 1. The one inclusion is given by

f( ---------→sn, sn+1) = f( ---------→sn)+
 n∏
i1

1

s2
i

 1
sn+1

> f( ---------→sn)



and the second by

f( ------------------------------------------------------------------→sn−1, sn − 1)− f( ---------→sn) =

= f( ------------------------------------------------------------------→sn−1)+
n−1∏
i=1

1

s2
i

 1
sn − 1

− f( ------------------------------------------------------------------→sn−1)−
n−1∏
i=1

1

s2
i

 1
sn
=

=
n−1∏
i=1

1

s2
i

 ( 1
sn − 1

− 1
sn
) =

n−1∏
i=1

1

s2
i

 1
(sn − 1)sn

>

n−1∏
i=1

1

s2
i

 1

s2
n
=

=
 n∏
i=1

1

s2
i

 >
 n∏
i=1

1

s2
i

 1
sn+1

= f( ---------→sn, sn+1)− f( ---------→sn)

which yields
f( ------------------------------------------------------------------→sn−1, sn − 1) > f( ---------→sn, sn+1).

What is left to be shown is that f(2,2,2, . . .) is always less then 1, which is
obvious from the definition and the sum formula of a power series.

ad 2.

inf
sn+1∈N′

f( ------------------------------------------------------------------→sn+1) = inf
sn+1∈N′

f( ---------→sn)+
 n∏
i=1

1

s2
i

 1
sn+1

 =
f( ---------→sn)+ inf

sn+1∈N′
(

1
sn+1

) ·
n∏
i=1

1

s2
i
= f( ---------→sn)

�

After this preliminaries we can proceed to the definition of the truth
value sets:

Definition 7. Let In be defined as

In = f(S↓n)∪ {0,1}

The following lemma is obvious which gives us the possibility to use In
as a truth value set for Gödel logic since it is closed.

Lemma 2. 1. In is a closed set
2. the Cantor-Bendixon derivation of In is In−1, i.e. I′n = In−1

Proof: Both are obvious from the construction and lemma 1. �

3.2 Separation within the class G↓∗

Definition 8. A Gödel logic over a truth value set V is contained in G↓n iff
there is an isomorphism from

(V ,≤, inf, sup), (In,≤, inf, sup)



G↓∗ is the union of all G↓n , i.e.

G↓n = {GV : there is an isomorphism f : (V ,≤, inf, sup), (In,≤, inf, sup)}

and
G↓∗ =

⋃
n>0

G↓n

Our aim is to give formulas which separate these classes, i.e. we are look-
ing for formulas An such that all logics from G↓n and upward disprove An
and that An is valid in all logics below G↓n .

For this aim it is useful to know that although the principle of the ex-
cluded middle is not generally valid in Gödel logics, but something very
closely related is valid for certain formulas expressing properties of the
infimum:

∃x(A(x) ⊃ ∀yA(y))∨ (∃x(A(x) ⊃ ∀yA(y)) ⊃ ∀yA(y))

This formula expresses that either the infimum is a minimum or that all
infima are strict one, i.e. not minima (or all values are 1).

We will use a variant of this formula to define the separation sequence
as follows:

Definition 9. Let

L0(X,xi) = ∃xi(X(xi) ⊃ ∀x′iX(x′i)) ⊃ ∀xiX(xi)

where X can be any formula with a designated variable occurrence,

Li,n(P) = ∀x1 . . .∀xi−1L0(∀xi+1 . . .∀xnP(x1, . . . , xii , ·, xi+1, . . . , xn), xi)

with P a predicate symbol and

An =
n∧
i=1

Li,n(P,xi) ⊃ ∀x1 . . .∀xnP(x1, . . . , xn)

Theorem 3. The following two results separate the classes G↓n :

1. ∀k ≥ n∀GV ∈ G↓k : An ∉ GV
2. ∀k < n∀GV ∈ G↓k : An ∈ GV

Proof: We will use the following model in our computations: The domain D
will be N′ and

I(P(s1, . . . , sn)) = f(s1, . . . , sn)
We will use the following abbreviations:

∀xi,j = ∀xi∀xi+1 . . .∀xj
Qi(x1, . . . , xi) = ∀xi+1,nP(x1, . . . , xn)

Ri(xi) = Qi(s1, . . . , si−1, xi)
= ∀xi+1,nP(s1, . . . , si−1, xi, . . . , xn)



All infima and suprema are with respect to N′. First note that

I[Ri(si)] = I[∀xi+1,nP(s1, . . . , si, xi+1, . . . , xn)] =
= inf
si+1
. . . inf

sn
I[P(s1, . . . , sn)] =

= inf
si+1
. . . inf

sn
f(s1, . . . , sn) =

= f(s1, . . . , si)

Note that for a domain which is not deep enough, i.e. for all domains Ik
with k < (n− i− 1) we will obtain f() which is 0.

ad 1. Let us now compute I(Li,n(P,xi)):

I[Li,n(P,xi)] = I[∀x1,i−1L0(Qi(x1, . . . , xi−1, ·), xi)]
= inf

s1
. . . inf

si−1
I[L0(Qi(s1, . . . , si−1, ·), xi)]

= inf
s1
. . . inf

si−1
I[L0(Ri(·), xi)]

= inf
s1
. . . inf

si−1
I[∃xi(Ri(xi) ⊃ ∀x′iRi(x′i)) ⊃ ∀xiRi(xi)]

The truth value of the left part of the implication is computed as follows:

I[∃xi(Ri(xi) ⊃ ∀x′iRi(x′i))] = sup
si

I[Ri(si) ⊃ ∀x′iRi(x′i)]

= sup
si

I(⊃)(I[Ri(si)], I[∀x′iRi(x′i)])

= sup
si

I(⊃)(f (s1, . . . , si), inf
s′i

I[Ri(s′i)])

= sup
si

I(⊃)(f (s1, . . . , si), inf
s′i
f(s1, . . . , s′i))

= sup
si

I(⊃)(f (s1, . . . , si), f (s1, . . . , si−1))

= sup
si
f(s1, . . . , si−1)

= f(s1, . . . , si−1)

The truth value of the right part of the above implication is

I[∀xiRi(xi)] = inf
si

I[Ri(xi)]

= inf
si
f(s1, . . . , si)

= f(s1, . . . , si−1)

Therefor the truth value of Li,n(P,xi) is 1 for all i, and by this the truth
value of the conjunction

∧n
i=1 Li,n(P,xi) is also 1, while the truth value

of ∀x1,nP(x1, . . . , xn) is equal to 0 and so we obtain that

I[An] = 0



which proves the first part of the theorem.
ad 2. Proceeding to the second part, we will compute the truth value

of L1,n(P):

I[L1,n(P)] = I[L0(R1(·), x1)]
= I[∃x1(R1(x1) ⊃ ∀x′1R1(x′1)) ⊃ ∀x1R1(x1)]

The truth value of the left side of the implication is computed as follows:

I[∃x1(R1(x1) ⊃ ∀x′1R1(x′1))] = sup
s1

I[R1(s1) ⊃ ∀x′1R1(x′1)]

= sup
s1

I(⊃)(I[R1(s1)], I[∀x′1R1(x′1)])

= sup
s1

I(⊃)(0, inf
s′1

I[R1(s′1)])

= sup
s1

I(⊃)(0,0)

= 1

The crucial part in the above calculation is that I[R1(s1)] is equal to 0 under
all interpretations into a truth value set in G↓k

I[R1(s1)] = I[∀x2 . . .∀xnP(s1, x2, . . . , xn)]
= inf

s2
. . . inf

sn
I[P(s1, s2, . . . , sn)]

= 0

because all the truth value sets from G↓k have a Cantor-Bendixon rank of k <
n.

Therefor the truth value of L1,n(P) is the truth value of ∀x1R1(x1) and
the truth value of the left side of the implication of An is bound by the same
value from above.

I[L1,n(P)] = I[∀x1R1(x1)]

I[
n∧
i=1

Li,n(P)] ≤ I[L1,n(P)] = I[∀x1R1(x1)]

Finally the truth value of the right side of An is also I[∀x1R1(x1)] and we
obtain

I[An] = 1

which proves that for In the second part of the theorem is true.
The extension to all other models in this subclass is trivial to prove using

the isomorphism and the note above on the truth value of I[R1(s1)], thus
we are finished. �



4 Conclusions

These separation results are a first step within the program of connecting
topological and order theoretic properties of underlying truth value sets
with logical properties. Further directions in the research should lead to
a finer granulation of discernible Gödel logics. The next step in this di-
rection will be the extension of these results too general infima/suprema
combinations, which needs a new language of expressing order properties
of countable set, since the classification after topological types τ = (λ,n)
is to general. Finally this research should lead to an answer whether there
are uncountable many first order Gödel logics or not.
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