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Kurzfassung der Dissertation

Diese Dissertation beinhaltet eine vollständige Charakterisierung der re-
kursiv axiomatisierbaren Gödellogiken. Diese Logiken sind eine natürli-
che Klasse von mehrwertigen Logiken mit Wahrheitswerten aus [0,1],
die in vielen logischen und informatischen Zusammenhängen auftreten,
z.B. als unmittelbare Erweiterungen der intuitionistischen Logik, als ei-
ne der grundlegenden Fuzzylogiken, sowie im Zusammenhang mit tem-
porallogischen Fragestellungen, die auch für die automatische Verifika-
tion von Programmen von Bedeutung sind. Sowohl die Existenz als auch
die Nichtexistenz einer rekursiven Axiomatisierung für alle propositio-
nalen Gödellogiken und Gödellogiken erster Ordnung werden beschrie-
ben. Hierzu werden die topologischen Eigenschaften der zugrundelie-
genden Wahrheitswertmengen untersucht und unter Zuhilfenahme von
Konzepten der deskriptiven Mengenlehre sowie der Cantor-Bendixon Ab-
leitung charakterisiert. Weiters wird die Kompaktheit der Folgerungsre-
lation von propositionalen Gödellogiken und Gödellogiken erster Ord-
nung charakterisiert.
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CHAPTER 1

Introduction and preliminaries

Gödel logics are one of the oldest and most interesting families of many-
valued logics. Propositional finite-valued Gödel logics were introduced
by Gödel in [Göd33] to show that intuitionistic logic does not have a
characteristic finite matrix. They provide the first examples of inter-
mediate logics (intermediate, that is, in strength between classical and
intuitionistic logics). Dummett [Dum59] was the first to study infinite
valued Gödel logics, axiomatizing the set of tautologies over infinite
truth-value sets by intuitionistic logic extended by the linearity axiom
(A ⊃ B) ∨ (B ⊃ A). Hence, infinite-valued propositional Gödel logic is
also called Gödel-Dummett logic or Dummett’s LC. In terms of Kripke
semantics, the characteristic linearity axiom picks out those accessibility
relations which are linear orders.

Quantified propositional Gödel logics and first-order Gödel logics are
natural extensions of the propositional logics introduced by Gödel and
Dummett. For both propositional quantified and first-order Gödel logics
it turns out to be inevitable to consider more complex truth value sets
than the standard unit interval.

Gödel logics occur in a number of different areas of logic and com-
puter science. For instance, Dunn and Meyer [DM71] pointed out their
relation to relevance logics; Visser [Vis82] employed LC in investigations
of the provability logic of Heyting arithmetic; three-valued Gödel logic G3

has been used to model strong equivalence between logic programs. Fur-
thermore, these logics have recently received increasing attention, both
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1. Introduction Overview on the results

in terms of foundational investigations and in terms of applications, as
they have been recognized as one of the most important formalizations
of fuzzy logic [Háj98].

Perhaps the most surprising fact is that whereas there is only one
infinite-valued propositional Gödel logic, there are infinitely many dif-
ferent logics at the first-order level [BLZ96b, BV99]. In the light of the
general result of Scarpellini [Sca62] on non-axiomatizability, it is inter-
esting that some of the infinite-valued Gödel logics belong to the lim-
ited class of recursively enumerable linearly ordered first-order logics
[Hor69, TT84].

In this thesis we present a complete characterization of Gödel log-
ics with respect to complete recursive axiomatizability. We will describe
those logics which admit a complete recursive axiomatization1 in terms
of topological structures of the underlying truth value sets. Further-
more we analyze the entailment relation of propositional and first-order
Gödel logics and prove that only those which admit a complete recursive
axiomatization admit compact entailment relations.

1.1 Overview on the results

A fundamental question for any logic is whether a formalization with
axioms and rules is complete, i.e. if all valid sentences in this logic can
be derived from the given axioms. The results in this thesis characterize
in detail all the Gödel logics – propositional, first-order, entailment –
which can be axiomatized.

Basis of our work is the result obtained by Takano [Tak87] for the
most important Gödel logic over the real interval [0,1].

In the present chapter we introduce the syntax of Gödel logics. Exten-
sions using propositional quantifiers and the ∆ operator are considered.
Furthermore, we discuss the relationship between different Gödel logics.
After stating axioms and deduction systems we present the above men-
tioned completeness proof of Takano in Section 1.5 and extend it to the
case of Gödel logics with ∆.

In Chapter 2, notions of topology and order theory are introduced
which are essential for the content of the subsequent chapters. The
relationship between dense linear orderings and perfect sets is clarified.

Chapter 3 deals with propositional Gödel logics, presents a variant
of the proof of completeness, and discusses in short quantified proposi-
tional Gödel logics.

Chapter 4 deals with propositional entailments.
Chapter 5 contains the main results for first-order Gödel logics. In

Section 5.3 the impossibility to give a complete recursive axiomatiza-

1We will call these logics complete.
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1. Introduction Definition of Gödel logics

tion of Gödel logics with countable truth value sets is derived. For un-
countable truth value sets the topological structure of the truth value set
provides a criterion to distinguish axiomatizable logics. Completeness
proofs for the various different logics and an extension with ∆ completes
this chapter.

In Chapter 6 the entailment relation of first-order Gödel logics are
discussed and compactness is related to complete recursive axiomatiz-
ability.

Finally an overview of the achieved results is presented in the table
on p. 60.

1.2 Definition of Gödel logics

1.2.1 The Gödel implication

Many-valued logics differ mainly in their definition of the truth function
for implication. The truth function for Gödel implication is of particular
interest as it can be ‘deduced’ from simple properties of the evaluation
and the entailment relation (for details on entailment see Chapter 4),
which has been observed by G. Takeuti.

Lemma 1.1 The Gödel implication given by

I(A ⊃ B) =

I(B) if I(A) > I(B)
1 if I(A) ≤ I(B)

is the only definition of the truth function for implication which gives an
entailment relation with the following conditions:

1. The interpretation of the implication is 1 iff the implication of the
antecedent is less or equal to the interpretation of the succedent, i.e.
I(A) ≤ I(B)a I(A ⊃ B) = 1

2. Π∪ {A} ð Ba Π ð A ⊃ B

3. Π ð B ⇒min{I(A) : A ∈ Π} ≤ I(B)
(and if Π = ∅ ⇒ 1 ≤ I(B), this is in fact the definition of entailment).

Proof: From B ð B we obtain B,A ð B and with property 2, B ð A ⊃ B,
therefore,

I(B) ≤ I(A ⊃ B).

From A ⊃ B ð A ⊃ B with property 2 again we obtain A ⊃ B,A ð B and
from property 3

min{I(A ⊃ B), I(A)} ≤ I(B),

3



1. Introduction Definition of Gödel logics

which together with property 1 gives the definition of the Gödel implica-
tion. �

In other words, if we want a deduction system which extends the clas-
sical implication in the sense that if the antecedent is less true than the
succedent, the whole formula is true (1), which has a deduction theorem
(2) and which has an entailment property, then we obtain Gödel implica-
tion. This shows us that Gödel logics are in fact very general. All other
many-valued logics fail in one of the above points.

1.2.2 Syntax and semantics for propositional Gödel logics

The language for propositional Gödel logics is a standard propositional
language:

Definition 1.2 The language L0 for propositional Gödel logics consists of
the constant ⊥, countably many propositional variables (p1, p2, . . . ) and
the connectives ∧, ∨ and ⊃. The set of well formed formulas, denoted by
Frm(L0), are defined as usual for a propositional logic.

Note: As usual in the area of intuitionistic logic we do not have the
negation in the language, but it is an abbreviation for

¬p ↔ p ⊃ ⊥.

Furthermore we will use p ≺ q as an abbreviation for

p ≺ q ↔ (q ⊃ p) ⊃ q

and > ↔ p ⊃ p.

Definition 1.3 Let V ⊆ [0,1] be some set of truth values which con-
tains 0 and 1. A propositional Gödel valuation I0

V (short valuation) based
on V is a function from the set of propositional variables into V with
I0
V (⊥) = 0. This valuation can be extended to a function mapping formu-

las from Frm(L0) into V as follows:

I0
V (A∧ B) =min{I0

V (A), I0
V (B)}

I0
V (A∨ B) =max{I0

V (A), I0
V (B)}

I0
V (A ⊃ B) =

I0
V (B) if I0

V (A) > I0
V (B)

1 if I0
V (A) ≤ I0

V (B).

A formula is called valid with respect to V if it is mapped to 1 for all
valuations based on V .

4



1. Introduction Definition of Gödel logics

The set of all formulas which are valid with respect to V will be called
the propositional Gödel logic based on V and will be denoted by G0

V .
The validity of a formula A with respect to V will be denoted by

î0
V A or îG0

V
A.

Note: The extension of the valuation I0
V to formulas provides the fol-

lowing truth functions:

I0
V (¬A) =

0 if I0
V (A) > 0

1 otherwise

I0
V (A ≺ B) =

1 if I0
V (A) < I0

V (B) or I0
V (A) = I0

V (B) = 1

I(B) otherwise

Thus, the intuition behind A ≺ B is that A is strictly less than B, or both
are equal to 1.

1.2.3 Syntax and semantics for quantified propositional Gödel
logics

In classical propositional logic one defines ∃pA(p) by A(⊥)∨A(>) and
∀pA(p) by A(⊥) ∧ A(>). In other words, propositional quantification
is semantically defined by the supremum and infimum, respectively, of
truth functions (with respect to the usual ordering 0 < 1 over the clas-
sical truth-values {0,1}). This can be extended to Gödel logic by using
fuzzy quantifiers. Syntactically, this means that we allow formulas ∀pA
and ∃pA in the language. Free and bound occurrences of variables are
defined in the usual way. So the language for propositional quantified
Gödel logics consists of the following extensions to the language L0:

Definition 1.4 The language Lqp for quantified propositional Gödel log-
ics contains the language L0 and the quantifiers ∀ and ∃. The set of well
formed formulas, denoted by Frm(Lqp), is the minimal set fulfilling the
following conditions: All propositional variables and constants are well
formed formulas, and if A and B are well formed, p a propositional vari-
able, then also A ∧ B, A ∨ B, A ⊃ B, and ∃pA and ∀pA are well formed
formulas.

The semantics of propositional quantifiers is defined analogously to
that of first-order quantifiers as the infimum and supremum of the cor-
responding distribution. In this context a distribution of a formula A
and free propositional variable p with respect to an interpretation I is
defined as

DistrI(A(p)) = {I′(A(p)) : I′ ∼p I}

5



1. Introduction Definition of Gödel logics

where I′ ∼p I means that I′ is exactly as I with the possible exception
of the truth-value assigned to p.

Extending the definition of valuation to the quantified propositional
case we have to take care that the truth value set has to be closed under
infima and suprema, otherwise the valuation of quantified formulas will
not necessarily be well defined.

Definition 1.5 Let V ⊆ [0,1] be some set of truth values which con-
tains 0 and 1 and is closed under infima and suprema. A valuation IqpV
based on V is a function from the set of propositional variables into V
with IqpV (⊥) = 0. This valuation can be extended to a function mapping
formulas from Frm(Lqp) into V as follows:

IqpV (A∧ B) =min{IqpV (A), IqpV (B)}
IqpV (A∨ B) =max{IqpV (A), IqpV (B)}

IqpV (A ⊃ B) =

I
qp
V (B) if IqpV (A) > IqpV (B)

1 if IqpV (A) ≤ IqpV (B)

IqpV (∀pA(p)) = inf DistrIqpV (A(p))

IqpV (∃pA(p)) = sup DistrIqpV (A(p))

A formula is called valid with respect to V if it is mapped to 1 for all
valuations based on V .

The set of all formulas which are valid with respect to V will be called
the propositional quantified Gödel logic based on V and will be denoted
by G

qp
V .

The validity of a propositional quantified formula A with respect to V
will be denoted by

îqpV A or îG
qp
V
A.

1.2.4 Syntax and semantics for first-order Gödel logics

Definition 1.6 The language Lfo for first-order Gödel logics contains
countably many free variables (a, b, . . . ), countably many bound vari-
ables (x, y , . . . ), countably many function symbols (f , g, . . . ), predicate
symbols (P , Q, R, . . . ), the 0-placed predicate constant ⊥, the connectives
∧, ∨, ⊃ and the quantifiers ∀ and ∃. Terms, atomic formulas, formulas
are defined as usual.

Extending the definition of valuation to the first-order case we have
again to take care that the truth value set has to be closed under infima
and suprema, otherwise the valuation of quantified formulas will not
necessarily be well defined.

6



1. Introduction Definition of Gödel logics

Definition 1.7 Let V ⊆ [0,1] be some set of truth values which con-
tains 0 and 1 and is closed under infima and suprema. A first-order

interpretation IfoV = 〈D, s〉 based on V is given by the domain D and
the valuation function s which maps n-ary relation symbols to functions
Dn → V , s(⊥) = 0, n-ary function symbols to functions from Dn to D,
and constants of LI and variables to elements of D. LI is L extended by
constant symbols for all d ∈ D; if d ∈ D, then s(d) = d.

s can be extended in the obvious way to a function on all terms. The
valuation for formulas is defined as follows:

IfoV (P(t1, . . . , tn)) = s(P)(s(t1), . . . , s(tn))

IfoV (A∧ B) =min{IfoV (A), I
fo
V (B)}

IfoV (A∨ B) =max{IfoV (A), I
fo
V (B)}

IfoV (A ⊃ B) =

I
fo
V (B) if IfoV (A) > I

fo
V (B)

1 if IfoV (A) ≤ I
fo
V (B)

IfoV (∀xA(x)) = inf DistrIfoV
(A(a))

IfoV (∃xA(x)) = sup DistrIfoV
(A(a))

where the set DistrIfoV
(A(a)) = {IfoV (A(d)) : d ∈ D} is called distribution

of A(x).
A formula is called valid with respect to V if it is mapped to 1 for all

valuations based on V .
The set of all formulas which are valid with respect to V will be called

the first-order Gödel logic based on V and will be denoted by G
fo
V .

The validity of a first-order formula Awith respect to V will be denoted
by

îfoV A or î
G
fo
V
A.

Note: We will not write the superscripts 0, qp, fo and the subscript V
if it is obvious from the context (which will generally be the case).

1.2.5 Extension with ∆

In [TT86, Baa96, Tit97] the ∆-operator has been introduced to the lan-
guage of logic expressing that the truth value of the operand is 1. I.e. a
new unary operator is introduced

∆A

7
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and the interpretation is extended as following:

I(∆A) =

1 if I(A) = 1

0 otherwise

We will denote logics containing ∆ by a superscribed ∆, e.g. the logic GV
with ∆ will be denoted by G∆V . It has been introduced for symmetry rea-
sons, since in (plain) Gödel logic the truth value 0 can be distinguished
from other values, but not the truth value 1, this can only be done using
the ∆-operator.

Lemma 1.8 The operator ∆ is not expressible in the language of Gödel
logics.

Proof: All truth functions in one variable are given by f(x) = x,
f(x) = ¬x, f(x) = ¬¬x, f(x) = 0 or f(x) = 1, but none of these
truth functions coincide with the truth function for ∆, therefore, the ∆
operator is not expressible. �

1.3 Relationships between Gödel logics

As we will see in Chapter 3, the relationships between finite and infinite
valued propositional Gödel logics are well understood. Any choice of an
infinite set of truth-values results in the same propositional Gödel logic,
viz., Dummett’s LC. LC was defined using the set of truth-values V↓
(see below). Furthermore, we know that LC is the intersection of all
finite-valued propositional Gödel logics, and that it is axiomatized by
intuitionistic propositional logic IPL plus the schema (A ⊃ B)∨ (B ⊃ A).
IPL is contained in all Gödel logics.

In the first-order case, the relationships are somewhat more interest-
ing. First of all, let us note the following fact corresponding to the end
of the previous paragraph:

Proposition 1.9 Intuitionistic predicate logic IL is contained in all first-
order Gödel logics.

Proof: The axioms and rules of IL are sound for the Gödel truth func-
tions. �

As a consequence of this proposition, we will be able to use any intu-
itionistically sound rule and intuitionistically true formula when working
in any of the Gödel logics.

We can consider special truth value sets which will act as prototypes
for other logics. This is due to the fact that the logic is defined exten-
sionally as the set of formulas valid in this truth value set, so the Gödel

8



1. Introduction Relationships between Gödel logics

logics on different truth value sets may coincide.

VR = [0,1]
V↓ = {1/k : k ≥ 1} ∪ {0}
V↑ = {1− 1/k : k ≥ 1} ∪ {1}
Vm = {1− 1/k : 1 ≤ k ≤m− 1} ∪ {1}

The corresponding Gödel logics are GR, G↓, G↑, Gm. GR is the stan-
dard Gödel logic, G↓ is the logic of well-founded linearly ordered Kripke-
semantics with constant domains (for Kripke models see [Min00]). As
this logic, the logic of well-founded linearly ordered Kripke-semantics is
better known in the propositional case as Dummett’s LC [Dum59], we
want to exhibit this equivalence:

Lemma 1.10 The intuitionistic logic of well-founded linearly ordered Kripke-
semantics with constant domains is equivalent to G↓.

Proof: Let (W,R,U) be a Kripke model where the accessibility re-
lation R is linearly ordered, i.e. for all w,w′ ∈ W either R(w,w′) or
R(w′,w). We will call the first ω worlds 1, 2, . . . , i.e. W = {1,2,3 . . .}.
We have to show that if a formula is not valid in one of these linearly
ordered Kripke models with constant domains, then it is not valid in G↓,
and vice versa.

Assume that A is not valid in a Kripke model (W,R,U) as given above
and assume that IK(A,w) gives the truth-value of A in world w in this
model (0 or 1). Define a function ϕ : W → V↓, ϕ(w) = 1/w and the
interpretation of a formula A in the Gödel logic G↓ as the image under
ϕ of the smallest world such that A is true in this world, or 0 if no such
world exists, i.e.

IG(A) =

ϕ(µw(IK(A,w) = 1)) if such a world exists

0 otherwise

where µ is the minimization operator. It is obvious that if A is not valid
in the Kripke model, i.e. it is not true in the first world 1, then its truth
value in G↓ will also be less than 1. Thus, we only have to show that the
function defined above in fact is an interpretation:

IG(A∧ B) =ϕ(µw(IK(A∧ B,w) = 1))
=ϕ(max{µw(IK(A,w) = 1), µw(IK(B,w) = 1)})
=min{ϕ(µw(IK(A,w) = 1)),ϕ(µw(IK(B,w) = 1))}
=min{IG(A), IG(B)}

The change from max to min is due to the function ϕ which inverts the
argument. For IG(A∨B) the computation is analogous. For ⊥ remember

9



1. Introduction Relationships between Gödel logics

that ⊥ is evaluated to false in all worlds of a Kripke model, thus the
Gödel interpretation is 0.

For the implication and the quantifiers it has to be noted that their
interpretation has to be computed globally, i.e. the interpretation of an
implication is valid in a world w if and only if the local interpretation
(denoted by I∗K ) is valid in w and all worlds which are reachable, i.e. in
the case of linearly ordered Kripke structures, in all following worlds.

Consider now the implication A ⊃ B: Let wA = µw(IK(A) = 1) and
wB = µw(IK(B) = 1) the worlds where A and B, respectively, turns
true. If wB ≤ wA, i.e. R(wB ,wA) holds, then for all worlds w′ the local
evaluation I∗K (A ⊃ B,w′) is true, because B is true before A becomes
true. Thus IK(A ⊃ B,1) is true and IG(A ⊃ B) = ϕ(1) = 1. On the
other hand, if wB > wA, then the local interpretation I∗K of A ⊃ B is true
before wA and after wB , thus the global interpretation IK of A ⊃ B will
only be true in and after wB , thus the Gödel interpretation IG(A ⊃ B) =
ϕ(wB) = IG(B).

For the universal quantifier consider

IG(∀xA(x)) =ϕ(µw(IK(∀xA(x),w) = 1))
=ϕ(µw(∀l > w∀c ∈ UIK(A(c), l) = 1))

due to the constant domain property it is enough to consider only the
world w

=ϕ(µw(∀c ∈ UIK(A(c),w) = 1))
=ϕ(sup

c∈U
µw(IK(A(c),w) = 1))

= inf
c∈U

ϕ(µw(IK(A(c),w) = 1))

= inf
c∈U
IG(A(c))

and for the existential an analogous computation. Here the requirement
of constant domains is of importance. Thus, we have shown that if a
linearly ordered Kripke structure with constant domains is a counter-
model to a formula A, then we can give a counter-model in G↓.

For the reverse direction we assume that IG is a counter-model in G↓
and we will give a Kripke model which is also a counter model. The uni-
verse for all worlds is the universe of G↓, the worlds areW = {1,2,3, . . .},
the accessibility relation is the successor, and the interpretation is de-
fined as

IK(A,w) =

0 w < 1/IG(A)
1 w ≥ 1/IG(A)

.

It is easy to verify that this in fact gives a interpretation in the Kripke
structure, completing the proof. �
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The logic G↓ also turns out to be closely related to some temporal logics
[BLZ96b, BLZ96a]. G↑ is the intersection of all finite-valued first-order
Gödel logics as shown in Theorem 1.13.

Proposition 1.11 The following strict containment relationships hold:

1. Gm ⊋ Gm+1,

2. Gm ⊋ G↑ ⊋ GR,

3. Gm ⊋ G↓ ⊋ GR.

Proof: The only non-trivial part is proving that the containments are
strict. For this note that

(A1 ⊃ A2)∨ . . .∨ (Am ⊃ Am+1)

is valid in Gm but not in Gm+1. Furthermore, let

C↑ = ∃x(A(x) ⊃ ∀y A(y))and

C↓ = ∃x(∃y A(y) ⊃ A(x)).

C↓ is valid in all Gm and in G↑ and G↓; C↑ is valid in all Gm and in G↑, but
not in G↓; neither is valid in GR ([BLZ96b], Corollary 2.9). �

The formulas C↑ and C↓ are of some importance in the study of first-
order infinite-valued Gödel logics. C↑ expresses the fact that every infi-
mum in the set of truth values is a minimum, and C↓ states that every
supremum (except possibly 1) is a maximum. The intuitionistically ad-
missible quantifier shifting rules are given by the following implications
and equivalences:

(∀xA(x)∧ B) ≡ ∀x(A(x)∧ B)
(∃xA(x)∧ B) ≡ ∃x(A(x)∧ B)
(∀xA(x)∨ B) ⊃ ∀x(A(x)∨ B)
(∃xA(x)∨ B) ≡ ∃x(A(x)∨ B)
(B ⊃ ∀xA(x)) ≡ ∀x(B ⊃ A(x))
(B ⊃ ∃xA(x)) ⊂ ∃x(B ⊃ A(x))
(∀xA(x) ⊃ B) ⊂ ∃x(A(x) ⊃ B)
(∃xA(x) ⊃ B) ≡ ∀x(A(x) ⊃ B)

The remaining three are:

(∀xA(x)∨ B) ⊂ ∀x(A(x)∨ B)
(B ⊃ ∃xA(x)) ⊃ ∃x(B ⊃ A(x))
(∀xA(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)

(S1)
(S2)
(S3)

Of these, S1 is valid in any Gödel logic. S2 and S3 imply and are implied
by C↓ and C↑, respectively (take ∃y A(y) and ∀y A(y), respectively, for
B). S2 and S3 are, respectively, both valid in G↑, invalid and valid in G↓,
and both invalid in GR. Thus we obtain

11



1. Introduction Relationships between Gödel logics

Corollary 1.12 G↑ is the only Gödel logic where every formula is equiv-
alent to a prenex formula with the same propositional matrix.

We now also know that G↑ ≠ G↓. In fact, we have G↓ ⊊ G↑; this follows
from the following theorem.

Theorem 1.13
G↑ =

⋂
m≥2

Gm

Proof: By Proposition 1.11, G↑ ⊆
⋂
m≥2 Gm. We now prove the reverse

inclusion. Assume that there is an interpretation I such that I ù A,
we want to give an interpretation I′ such that I′ ù A and I′ is a Gm
interpretation for some m.

Lemma 1.14 If all infima in the truth value set are minima or A contains
no quantifiers, and A evaluates to some v < 1 in I , then A also evaluates
to v in Iv where

Iv(P) =

1 if I(P) > v
I(P) otherwise

for P atomic sub-formula of A.

Proof: We prove by induction on the complexity of formulas that any
sub-formula F of A with I(F) ≤ v has I′(F) = I(F). This is clear for
atomic sub-formulas. We distinguish cases according to the logical form
of F :

F ≡ D ∧ E. If I(F) ≤ v , then, without loss of generality, assume
I(F) = I(D) ≤ I(E). By induction hypothesis, I′(D) = I(D) and I′(E) ≥
I(E), so I′(F) = I(F). If I(F) > v , then I(D) > v and I(E) > v , by
induction hypothesis I′(D) = I′(E) = 1, thus, I′(F) = 1.

F ≡ D ∨ E. If I(F) ≤ v , then, without loss of generality, assume
I(F) = I(D) ≥ I(E). By induction hypothesis, I′(D) = I(D) and I′(E) =
I(E), so I′(F) = I(F). If I(F) > v , then, again without loss of generality,
I(F) = I(D) > v , by induction hypothesis I′(D) = 1, thus, I′(F) = 1.

F ≡ D ⊃ E. Since v < 1, we must have I(D) > I(E) = I(F). By
induction hypothesis, I′(D) ≥ I(D) and I′(E) = I(E), so I′(F) = I(F).
If I(F) > v , then I(D) ≥ I(E) = I(F) > v , by induction hypothesis
I′(D) = I′(E) = I′(F) = 1.

F ≡ ∃xD(x). First assume that I(F) ≤ v . Since D(c) evaluates to
a value less or equal to v in I and, by induction hypothesis, in I′ also
the supremum of these values is less or equal to v in I′, thus I′(F) =
I(F). If I(F) > v , then there is a c such that I(D(c)) > v , by induction
hypothesis I′(D(c)) = 1, thus, I′(F) = 1.

F ≡ ∀xD(x). This is the crucial part. First assume that I(F) <
v . Then there is a witness c such that I(F) ≤ I(D(c)) < v and, by

12



1. Introduction Axioms and deduction systems

induction hypothesis, also I′(D(c)) < v and therefore, I′(F) = I(F).
For I(F) > v it is obvious that I′(F) = I(F) = 1. Finally assume that
I(F) = v . If this infimum would be proper, i.e. no minimum, then the
value of all witnesses under I′ would be 1, but the value of F under I′
would be v , which would contradict the definition of the semantic of the
∀ quantifier. Since all infima are minima, there is a witness c such that
I(D(c)) = v and therefore, also I′(D(c)) = v and thus I′(F) = I(F). �

Now suppose there is an interpretation I such that I ù A, let I(A) =
v . Then the interpretation I′ given in the above lemma also is a coun-
terexample for A. Since there are only finitely many truth values below
v in V↑, say v = 1 − 1/k, I′ is a Gk+1 interpretation with I′ ù A. This
completes the proof of the theorem. �

Corollary 1.15 Gm ⊋
⋂
mGm = G↑ ⊋ G↓ ⊋ GR

1.4 Axioms and deduction systems for Gödel logics

In this section we introduce certain axioms and deduction systems for
Gödel logics, and we will show completeness of these deduction systems
subsequently.

Note: Most of the time we use Hilbert style systems, but for some
proofs a Gentzen style (sequent) proof system will be adequate. In this
proof system the notion of sequent, written as

A1, . . . , An⇒B

is introduced which we will consider as an abbreviation for

A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ B,

and A1, . . . , An⇒ as an abbreviation for A1, . . . , An⇒⊥.

We will denote by IL the complete axiom system for intuitionistic
logic (taken from [Tro77]) given in Table 1.1.

The following axioms will play an important rôle:

qs ∀x(C(x) ∨A(x)) ⊃ (C(x) ∨∀xA(x))
lin (A ⊃ B)∨ (B ⊃ A)

iso0 ∀x¬¬A(x) ⊃ ¬¬∀xA(x)
iso1 ∀x¬∆A(x) ⊃ ¬∆∃xA(x)

fin(n) (> ⊃ p1)∨ (p1 ⊃ p2)∨ . . .∨ (pn−2 ⊃ pn−1)∨ (pn−1 ⊃ ⊥)

13



1. Introduction Axioms and deduction systems

(I1), (MP) A A ⊃ B
B

(I2) A ⊃ B B ⊃ C
A ⊃ C

(I3) A∨A ⊃ A,A ⊃ A∧A
(I4) A ⊃ A∨ B,A∧ B ⊃ A
(I5) A∨ B ⊃ B ∨A,A∧ B ⊃ B ∧A

(I6) A ⊃ B
C ∨A ⊃ C ∨ B

(I7) A∧ B ⊃ C
A ⊃ (B ⊃ C)

(I8) A ⊃ (B ⊃ C)
A∧ B ⊃ C

(I9) ⊥ ⊃ A

(I10)
B(x) ⊃ A(x)

B(x) ⊃ ∀xA(x)
(I11) ∀xA(x) ⊃ A(t)
(I12) A(t) ⊃ ∃xA(x)

(I13)
A(x) ⊃ B(x)
∃xA(x) ⊃ B(x)

(where B(x) means that x is not free in B).

Table 1.1: Axiom system for IL

For the axiomatization of quantified propositional Gödel logics we use

den ∀p(A(p) ⊃ p ∨ p ⊃ B(p)) ⊃ (A(p) ⊃ B(p))
qsqp ∀p(C(p) ∨A(p)) ⊃ (C(p) ∨∀pA(p))

For the axiomatization of the ∆-operator we use

∆1 ∆A∨¬∆A
∆2 ∆(A∨ B) ⊃ (∆A∨∆B)
∆3 ∆A ⊃ A
∆4 ∆A ⊃ ∆∆A
∆5 ∆(A ⊃ B) ⊃ (∆A ⊃ ∆B)

We will refer to the ∆-axioms given above combined with the rule: From
A deduce ∆A, as ax∆.
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1. Introduction Completeness results of H for G[0,1]

Note: The names of the axioms can be explained as follows: qs stands
for ‘quantifier shift’, lin for ‘linearity’, iso0 for ‘isolation axiom of 0’,
iso1 for ‘isolation axiom of 1’, fin(n) for ‘finite with n elements’ and
den for ‘density’ (the axiomatization of Takeuti).

Definition 1.16 If A is an axiom system, we denote by A0 the proposi-
tional part ofA, i.e. all the axioms which do not contain quantifiers.

WithA∆ we denote the axiom system obtained fromA by adding the
axioms and rules ax∆.

WithAn we denote the axiom system obtained fromA by adding the
axiom fin(n).

We denote by Hqp the axiom system IL+ qsqp + lin+ den.
We denote by H the axiom system IL+ qs+ lin.

Example 1.17 IL0 is the same as IPL. H0 is the same as LC.

For all these axiom systems the general notion of deducability can be
defined:

Definition 1.18 If a formula/sequent Γ can be deduced from an axiom
systemA we denote this by

`A Γ

Note: The A in `A Γ often is omitted when it is obvious from the
context which axiom system is meant. The notion Π `A Γ for finite Π is
equivalent to `A∪Π Γ .

In the case where Σ is infinite, provability of Σ⇒∆ is defined by the
existence of a finite subset Σ′ ⊂ Σ such that Σ′⇒∆ is provable. Validity
in [0,1] is defined via the entailment, see Chapter 4.

1.5 Completeness results of H for G[0,1]

In the discussion of completeness of Gödel logics the term ‘complete-
ness’ stands for the existence of a complete recursive axiomatization, i.e.
an axiom system together with rules which can deduce all valid formulas
of Gödel logics. In the following we often will use the term completeness
when in fact we are referring to complete recursive axiomatization.

There have been various proofs of the completeness of first-order
Gödel logic G[0,1]. The first one is from Horn [Hor69], where the weak
completeness is proven. Horn called the described logic the logic with
truth values in a linearly ordered Heyting algebra and used the axiom
system H as given above.

15



1. Introduction Completeness results of H for G[0,1]

Later on Takeuti and Titani introduced intuitionistic fuzzy logic IFL
in [TT84] and have shown that the following system TT is strongly com-
plete for IFL:

Definition 1.19 (Takeuti and Titani’s system TT ) The axioms and in-
ference rules of TT are those of LJ2 together with the following axioms:

1. ⇒(A ⊃ B)∨ ((A ⊃ B) ⊃ B)
2. (A ⊃ B) ⊃ B⇒(B ⊃ A)∨ B
3. (A∧ B) ⊃ C⇒(A ⊃ C)∨ (B ⊃ C)
4. A ⊃ (B ∨ C)⇒(A ⊃ B)∨ (A ⊃ C)
5. ∀x(C(x) ∨A(x))⇒C(x) ∨∀xA(x)
6. ∀xA(x) ⊃ C⇒∃x((A(x) ⊃ D(x))∨ (D(x) ⊃ C)).

and the following extra inference rule:

Γ ⇒A∨ (C ⊃ p)∨ (p ⊃ B)
Γ ⇒A∨ (C ⊃ B)

where p is any propositional variable not occurring in the lower sequent.

Note: The extra inference rule given above has an interesting prop-
erty: It forces the truth value set to be dense in itself. This cannot be
achieved by formulas, exhibiting the difference in expressive power of
rules versus formulas in Gödel logics.

Finally Takano [Tak87] has shown that there is a strong completeness
for the system H, and that the system H, the system TT and the sys-
tem TT− obtained from TT by dropping the extra inference rule are all
equivalent, i.e. they prove the same formulas. A syntactical proof of the
elimination of the TT -rule was later given by Baaz and Zach in [BZ00].
Thus, we see that the logic IFL, the logic with truth values in a linearly
ordered Heyting algebra, and Gödel logics on the real interval [0,1] co-
incide.

We will present Takanos proof of the strong completeness of the
system H in detail because we will extend it to the case of Gödel logics
with ∆ and to different truth value sets.

1.5.1 Takanos completeness proof revisited

Horn [Hor69] only proved the weak completeness of Gödel logic, i.e.
a formula A is valid iff it is provable in the system H. Takeuti and
Titani [TT84] proved the strong completeness of Gödel logic, i.e. a se-
quent Σ⇒∆ is valid iff it is provable in TT , even if Σ is infinite.

2LJ is the sequent style calculus for intuitionistic logic.
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1. Introduction Completeness results of H for G[0,1]

Theorem 1.20 (Strong completeness of Gödel logic [Tak87]) A se-
quent Σ⇒∆ (where Σ can be infinite) is valid in [0,1] iff it is provable
in H.

We will assume Σ⇒∆ unprovable and construct a model I in which
Σ⇒∆ is not valid. We will assume that there are infinitely many indi-
vidual free variables which do not occur in Σ⇒∆, and that ∆ consists of
one formula A. Let T and F be the sets of all terms and all formulas,
respectively.

Lemma 1.21 There exists a set G of formulas which satisfies the following
conditions:

1. Σ ⊆ G and A ∉ G.
2. If ` G⇒B1 ∨ · · · ∨ Bn, then Bi ∈ G for some i.
3. if B(t) ∈ G for every t ∈ T , then ∀xB(x) ∈ G.

Proof: Let F = {Fn : n ∈ N}. We define a pair Gn,Hn of subsets of F
as follows: Let G1 = Σ and H1 = ∆ = {A}. Assume that Gn and Hn
have already been defined. If ` Gn⇒

∨
Hn ∨ Fn set Gn+1 = Gn ∪ {Fn}

andHn+1 =Hn. Otherwise set Gn+1 = Gn andHn+1 =Hn∪{Fn, B(a)}
or Hn+1 = Hn ∪ {Fn} according as Fn has the form ∀xB(x) or not,
where a is any individual free variable which does not occur in Gn ∪
Hn ∪ {Fn}.

It is obvious from qs that ø Gn⇒
∨
Hn by induction on n, and⋃∞

n=1Hn = F \
⋃∞
n=1Gn. So G =

⋃∞
n=1Gn is the required set. �

Define relations ≤◦ and ≡ on F by

B ≤◦ Ca B ⊃ C ∈ G and B ≡ Ca B ≤◦ C ∧ C ≤◦ B.

Then ≤◦ is reflexive and transitive, since for every B,C and D, ` ⇒B ⊃ B,
and ` B ⊃ C,C ⊃ D⇒B ⊃ D, so B ⊃ B ∈ G and if B ⊃ C ∈ G and C ⊃ D ∈
G then B ⊃ D ∈ G. Hence, ≡ is an equivalence relation on F . For every B
in F we let |B| be the equivalence class under ≡ to which B belongs,
and F/≡ the set of all equivalence classes. Next we define the relation ≤
on F/≡ by

|B| ≤ |C|a B ≤◦ Ca B ⊃ C ∈ G.

Lemma 1.22
〈
F/≡,≤

〉
is a countably linearly ordered structure with dis-

tinct maximal element |A ⊃ A| and the minimal element |¬(A ⊃ A)|.

Proof: Since F is countably infinite, F/≡ is countable. For every B
and C , ` ⇒(B ⊃ C) ∨ (C ⊃ B) by lin, and so either B ⊃ C ∈ G or C ⊃
B ∈ G, hence ≤ is linear. For every B, ` ⇒B ⊃ (A ⊃ A) and ` ⇒¬(A ⊃
A) ⊃ B, and so B ⊃ (A ⊃ A) ∈ G and ¬(A ⊃ A) ⊃ B ∈ G, hence |A ⊃ A|
and |¬(A ⊃ A)| are the maximal and minimal elements, respectively.
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1. Introduction Completeness results of H for G[0,1]

Since ` (A ⊃ A) ⊃ ¬(A ⊃ A)⇒A and A ∉ G, (A ⊃ A) ⊃ ¬(A ⊃ A) ∉ G,
so |A ⊃ A| ≠ |¬(A ⊃ A)|. �

We abbreviate |A ⊃ A| by 1 and |¬(A ⊃ A)| by 0.

Lemma 1.23 The following properties hold in
〈
F/≡,≤

〉
:

1. |B ∧ C| =min{|B|, |C|}.

2. |B ∨ C| =max{|B|, |C|}.

3. |B ⊃ C| = 1 if |B| ≤ |C|, |B ⊃ C| = |C| otherwise.

4. |¬B| = 1 if |B| = 0; |¬B| = 0 otherwise.

5. |∃xB(x)| = sup{|B(t)| : t ∈ T }.

6. |∀xB(x)| = inf{|B(t)| : t ∈ T }.

7. |B| = 1 a B ∈ G.

Proof: ad 1. From ` ⇒B ∧ C ⊃ B, ` ⇒B ∧ C ⊃ C and ` D ⊃ B,D ⊃
C⇒D ⊃ B ∧ C for every D, it follows that |B ∧ C| = inf{|B|, |C|}, from
which 1. follows since ≤ is linear.

2. is proved similarly to 1.
ad 3. From ` ⇒(B ⊃ C)∧ B ⊃ C and ` D ∧ B ⊃ C⇒D ⊃ (B ⊃ C) for

every D, it follows that |B ⊃ C| = max{|D| : |D ∧ B| ≤ |C|}. Hence, in
view of 1., follows 3. since ≤ is linear.

ad 4. From` ⇒¬B∧B ⊃ ¬(A ⊃ A) and` D∧B ⊃ ¬(A ⊃ A)⇒D ⊃ ¬B
for every D, it follows that |¬B| =max{|D| : |D∧B| = 0}. Hence in view
of 1., follows 4. since ≤ is linear.

ad 5. Since ` ⇒B(t) ⊃ ∃xB(x), |B(t) ≤ |∃xB(x)| for every t ∈ T .
On the other hand, for every D,

|B(t)| ≤ |D| for every t ∈ T
a B(t) ⊃ D ∈ G for every t ∈ T
⇒ ∀x(B(x) ⊃ D) ∈ G since 3
⇒ ∃xB(x) ⊃ D ∈ G since ` ∀x(B(x) ⊃ D)⇒∃xB(x) ⊃ D
a |∃xB(x)| ≤ |D|.

Hence, 5. follows.
6. is proved similarly to 5.
ad 7. Since ` (A ⊃ A) ⊃ B⇒B and ` B⇒(A ⊃ A) ⊃ B,

|B| = 1 a |A ⊃ A| ≤ |B|a (A ⊃ A) ⊃ B ∈ Ga B ∈ G.

�

Takano now cites a proposition from Horns paper:
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1. Introduction Completeness results of H for G[0,1]

Lemma 1.24 (Horn [Hor69], Lemma 3.7) If 〈L,≤〉 is a countable linearly
ordered structure with distinct maximal and minimal elements, then there
exists a monomorphism from 〈L,≤〉 to 〈[0,1]∩Q,≤〉 which preserves the
maximal and the minimal elements as well as all existing suprema and
infima in 〈L,≤〉. Hence, there exists such a monomorphism on 〈L,≤〉
to 〈[0,1],≤〉.

Proof: Let the members of L be arranged in a sequence: a0 = 0, a1 = 1,
a2, · · · . Let h(0) = 0, h(1) = 1. We define h(an) inductively: Let ai
be the largest member of {ak : k < n} which is < an, and let aj be the
smallest member which is > an. Then let

h(an) =
h(ai)+ h(aj)

2
.

�

Horn concludes the proof with the comment that “It is not hard to
verify that h has the required properties”, and in fact most properties
are trivial.

The really crucial point in this lemma is the preserving of infima and
suprema. We want to exhibit this preserving in more detail:

Lemma 1.25 The evaluation defined by I(A) = h(|A|) is a valuation.

Proof: What in fact has to be proved is that I(∀xA(x)) and I(∃xA(x))
are ‘well defined’ in the sense, that the truth value of a quantified for-
mula computed from the above definition coincides with the truth value
computed via the distribution. For the propositional connectives this is
trivial.

The truth value of ∀xA(x) can be computed in two ways:

I(∀xA(x)) = h(inf
L
{|A(t)| : t ∈ T})

I(∀xA(x)) = inf
R
{h(|A(t)|) : t ∈ T}

The first one uses the definition of the equivalence class, the second one
the necessary properties of a valuation. We want to show that these two
definitions coincide, which proves the lemma.

Let L = F/≡ = {a0 = 0, a1 = 1, a2, . . .} and |∀xA(x)| = aN , h(aN) =
s. Furthermore let

inf
R
{h(|A(t)|) : t ∈ T} = q.

We assume that s ≠ q, i.e. the interpretations do not coincide. So we
have s < q.

As a first step it is easy to show that all ai with ai > aN are mapped
into (q,1], i.e. h(ai) > q. The proof is as follows: Assume that ai is
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mapped into an element less than q. Since aN is the infL we find a
term t such that aN ≤ |A(t)| < ai, which yields a contradiction using
the fact that h is a homomorphism.

The final step is to show that there is an element au that is mapped
into (s, q) which would yield a contradiction. For this let l be minimal
(the first) such that

1. l > N
2. ∀u < l : au < aN ∨ al < au
3. h(al) ∈ (q, q +

q − s
3

).

Such an al exists because q is the infimum of {h(ai) : ai > aN}. See
Figure 1.1 for explanation.

L

R

aN al

s q q + q−s
3

.........................
..

..
..
.

................
..

.

..
..
.

..................................... ..
..

.

Figure 1.1: The mapping h from 〈L,≤〉 to 〈[0,1],≤〉

Now choose u minimal such that u > l and aN < au < al, which
must exist since aN is the infimum. We compute the value of au under h:

h(au)− s =
h(aN)+min{h(ai) : i < u∧ ai > au}

2
− s

<
s + (q + (q − s)/3)

2
− s

= s + 2q
3

− s

= 2
3
(q − s)

Therefore, h(au) ∈ (s, q) which is a contradiction.
The case of the existential quantifier is treated accordingly. �

We are now ready to give the final proof for Theorem 1.20:
Proof: [of Theorem 1.20] By the above lemmas there exists a monomor-
phism h from

〈
F/≡,≤

〉
into 〈[0,1],≤〉 which preserves the maximal

and the minimal elements as well as all existing suprema and infima
in
〈
F/≡,≤

〉
. Put I(B) = h(|B|) for every B ∈ F and we obtain a model.
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Note that for every B,

I(B) = 1 a |B| = 1 a B ∈ G.

In this model,
B ∈ Σ⇒ B ∈ Ga I(B) = 1,

while A ∉ G so I(A) ≠ 1, so Σ⇒∆ is not valid.
Thus we have proven that on the assumption that Σ⇒∆ is unprov-

able, there is a model in which it is not valid. This is strong complete-
ness. �

As we have already mentioned on p. 3 in Lemma 1.1 the definition
of truth value for Gödel implication can be obtained from very simple
properties, one of it being the existence of a deduction theorem.

Corollary 1.26 (Deduction theorem for Gödel logics) Let T be a
theory over H then

T ,A ` B iff T ` A ⊃ B

In the first-order case the free variables of A and B must be disjoint.

Proof: The deduction theorem for Gödel logics is an immediate con-
sequence of Lemma 1.1 together with the completeness result. Another
proof would be by induction on the length of the proof. See [Háj98],
Theorem 2.2.18. �

1.6 Completeness results of H∆ for G∆[0,1]

We will now extend the proof given above to Gödel logics with∆ on [0,1].
In fact we can leave the proof as it is, only changing the definition of the
provable sequents from

Gn⇒Hn

to
∆Gn⇒Hn.

The only fact we have to prove is that the interpretation of the syn-
tactical ∆ behaves exactly like we want, i.e. like the function δ:

δ(1) = 1 δ(x) = 0 for x < 1

So we have to proof the following lemma

Lemma 1.27
h(|∆B|) = δ(h(|B|))
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Proof: We will use the following fact: If ∆G⇒A and ⇒A ⊃ B then
∆G⇒B. First assume that ∆B ∈ G, therefore, |∆B| = 1 and h(|∆B|) = 1,
too. We want to show that h(|B|) = 1, because only then δ(h(|B|)) = 1,
too. Using the axiom

∆3 ` ∆B ⊃ B
we obtain that ∆G⇒B, so B ∈ G which is equivalent to |B| = 1, therefore,
h(|B|) = 1, which proves the first case.

Now assume that ∆B ∉ G. First we compute the value of h(|∆B|):
The axiom

∆1 ` ∆B ∨¬∆B
together with the assumption ∆B ∉ G gives ¬∆B ∈ G, therefore, |¬∆B| =
1 and |∆B| = 0 and so

h(|∆B|) = 0.

Now we compute the value of δ(h(|B|)): Assume that B ∈ G. Using a
variant of the ∆-introduction rule

∆G⇒B
∆∆G⇒∆B

which needs the axioms for shifting the ∆ into implications and disjunc-
tions (∆2 and ∆5), together with the cancellation of double ∆ by using
∆4 and modus ponens we obtain ∆B ∈ G, which is a contradiction. So
we have shown that B ∉ G, but this is equivalent to h(|B|) < 1 and
so δ(h(|B|)) = 0, which proves the second part. �

Note that we have used all the axioms for ∆, including the introduc-
tion rule, which yields the following theorem:

Theorem 1.28 (Strong completeness of Gödel logic with ∆) A se-
quent Σ⇒∆ in the logic with ∆ is valid in [0,1] iff it is provable in H∆.

An interesting property is that there is no standard deduction theo-
rem for Gödel logics with ∆ as opposed to Gödel logics without ∆, where
we can go from A ` B to ` A ⊃ B. This is not the case for Gödel log-
ics with ∆, as we cannot go from A ` ∆A to ` A ⊃ ∆A. But we get a
deduction theorem of the following form:

Theorem 1.29 (Deduction theorem for Gödel logics with ∆) Let T
be a theory over H∆ then

T ,A ` B iff T ` ∆A ⊃ B

In the first-order case the free variables of A and B must be disjoint.

Proof: The proof is an easy induction on the length of the proof. See
[Háj98], Theorem 2.4.14. �
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CHAPTER 2

Linear orderings and topology

If we take a close look at Takano’s proof, we can extract the necessary
properties of the underlying truth value set such that the same com-
pleteness proof goes through. These properties in fact are defined by the
possibility to construct an isomorphism from the linear order

〈
F/≡,≤

〉
into a sub-ordering of the truth value set, which preserves all infima and
suprema.

From a more computational point of view it always has to be possible
to select an element in the truth value set which is between two given
ones, i.e. for all distinct a < b in the truth value set we always have to
find an element c such that a < c < b. This in fact is the definition of a
dense linear order.

This suggests that the completeness proof of Takano can be extended
to Gödel logics based on truth value sets which contain a dense linear
order. We will see later that all truth value sets which comply to this and
an additional condition with respect to 0, will in fact generate the same
Gödel logic, identical to GR. This exhibits a dilemma with respect to the
extensional definition of Gödel logics as the set of valid formulas over a
truth value set, where different truth value sets induce the same set of
valid formulas, i.e. the same Gödel logic. We are aiming at a dual seman-
tic characterization of Gödel logics, and topological and order theoretic
properties will provide this classification. Thus, this chapter is devoted
to topological and order theoretic preliminaries.
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2. Linear orderings and topology Dense linear orderings

2.1 Dense linear orderings

We discuss the necessary properties of linear orderings, but we do not
give a full account of this topic. A complete and very detailed introduc-
tion can be found in [Ros82].

Definition 2.1 (Dense linear orderings) A linear ordering is called
dense if for distinct element a < b there is an element c such that a <
c < b, i.e.

∀a∀b(a < b ⊃ ∃c(a < c < b))

As we have seen in Takanos proof of the completeness of standard
Gödel logics it is necessary to provide a linear order into which every
other countable linear oder can be embedded. Already Cantor proved
the following important result on dense linear orderings:

Lemma 2.2 Let 〈A,R〉 be a countable dense linear ordering which has no
first nor last element. Let 〈B, S〉 be an arbitrary countable linear ordering.
Then 〈B, S〉 is isomorphic to a sub-ordering of 〈A,R〉.

Proof: See [Ros82]. �

Another interesting property is the fact that a bounded dense linear
sub-ordering, say a sub-ordering of [0,1], when completed in the topo-
logical sense, yields a set which is closed and contains only limit points
and finitely many isolated points.

This is an instance of a more general notion, namely the notion of
perfect sets in Polish space. We will now give a short introduction to
perfect sets and come back to dense linear orderings later on. In the
presentation we follow [Kec95], where all the proofs are given, if not
otherwise indicated.

2.2 Perfect sets

All the following notations, lemmas, theorems are carried out within the
framework of Polish spaces, which are separable, completely metrizable
topological spaces. For our discussion it is only necessary to know that R
is such a Polish space.

Definition 2.3 (limit point, perfect space, perfect set) A limit point
of a topological space is a point that is not isolated, i.e. for every open
neighborhood U of x there is a point y ∈ U with y ≠ x. A space is
perfect if all its points are limit points. A set P ⊆ R is perfect if it is closed
and together with the topology induced from R is a perfect space.
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2. Linear orderings and topology Perfect sets

It is obvious that all (non-trivial) closed intervals are perfect sets, also
all countable unions of (non-trivial) intervals. But all these sets generated
from closed intervals have the property that they are ‘everywhere dense’,
i.e. contained in the closure of their inner component. There is another
very famous set which is perfect but is nowhere dense, the Cantor set:

Example 2.4 (Cantor Set) The set of all numbers in the unit interval
which can be expressed in triadic notation only by digits 0 and 2 is called
Cantor set.

A more intuitive way to obtain this set is to start with the unit in-
terval, take out the open middle third and restart this process with the
lower and the upper third. Repeating this you get exactly the Cantor set
because the middle third always contains the numbers which contain the
digit 1 in their triadic notation.

This set has a lot of interesting properties, the most important one
is that it is a perfect set:

Proposition 2.5 The Cantor set is perfect.

It is possible to embed the Cauchy space into any perfect space,
which yields the next lemma:

Lemma 2.6 If X is a nonempty perfect Polish space, then the cardinality
of X is 2ℵ0 and therefore, all nonempty perfect subsets, too, have cardi-
nality of the continuum.

It is possible to obtain the following characterization of perfect sets:

Proposition 2.7 (Characterization of perfect sets) For any perfect
set there is a unique partition of the real line into countably many inter-
vals such that the intersections of the perfect set with these intervals are
either empty, the full interval or isomorphic to the Cantor set.

Proof: See [Win99]. �

So we see that intervals and Cantor sets are prototypical for perfect
sets and the basic building blocks of more complex perfect sets.

Every Polish space can be partitioned into a perfect kernel and a
countable rest. This is the well known Cantor-Bendixon Theorem:

Definition 2.8 (condensation point) A point x in a topological space
X is a condensation point if every open neighborhood of x is uncountable.

Note that the condition for limit point is that every open neighbor-
hood is infinite, but not necessarily uncountable.
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Theorem 2.9 (Cantor-Bendixon) Let X be a Polish space. Then X can
be uniquely written as X = P ∪ C , with P a perfect subset of X and C
countable and open. The subset P is called the perfect kernel of X.

As a corollary we obtain that any uncountable Polish space contains
a perfect set, and therefore, has cardinality 2ℵ0 .

2.3 Cantor-Bendixon derivatives and ranks

Definition 2.10 ((iterated) Cantor-Bendixon derivative) For any
topological space X let

X′ = {x ∈ X : x is limit point of X}.

We call X′ the Cantor-Bendixon derivative of X.
Using transfinite recursion we define the iterated Cantor-Bendixon

derivatives Xα, α ordinal, as follows:

X0 = X
Xα+1 = (Xα)′

Xλ =
⋂
α<λ

Xα, if λ is limit ordinal.

It is obvious that X′ is closed, that X is perfect iff X = X′, and that
(Xα) for α ordinal is a decreasing transfinite sequence of closed subsets
of X.

Theorem 2.11 Let X be a Polish space. For some countable ordinal α0,
Xα = Xα0 for all α ≥ α0 and Xα0 is the perfect kernel of X.

Thus, it is possible to obtain the perfect kernel in a more constructive
way. This leads to the definition of the Cantor-Bendixon rank:

Definition 2.12 (Cantor-Bendixon rank) For any Polish space X, the
least ordinal α0 as above is called the Cantor-Bendixon rank of X and
is denoted by |X|CB. We will denote the perfect kernel of X with X∞ or
X|X|CB .

2.4 The structure of countable compact topological
spaces

If the space X is countable then X∞ = ∅, since every non-empty per-
fect set has at least cardinality of the continuum. Now it is possible to
give a finer characterization of these countable sets by analyzing their
structure under the Cantor-Bendixon derivatives.
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Definition 2.13 (rank of an element, topological type of X) Let X
be a countable topological space. For any x ∈ X, we can define its
(Cantor-Bendixon-)rank

rg(x) = sup{α : x ∈ Xα}.

Thus, we also can define the rank of X equivalently by

|X|CB = sup{rg(x) : x ∈ X}.

We call

τ(X) = (α,n), with α = α(X) = |X|CB, n = n(X) = |X|X|CB|

the topological type of X.

2.5 Relation between dense linear orderings and per-
fect sets

Coming back to Section 1.5 where we stated that a completeness proof à
la Takano can be carried out if the truth value set contains a dense linear
sub-ordering. The necessary condition of a truth-value set being closed
in [0,1] transforms the existence of a dense linear sub-ordering into the
condition that the truth-value set is uncountable:

Lemma 2.14 The completion of a dense linear sub-ordering of 〈[0,1],<〉
contains a perfect set.

Proof: The completion of the order-type η (this is the order-type of
a dense linear ordering) is λ, which is the order-type of the continuum,
thus, in combination with Theorem 2.9, a completion of a dense linear
ordering is uncountable. See [Ros82], Theorem 2.32 ff. �

We also want to go the other way round and prove that any perfect
set contains a dense linear sub-ordering.

Definition 2.15 (inner/boundary point of a perfect set) A point
p ∈ P is called inner point if there is a sequence (an) and a sequence (bn)
in P such that (an) is strictly increasing, (bn) is strictly decreasing and
liman = limbn = p. All other points are called boundary points.

Lemma 2.16 For the Cantor set all the numbers with infinitely many 0
and infinitely many 2 in the triadic notation are inner numbers. All others
are boundary points.
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2. Linear orderings and topology DLO and perfect sets

Proof: The lemma is obvious for all points with only finite triadic
notation and for those points ending in infinitely many digits 2. We only
have to show that all points with infinitely many 0 and 2 are inner points.
Let

a = 0.a1a2a3 . . . ak . . .

and i1, i2, . . . all the indices with ail = 0 and j1, j2, . . . all the indices
with ajl′ = 0. Consider the following two sequences:

lb = 0.a1a2 . . . ail−12ail+1 . . .

and
lc = 0.a1a2 . . . ail−10ail+1 . . .

Clearly, all the lb are larger then a and all the lc are smaller then a.
Moreover, the lb are a strictly decreasing sequence with limit a in the
perfect set, likewise the lc are a strictly increasing sequence with limit a
in the perfect set. This proves that a is an inner point. �

Now we can construct a countable dense subset which only consists
of inner points.

Lemma 2.17 For any two inner points of a perfect set there is an inner
point strictly between the two, i.e. for all x and y , x < y , x,y inner
points, there exists a z such that x < z < y and z is inner point.

Proof: According to Proposition 2.7 all parts of perfect sets are either
isomorphic to an interval or to the Cantor set, thus, we will show this
property for intervals and for the Cantor set only.

For intervals it is trivial, for Cantor set take an arbitrary point z′ ∈ P
between x and y . This is indeed possible since x and y are both inner
points. If z′ is inner point set z = z′. If not, it is a boundary point of the
Cantor set, thus, has only a finite triadic notation length, or the triadic
notation finishes with only 2. Either

z′ = a = 0.a1a2a3 . . . an

or
z′ = b = 0.b1b2b3 . . . bn222222 . . .

We approximate a with elements ka, and ka is generated from a by the
concatenation of the triadic notation of a with 2k zeros and a sequence
of 0202 . . ., thus,

0.a1a2a3 . . . an0202020202 . . .
0.a1a2a3 . . . an0002020202 . . .
0.a1a2a3 . . . an0000020202 . . .

28



2. Linear orderings and topology DLO and perfect sets

Furthermore, we approximate b with elements kb generated from b by
replacing the notation of b starting from the 2k-th ‘2’ with 0202 . . ., thus,

0.b1b2b3 . . . bn02020202 . . .
0.b1b2b3 . . . bn22020202 . . .
0.b1b2b3 . . . bn22220202 . . .

It is obvious from the triadic notation of the elements ka and kb that
they are inner points of the perfect set. Additionally, it is obvious that
limk→∞ ka = a and limk→∞ kb = b. Let ε < min{z′ − x,y − z′} and let N
be large enough that |z′ − Na| < ε (or |z′ − Nb| < ε), then set z = Na (or
z = Nb). �

Lemma 2.18 For any perfect set P there is a countable dense linear sub-
ordering PQ consisting only of inner points.

Proof: Start with 0 and 1, which can be counted as inner points, and
iterate the lemma from above to generate a set of inner points, which is
dense in itself. �

Thus, we have proven the equivalence of the existence of a perfect
subset and the existence of a dense linear sub-ordering of a truth-value
set.

Theorem 2.19 A truth-value set contains a dense linear sub-ordering if
and only if it is uncountable.

Proof: If the truth-value set is uncountable, it contains a perfect set
(Theorem 2.9) and by Lemma 2.18 a countable dense linear sub-ordering.
If a truth-value set contains a dense linear sub-ordering, it must also
contain the completion of this sub-ordering (a truth-value set must be
closed). This completion contains a perfect set (Lemma 2.14), thus, also
the truth-value set contains a perfect set and is uncountable. �
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CHAPTER 3

Propositional Gödel logics

Another approach to Gödel logics is via restricting the possible accessi-
bility relations of Kripke models of intuitionistic logic. Two somehow
reasonable restrictions of the Kripke structures are the restriction to
constant domains and the restriction that the Kripke worlds are linearly
ordered. One can now ask what sentences are valid in this restricted
class of Kripke models. This question has been settled by Dummett
in [Dum59] for the propositional case by adding to a complete axiomati-
zation of intuitionistic logic the axiom of linearity

lin (p ⊃ q)∨ (q ⊃ p)

As we have seen in Lemma 1.10 this logic can be viewed as G0
↓ and there-

fore, as a subcase of Gödel logics.
Another interesting distinction between LC or G0

↓ and other proposi-
tional Gödel logics is the fact that the entailment relation of LC is not
compact, while the one corresponding to G0

R is, as we will see in the next
chapter.

3.1 Summary of results

We will show the following results
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3. Propositional Gödel logics Completeness of H0 for LC

V infinite LC = H0,H∆0 complete for the logic
Theorem 3.4, p. 32, Theorem 3.10, p. 35

V finite (n) LCn = H0
n,H∆0

n complete for the logic
Theorem 3.9, p. 34, Theorem 3.11, p. 35

Table 3.1: Results for propositional logic

3.2 Completeness of H0 for LC

In [Dum59], Dummett proved that a formula of propositional Gödel logic
is valid in any infinite truth value set if it is valid in one infinite truth
value set. Moreover, all the formulas valid in these sets are axiomatized
by any axiomatization of intuitionistic propositional logic extended with
the linearity axiom scheme (p ⊃ q) ∨ (q ⊃ p). It is interesting to note
that p and q in the linearity scheme are propositional formulas. It is not
enough to add this axiom for atomic p and q. For an axiom scheme only
necessary for atomic formulas we have to use

((p ⊃ q) ⊃ p)∨ (p ⊃ (p ⊃ q))

to obtain completeness [BV98]. The proof given here is a simplified proof
of the completeness of H0 taken from Horn [Hor69].

Definition 3.1 An algebra P = 〈P, ·,+,→,0,1〉 is a Heyting algebra if
〈P, ·,+,0,1〉 is a lattice with least element 0, largest element 1 and x·y ≤
z iff x ≤ (y → z).

Definition 3.2 An L-algebra is a Heyting algebra in which

(x → y)+ (y → x) = 1

is valid for all x,y .

It is obvious that if we take L-algebras as our reference models for
completeness, the proof of completeness is trivial. Generally, it is not
very interesting to define algebras fitting to logics like a second skin, and
then proving completeness with respect to this class (Ł-algebras, . . . ),
without giving any connection to well known algebraic structures or al-
ready accepted reference models. In our case we want to show complete-
ness with respect to the real interval [0,1] or one of its sub-orderings.
More generally we aim at completeness with respect to chains, which are
special Heyting algebras:

Definition 3.3 A chain is a linearly ordered Heyting algebra.
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3. Propositional Gödel logics Completeness of H0 for LC

Chains are exactly what we are looking for as every chain (with cardi-
nality less or equal to the continuum) is isomorphic to a sub-ordering
of the [0,1] interval, and vice versa. Our aim is now to show complete-
ness of the above axiomatization with respect to chains. Furthermore
we will exhibit that the length of the chains for a specific formula can be
bounded by the number of propositional variables in the formula. More
precisely:

Theorem 3.4 A formula α is provable in H0 = LC if and only if it is
valid in all chains with at most n+ 2 elements, where n is the number of
propositional variables in α.

Proof: As usual we define the relation α ≤◦ β equivalent to ` α ⊃ β
and α ≡ β as α ≤◦ β and β ≤◦ α. It is easy to verify that ≡ is an
equivalence relation. We denote α/≡ with |α|. It is also easy to show
that with |α| + |β| = |α ∨ β|, |α| · |β| = |α ∧ β|, |α| → |β| = |α ⊃ β|
the set F/≡ becomes a Heyting algebra, and due to the linearity axiom
it is also an L-algebra. Furthermore note that |α| = 1 if and only if α is
provable in H0 (1 = |p ⊃ p|, |α| = |p ⊃ p| gives ` (p ⊃ p) ⊃ α which in
turn gives ` α).

If our aim would be completeness with respect to L-algebras the
proof would be finished here, but we aim at completeness with respect
to chains, therefore, we will take a close look at the structure of F/≡ as
L-algebra. Assume that a formula α is given, which is not provable, we
want to give a chain where α is not valid. We already have an L-algebra
where α is not valid, but how to obtain a chain?

We could use the general result from Horn, that a Heyting algebra
is an L-algebra if and only if it is a subalgebra of a direct product of
chains ([Hor69], Theorem 1.2), but we will exhibit how to find explicitly a
suitable chain. The idea is that the L-algebra F/≡ describes all possible
truth values for all possible orderings of the propositional variables in α.
We want to make this more explicit:

Definition 3.5 We denote with

C(⊥, pi1 , . . . , pin ,>)

the chain with these elements and the ordering

⊥ ≤ pi1 < . . . < pin ≤ >.

If C is a chain we denote with |α|C the evaluation of the formula in the
chain C.

32



3. Propositional Gödel logics Completeness of H0 for LC

Lemma 3.6 The L-algebra F/≡ is a subalgebra of the following direct
product of chains

X =
n!∏
i=1

C(⊥, πi(p1, . . . , pn),>)

where πi ranges over the set of permutations of n elements. We will
denote C(⊥, πi(p1, . . . , pn),>) with Ci.

Proof: Define φ : F/≡ → X as follows:

φ(|α|) = (|α|C1 , . . . , |α|Cn!).

We have to show that φ is well defined, is a homomorphism and is in-
jective. First assume that β ∈ |α| but φ(|α|) ≠ φ(|β|), i.e.

(|α|C1 , . . . , |α|Cn!) ≠ (|β|C1 , . . . , |β|Cn!)

but then there must be an i such that

|α|Ci ≠ |β|Ci .

Without loss of generality, assume that |α|Ci < |β|Ci . From the fact that
|α| = |β| we get ` β ⊃ α. From this we get that |β ⊃ α|Ci < 1 and from
` β ⊃ α we get that |β ⊃ α|Ci = 1, which is a contradiction. This proves
the well-definedness.

To show that φ is a homomorphism we have to prove that

φ(|α| · |β|) = φ(|α|) ·φ(|β|)
φ(|α| + |β|) = φ(|α|)+φ(|β|)
φ(|α| → |β|) = φ(|α|)→ φ(|β|).

This is a straightforward computation using |α∧β|C = φ(|α|C)·φ(|β|C).
Finally we have to prove that φ is injective. Assume that φ(|α|) =

φ(|β|) and that |α| ≠ |β|. From the former we obtain that |α|Ci = |β|Ci
for all 1 ≤ i ≤ n!, which means that

ICi(α) = ICi(β) for all 1 ≤ i ≤ n!.

On the other hand we know from the latter that there is an interpreta-
tion I such that I(α) ≠ I(β). Without loss of generality assume that

⊥ ≤ I(pi1) < . . . < I(pin) ≤ >.

There is an index k such that the Ck is exactly the above ordering with

ICk(α) ≠ ICk(β),

this is a contradiction.
This completes the proof that F/≡ is a subalgebra of the given direct

product of chains. �
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3. Propositional Gödel logics Completeness of H0 for LC

Example 3.7 For n = 2 the chains are C(⊥, p, q,>) and C(⊥, q, p,>).
The product of these two chains looks as given in Figure 3.1, p. 34. The
labels below the nodes are the products, the formulas above the nodes
are representatives for the class α/≡.
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Figure 3.1: L-algebra of C(⊥, p, q,>)×C(⊥, q, p,>). Labels below the nodes

are the elements of the direct product, formulas above the node are represen-

tatives for the class α/≡.

Now the proof of Theorem 3.4 is trivial since, if |α| ≠ 1, there is a
chain Ci where |α|Ci ≠ 1. �

This yields the following theorem:

Theorem 3.8 A propositional formula is valid in any infinite chain iff it
is derivable in LC = H0.

Going on to finite truth value set we can give the following theorem:

Theorem 3.9 A formula is valid in any chain with at most n elements iff
it is provable in LCn.

Proof: Assuming that H0
n ø α and using Corollary 1.26 we can proceed

as follows:

H0
n ø α

H0 + fin(n) ø α

H0 ø fin(n) ⊃ α
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3. Propositional Gödel logics QPGL

From this we know that there is an interpretation I such that

I(fin(n) ⊃ α) < 1

which is equivalent to

I(fin(n)) = 1 and I(α) < 1.

The first formula ensures that the domain has at most n elements.
Therefore, I is an interpretation with a domain with at most n elements
and which evaluates α to a value less than 1. �

We can extend the above prove to the case with ∆:

Theorem 3.10 A propositional formula with ∆ is valid in any infinite
chain iff it is derivable from H∆0.

Proof: The proof is analogous to the case without ∆, the only point
which needs attention is the well-definedness of the ∆, i.e. whether the
interpretation of ∆ defined in the proof really coincides with the in-
tended interpretation. For this we have to show that |∆A| = 1↔ |A| = 1,
and that either |∆A| or |¬∆A| is equal to one. The former is easy to
prove from the axioms, the latter is an immediate consequence of axiom
∆1. �

The same approach can be used to prove

Theorem 3.11 A propositional formula with ∆ is valid in any chain with
at most n elements iff it is provable in H∆0

n.

3.3 Quantified propositional Gödel logics

In classical logic, propositional quantification does not increase expres-
sive power per se. It does, however, allow to express complex properties
more naturally and succinctly, e.g., in a sense satisfiability and valid-
ity of formulas are easily expressible within the logic. In contrast to
classical propositional logic, propositional quantification may increase
the expressive power of Gödel logics. More precisely, statements about
the topological structure of the set of truth-values can be expressed us-
ing propositional quantifiers [BV98]. For example, the truth-value sets
[0, 1

2] ∪ {1} and [0,1], induce two different quantified propositional
Gödel logics, but only one first-order Gödel logic.

Theorem 3.12 The system Hqp is sound and complete for G
qp
∞ .
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Proof: The proof can be found in [BV98]. �

Some other results which may be of interest in this area:

Theorem 3.13 Validity in G
qp
↓ is decidable.

Proof: The proof identifies a truth value 1/n with the infinite binary
sequence 0n−11ω, 0 with 0ω, and uses a translation into S1S, see [BV98].
�

The interesting point in the following theorem is the existence of
a quantifier elimination procedure, which was necessary to show that
G
qp
↑ is the intersection of all the finitely valued quantified propositional

Gödel logics G
qp
n .

Theorem 3.14 The Gödel logic G
qp
↑ admits quantifier elimination, its va-

lidity is decidable and it is equal to the intersection of all finite-valued
propositional Gödel logics.

Proof: The proof also uses a translation into S1S and can be found in
[BCZ00]. �

Another very interesting property of quantified propositional Gödel
logics is

Theorem 3.15 The number of quantified propositional Gödel logics is un-
countable.

Proof: It is possible to express order and topological notions like being
a boundary point of the truth value set, and ordering parts of the truth
value set. This can be used for proving that there are uncountably many
different logics. See [BV98] for details. �
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CHAPTER 4

Propositional entailment

A question related to the completeness or recursive axiomatizablity of
logics is on the compactness of the entailment relation of this logic. It
has become increasingly obvious that such a study is called for, espe-
cially in cases where many-valued logics are applied in computer science
to reasoning about various domains. For instance, Avron [Avr91] has ar-
gued that Gödel logics are suited to formalize properties of concurrency
and advocated a view of logics primarily as entailment relations.

Definition 4.1 (Entailment) A (possibly infinite) set Π of formulas en-
tails a formula A iff for all interpretations I the infimum of all the in-
terpretations of formulas of Π is less or equal to the interpretation of A,
i.e.

Π ð Aa ∀I inf{I(B) : B ∈ Π} ≤ I(A)

Definition 4.2 (Compactness) G0
V is compact if, whenever Π ðV A

there is a finite Π′ ⊂ Π such that Π′ ðV A.

Note: It is important to mention that if we consider entailment relations
or compactness, the underlying truth value set has to be closed under
infima.
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4. Propositional entailment Summary of results

4.1 Summary of results

For propositional logic we will show that

V finite G0
V compact Theorem 4.5, p. 38

V countable G0
V not compact Theorem 4.7, p. 40

V uncountable G0
V compact Theorem 4.6, p. 39

Table 4.1: Results for propositional entailment

In the case of propositional tautologies, all logics of infinite truth
value sets are the same (cf. Chapter 3). The case for the entailment
relation is similar with dense linear subset taking the position of the
infinite subset.

One might wonder whether a different definition of the entailment
relation in Gödel logic might give different results. Another standard
way of defining entailment in many-valued logics is:

Π Ó A iff for all I , (∀B ∈ Π)(I(B) = 1)⇒ I(A) = 1

This definition yields the same results, as the following proposition
shows, allowing us to use the characterization of Ó or ð as convenient.

Proposition 4.3 Π ÓV A iff Π ðV A

Proof: See [BZ98], Proposition 2.2 �

It is an easy but fundamental result that Taut(V) = G0
V and Ent(V),

the set of valid entailment relations, depend only on the order type of V .
This central property of Gödel logics is dependent on the specific def-
inition of the Gödel implication, other definitions of implication might
not allow this kind of equivalence. The following proposition makes this
statement precise:

Proposition 4.4 Let p and q propositional variables, A an arbitrary for-
mula, I and I′ valuations, not necessarily on the same sets of truth val-
ues, such that I(p) = 1 iff I′(p) = 1, I(p) < I(q) iff I′(p) < I′(q), and
I(p) = I(q) iff I′(p) = I′(q) (for all p, q). Then I(A) = 1 iff I′(A) = 1
and I(A) = I(p) iff I′(A) = I′(p).

Proof: The proof is straightforward by induction on the complexity of
A. �

4.2 Finite truth value sets

Theorem 4.5 If V is finite then GV is compact.
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4. Propositional entailment Uncountable truth value sets

Proof: We are discussing the entailment Π ð A. Let Π = {B1, B2, . . .},
and let X = {p0, p1, . . .}, be an enumeration of variables occurring in Π,
A such that all variables in Bi occur before the variables in Bi+1. We
show that either {B1, . . . , Bk} ð A for some k ∈ N or Π ú A.

Let T be the complete semantic tree on X, i.e. T = V<ω. An element
of T of length k is a valuation of p0, . . . , pk−1. Since V is finite, T is
finitary. Let T ′ be the subtree of T defined by: v ∈ T ′ if for every initial
segment v′ of v and every k such that all the variables in A,B1, . . . , Bk
are among p0, . . . , p`(v′),

v′({B1, . . . , Bk}) =min{v(B1), . . . , v(Bk)} > v′(A).

In other words, branches in T ′ terminate at nodes v′, where

v′({B1, . . . , Bk}) ≤ v(A).

Now if T ′ is finite, there is a k such that B1, . . . , Bk ðV A. Otherwise,
since T ′ is finitary, it contains an infinite branch. Let v be the limit
of the partial valuations in that branch. Obviously, since V is finite,
v(Π) > v(A) and so Π úV A. �

4.3 Uncountable truth value sets

Theorem 4.6 If V is uncountable, then GV is compact.

Proof: Let W be a densely ordered, countable subset of V . Such a
subset exists according to Theorem 2.19. Let X be a set of variables. A
chain on X is an arrangement of X in a linear order. Formally, a chain
C on X is a sequence of pairs 〈pi, oi〉 where oi ∈ {<,=, >} where pi
appears exactly once. A valuation I respects C if I(pi) = I(pi+1) if oi is
=, I(pi) > I(pi+1) if oi is >, and I(pi) < I(pi+1) if oi is <. If X is finite,
there are only finitely many chains on X.

We consider the entailment relation Π ð A and construct a tree in
stages as follows: The initial node is labeled by 0 < 1 and an empty valu-
ation. Stage n+1: A node N constructed in stage n is labeled by a chain
on the variables p1, . . . , pn and a valuation IN of p1, . . . , pn respecting
the chain. N receives successor nodes, one for each possibility of ex-
tending the chain by inserting pn+1. The labels of each successor node
N′ are the corresponding extended chain and an extension of IN which
respects the extended chain. The value IN′(pn+1) is chosen inside W ,
i.e. the endpoints of W may not be chosen as values. Since W is densely
ordered, this ensures that such a choice can be made at every stage.

We call a branch of T closed at node N (constructed at stage n) if for
some finite Π′ ⊆ Π such that var(Π′) ∪ var(A) ⊆ {p1, . . . , pn} it holds
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that IN(Π′) ≤ IN(A). T is closed if it is closed on every branch. In that
case, for some finite Π′ ⊆ Π, we have Π′ ð A.

If T is not closed, it contains an infinite branch. Let I be the limit
of the IN of nodes N on the infinite branch. It holds that I(B) > I(A)
for all B ∈ Π, for otherwise the branch would be closed at the first stage
where all the variables in A were assigned values. Let w = I(A). By
Lemma 1.14, Iw(A) = I(A) and Iw(Π) = inf{Iw(B) : B ∈ Π} = 1, and so
Π ú A, a contradiction. �

4.4 Countable truth value sets

Theorem 4.7 If V is countably infinite, then GV is not compact.

Proof: Note that if V is countable, it cannot contain a densely ordered
subset, since truth-value sets for entailment have to be closed (under
infima). We define a sequence of formulas Γk as follows:

Γ ′k = {p0/2k ≺ p1/2k ≺ . . . ≺ p(2k−1)/2k ≺ p2k/2k}
Γ ′′k = {p0/2k ⊃ q, . . . , p2k/2k ⊃ q}
Γk = Γ ′k ∪ Γ ′′k
Γ =

⋃
k∈ω

Γk

Intuitively, Γ ′k expresses that the pr = pi/2k are linearly ordered and⋃
k∈ω Γ ′k expresses that the variables pr are densely ordered. Since V

does not contain a densely ordered subset, we have

Γ ðV q.

In fact the only I such that I(Γ) = 1 is I(pr ) = 1 for all r , and I(q) = 1.
Now assume a finite Γ ′ ⊂ Γ such that

Γ ′ ðV q.

There is a Γk ⊇ Γ ′. Since V is infinite we can choose at least 2k + 2
different truth values v0 < · · · < v2k+1 < 1. Define the valuation I as

I(pi/2k) = vi
I(q) = v2k+1.

Then we have I(Γk) = I(Γ ′) = 1, but I(q) < 1 and therefore, Γ ′ úV q. �

Thus, we have succeeded in characterizing the compact propositional
Gödel logics. They are all those where the set of truth values V is either
finite or contains a nontrivial densely ordered subset.
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Note: Although the question whether there are uncountably many first-
order Gödel logics has not been answered till now, it is possible to prove
that there are uncountably (2ℵ0 ) many entailment relations, by express-
ing ordinals and their ordering. There are uncountably many such or-
derings, thus, also uncountably many different entailment relations1.

1Martin Goldstern, oral communication
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CHAPTER 5

First-order Gödel logics

5.1 Summary of results

We will derive the results as listed in Table 5.1 and Table 5.2.

V finite (n) Hn complete for the logic
Theorem 5.1, p. 42

V countable not recursively enumerable
Theorem 5.3, p. 43

V∞ ≠∅, 0 ∈ V∞ H complete for the logic
Theorem 5.5, p. 49

V∞ ≠∅, 0 isolated H+ iso0 complete for the logic
Theorem 5.6, p. 50

V∞ ≠∅, 0 ∉ V∞, 0 not isolated not recursively enumerable
Theorem 5.8, p. 52

Table 5.1: Results for first-order logic

5.2 Finite truth value sets

Theorem 5.1 A formula of first-order language is valid in all chains with
at most n elements iff it is provable in Hn.
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V finite (n) H∆n complete for the logic
Theorem 5.2, p. 43

0,1 ∈ V∞ H∆ complete for the logic
Theorem 5.9, p. 55

0 ∈ V∞, 1 isolated H∆+ iso1 complete for the logic
Theorem 5.10, p. 55

0 isolated, 1 ∈ V∞ H∆+ iso0 complete for the logic
Theorem 5.10, p. 55

V∞ ≠∅, 0, 1 isolated H∆+ iso0 + iso1 complete
Theorem 5.10, p. 55

V∞ ≠∅, 1 ∉ V∞, 1 not isolated not recursively enumerable
Theorem 5.8, p. 52

Table 5.2: Results for first-order logic with ∆

Theorem 5.2 A formula of first-order language with ∆ is valid in all
chains with at most n elements iff it is provable in H∆n.

Proof: The proofs are analogous to the proof of Theorem 3.9, p. 34. �

5.3 Countable truth value sets

In this section we prove that Gödel logics with countable truth value
sets, i.e. those Gödel logics where the truth value set does not contain a
dense subset, are not axiomatizable. We establish the result by reducing
the classical validity of a formula in all finite models to the validity of
a formula in Gödel logic. This yields the non-axiomatizability due to
Trachtenbrot’s theorem [Tra50].

Theorem 5.3 If V is countably infinite, then GV is not axiomatizable.

Proof: We use the following approach: For every sentence A there is a
sentence Ag s.t. Ag is valid in GV iff A is true in every finite (classical)
first-order structure. By Theorem 2.6, V is countably infinite iff it does
not contain an infinite densely ordered subset.

We define Ag as follows: Let P be a unary and L be a binary predi-
cate symbol not occurring in A and let Q1, . . . , Qn be all the predicate
symbols in A. We use the following abbreviations:

x ∈ y ≡ ¬¬L(x,y)
x ≺ y ≡ P(x) ≺ P(y) ≡ (P(y) ⊃ P(x)) ⊃ P(y)

Note that for any interpretation I , I(x ∈ y) is either 0 or 1, and as long
as I(P(x)) < 1 (in particular, if I(∃zP(z)) < 1), we have I(x ≺ y) = 1
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iff I(P(x)) < I(P(y)). Let

Ag ≡ S ∧ c1 ∈ 0∧ c2 ∈ 0∧ c2 ≺ c1∧
∧∀i

[
∀x,y∀j, k∃z Levels ∨∀x¬(x ∈ s(i))

]
⊃ (A′ ∨ ∃uP(u))

where S is the conjunction of the standard axioms for 0, successor s and
≤, with double negations in front of atomic formulas,

Levels ≡ j ≤ i∧ x ∈ j ∧ k ≤ i∧y ∈ k∧ x ≺ y ⊃
⊃ (z ∈ s(i)∧ x ≺ z ∧ z ≺ y)

and A′ is A where every atomic formula is replaced by its double nega-
tion, and all quantifiers are relativized to the predicate R(i) ≡ ∃x(x ∈ i).

Intuitively, L is a predicate that divides a subset of the domain into
levels, and x ∈ i means that x is an element of level i. P orders the
elements of the domain which fall into one of the levels in a sub-ordering
of the truth values. The idea is that for any two elements in a level ≤ i
there is an element in level i + 1 which lies strictly between those two
elements in the ordering given by ≺. If this condition cannot be satisfied,
the levels above i are empty. Clearly, this condition can be satisfied only
for finitely many levels unless V contains a dense subset, since if more
than finitely many levels are non-empty, then

⋃
i{x : x ∈ i} gives a dense

subset. By relativizing the quantifiers in A to the indices of non-empty
levels, we in effect relativize to a finite subset of the domain. We make
this more precise:

Suppose A is classically false in some finite structure I . Without loss
of generality, we may assume that the domain of this structure is the
naturals 0, . . . , n. We extend I to a GR interpretation Ig with domain N
as follows: Since V contains infinitely many values, we can choose c1, c2,
L and P so that ∃x(x ∈ i) is true for i = 0, . . . , n and false otherwise,
and so that sup DistrIgP(x) < 1. The number theoretic symbols receive
their natural interpretation. The antecedent of Ag clearly receives the
value 1, and the consequent receives sup DistrIgP(x) < 1, so Ig ù Ag .

Now suppose that I ù Ag . Then I(∃x P(x)) < 1 and sup DistrIP(x) <
1. In this case, I(x ≺ y) = 1 iff I(P(x)) < I(P(y)), so ≺ defines a strict
order on the domain of I . It is easily seen that in order for the value of
the antecedent of Ag under I to be greater than that of the consequent,
it must be = 1 (the values of all subformulas are either ≤ sup DistrIP(x)
or = 1). For this to happen, of course, what the antecedent is intended
to express must actually be true in I , i.e. that x ∈ i defines a series of
disjoint levels and that for any i, either level i is empty or for all x, y
s.t. x ∈ j, y ∈ k with j, k ≤ i and x ≺ y there is a z with x ≺ z ≺ y and
z ∈ i+ 1. To see this, consider the relevant part of the antecedent,

B = ∀i
[
∀x,y∀j∀k∃z Levels ∨∀x¬(x ∈ s(i))

]
.
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If I(B) = 1, then for all i, either

I(∀x,y∀j∀k∃z Levels) = 1

or I(∀x¬(x ∈ s(i))) = 1. In the first case, we have

I(∃z Levels) = 1

for all x, y , j, and k. If it is not the case that for some z, I(Levels) < 1,
yet I(∃z Levels) = 1. Then, for at least some z the value of that formula
would have to be > sup DistrIP(z), which is impossible. Thus, for every
x, y , j, k, there is a z such that I(Levels) = 1. But this means that
for all x, y s.t. x ∈ j, y ∈ k with j, k ≤ i and x ≺ y there is a z with
x ≺ z ≺ y and z ∈ i+ 1.

In the second case, where I(∀x¬(x ∈ s(i))) = 1, we have that
I(¬(x ∈ s(i))) = 1 for all x, hence I(x ∈ s(i)) = 0 and level s(i) is
empty.

Since V contains no dense subset, from some finite level i onward,
the levels must be empty. Of course, i > 0 since c1 ∈ 0. Thus, A is false
in the classical interpretation Ic obtained from I by restricting I to the
domain {0, . . . , i− 1} and Ic(Q) = I(¬¬Q) for atomic Q. �

This shows that no infinite-valued Gödel logic which does not con-
tain a dense subset is axiomatizable. Furthermore it has been shown
in [Baa96] that all the Gödel logics based on truth value sets with topo-
logical type τ = (1, n), i.e. with Cantor-Bendixon rank of 1 and n limit
points, are distinct. A similar result has been obtained in [Pre02] for
Gödel logics with truth value sets of topological type τ = (n,1), i.e.
Cantor-Bendixon rank of n. This exhibits that there are at least count-
ably many different first-order Gödel logics. The question whether there
are uncountably many first-order Gödel logics still awaits settling.

5.4 Uncountable truth value sets

In the light of the previous chapters we will first revisit Takano’s proof
given on p. 17. The crucial fact, the one dependent on the truth value set,
is the function hmapping

〈
F/≡,≤

〉
via 〈[0,1]∩Q,≤〉 to 〈[0,1],≤〉. This

function has to be order preserving and infima and suprema preserving.
Using Lemma 2.18 we can find a countable dense linear sub-ordering in
every perfect set. Unfortunately, we cannot use Lemma 2.2 directly since
we do not know if all infima and suprema are preserved.

Another detail we have to observe is the position of the countable
dense linear sub-ordering. This is not arbitrary, since we can express a
descent to 0 in the logical language:

∀x¬¬A(x)∧¬∀xA(x)
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The meaning of this formula is that all values of A(x) are greater than 0,
but the value of ∀xA(x) is 0, thus, providing an infinite decreasing se-
quence to 0.

As a consequence, the placement of the countable dense linear subset
is not arbitrary, but must have 0 as smallest element. This extends to the
perfect set which must contain 0, too. If these conditions are fulfilled we
still have to find a function h as above.

5.4.1 Case 0 ∈ V∞

We want to extend Takanos proof such that it proves the completeness
of any Gödel logics with a truth value set which contains a perfect set
which in turn contains 0. For this we have to extend Horn’s lemma
from p.19 such that we can give a monomorphism from 〈L,≤〉 to a count-
able dense sub-ordering of the perfect set V∞, call it PQ, so we need a
mapping

h : 〈L,≤〉 →
〈
PQ,≤

〉
.

We will use the set PQ as defined in Lemma 2.18 on p. 29, the count-
able, dense in itself subset of a perfect set. Note that 0 and maxV∞ are
contained in PQ (see Lemma 2.18). We cannot use the function h given
in Horn’s lemma, but we have to give another one which has the same
properties, i.e. that existing infima and suprema are preserved.

The problem with the set PQ is that it may be nowhere dense and
that Horn’s h could produce a value which is not in the set. When ad-
justing this function we have to take care that infima and suprema are
preserved, this is the most difficult part. The first idea of calculating the
value of h and if it is not within PQ, shift it to one side of the gap, does
not work, because if the infimum of a sequence is on the left side of a
gap, but all the elements are shifted to the right side because the value
under h is in the gap, then the infimum will not be preserved. So we
have to ensure that the elements of a sequence jump over gaps coming
always closer to the limit.

We will solve this problem as follows: We will use the function h to
compute an initial value. If it is in a gap we decide where to put it, into
the upper or the lower part, depending on the position in the gap: Is the
initial value in the lower half of the gap, we put it into the lower part, if
it is in the upper half, we put it into the upper part. The lower and up-
per part are those values of PQ which are greater than the upper border
(smaller than the lower border) of the gap. Furthermore, we put them
always closer to the border than all the previous elements, only depen-
dent on the index in an enumeration of all elements. This way we ensure
that finally every gap between list elements and the infimum/supremum
will be skipped.
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Figure 5.1: From h to h̄

For any element x ∈ [0,1] we define two values: x↑ and x↓ in the
perfect set P = V∞ as follows: If x ∈ PQ then x↑ and x↓ are both equal
to x. Otherwise x↑ is the next larger (in terms of order) element in P
and x↓ the next smaller one:

x↑ =min
R
{p ∈ P : p > x}

x↓ =max
R
{p ∈ P : p < x}

In the special case of Cantor’s middle third set and the representation
of its elements in triadic notation we can describe the same operation as
follows: Let x = 0.w1w′ with w ∈ {0,2}∗ and w′ ∈ {0,1,2}ω (the word
w′ can be infinitely long), then we define

x↑ = 0.w0222 . . .
x↓ = 0.w2

Again, let
L = {a0 = 0, a1 = 1, a2, . . .}

and define h̄(a0) = 0, h̄(a1) = supV∞. Let

h(an) =
h̄(ai)+ h̄(aj)

2

with ai the largest member of {ak : k < n} and aj the smallest member
which is > an (see Lemma 1.24 on p. 19 for comparison). This is the first
proposal for a value of h̄(an). If this value is not in PQ we have to adjust
the value. If h(an) ∈ PQ we define h̄(an) = h(an), otherwise we define
a set Q(an) of numbers from PQ for an as follows: If h(an) is in the
upper half of a gap, i.e. if |x − x↓| > |x↑ − x| we have

Q(an) = {q ∈ PQ : ∀j < n(aj > an ⊃
⊃ h(an)↑ < q < h̄(aj)∧ q − h(an)↑ < 1/n)}

and otherwise (lower half)

Q(an) = {q ∈ PQ : ∀j < n(aj < an ⊃
⊃ h̄(aj) < q < h(an)↓ ∧ h(an)↓ − q < 1/n)}.
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Finally we define h̄(an) as one element from Q(an).
The following lemma shows that this modified valuation function has

the necessary properties.

Lemma 5.4

h̄(inf
L
{|A(t)| : t ∈ T}) = inf

R
{h̄(|A(t)|) : t ∈ T}

Proof: Let

aN = inf
L
{|A(t)| : t ∈ T}

s = h̄(aN)
q = inf

R
{h̄(|A(t)|) : t ∈ T}

and suppose that s ≠ q.

R
s q al←-s+q

2
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Figure 5.2: The gap between s and q

First we can show as in the proof of Lemma 1.25 that all ai with
aI > aN are mapped into (q,1]∩ PQ.

Now construct a sequence of elements ali as follows: al0 = aN , and
for all i > 0 take the minimal li such that

1. li > li−1

2. ∀u < li : au < aN ∨ ali < au

The following properties are easy to verify:

lim
i→∞

h̄(ali) = q

lim
i→∞

h(ali) =
q + s

2

The former one is obvious since q is the infimum of all the h̄(ak) (where
ak > aN ), the latter one is a consequence from the former, as the values
of h̄ and h are computed from each other.

From the difference of the limits it follows that there must be a
gap (g,G) around (q + s)/2, otherwise the h̄ values would not be larger
than q. I.e., (q + s)/2 < G ≤ q. Thus, the values h(ali)↑ are less or equal
to G.
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5. First-order Gödel logics Case 0 ∉ V∞, 0 isolated

First assume that G < q. We consider the supremum of the sets
Q(ali):

supQ(ali) ≤ h(ali)↑ +
1
li

≤ G + 1
li

< q for large enough i

But, since h̄(ali) is taken out of the set Q(ali), it follows that for large
enough i, h̄(ali) < q, which is a contradiction.

So it remains to find a contradiction for the case where G = q, i.e.
where q is an upper boundary point. Remember, that all the h(ali)must
fall into the upper half of the gap, otherwise the value of h̄(ali) would be
computed from h(ali)↓, immediately generating a contradiction. Thus,
the middle of the gap has to be less or equal than h(ali), and also less or
equal than the limes of the h(ali), which is (q + s)/2. So the gap spans
the whole interval (s, q), which is a contradiction to the choice of s as an
inner point (by construction of h̄).

The case of the existential quantifier is treated accordingly.
This concludes the proof that the infima are preserved under h̄ and

that the valuation given by

I(A) = h̄(|A|)

is in fact a correct valuation and a countermodel. �

Theorem 5.5 (Completeness of Gödel logics with 0 ∈ V∞)
A formula of Gödel logic is valid in a truth value set whose perfect kernel
contains 0 iff it is derivable from H.

Proof: We take Takano’s proof and instead of using the function h
given there we use the function h̄ given above for the mapping

h :
〈
F/≡,≤

〉
→
〈
PQ,≤

〉
→ 〈V∞,≤〉 → 〈V,≤〉

�

5.4.2 Case 0 ∉ V∞, 0 isolated

In the case where 0 is isolated from the perfect kernel we will use the
following approach: First the truth value set is transformed into a new
one by shifting the minimum of the perfect kernel into 0 and thereby
cutting out everything between 0 and the minimum. The resulting truth
value set contains 0 in the perfect kernel and thus the completeness
result from Theorem 5.5 can be used to obtain a counter model, which
will be transformed into a counter model for the original truth value set.
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5. First-order Gödel logics Case 0 ∉ V∞, 0 isolated

Theorem 5.6 A formula is valid in an uncountable truth value set where
0 is isolated iff it is derivable from H+ iso0.

Proof: We will prove that if we have a (possibly) infinite Π and A then
either there is a finite subset Π′ of Π such that A is provable from Π′ in
H+ iso0 or A is not entailed by Π. This gives strong completeness.

We translate the perfect kernel V∞ into 0 by subtracting the infimum
of V∞:

V1 = V∞ − infV∞

(note that V∞ is the perfect kernel). This shifts the perfect kernel into
the origin. Now choose an inner point x of V1 such that 0 < x < supV1

and set
V ′ = (V1 ∩ [0, x])∪ {1}

This truth value set is a perfect set and 0 is contained in it. Later we
will shift the interpretation back into the perfect kernel, but we have to
ensure that an unshifted truth value which is less than 1 is not shifted
into 1. It could be the case that 1 is contained in the perfect kernel
and the unshifted truth value is the supremum of the set V1, which is
less than 1, but when shifted back into the perfect kernel becomes 1.
Therefore, it is necessary to cut out a part of the perfect kernel.

Define

Γ = {∀ȳ(¬∀xA(x, ȳ) ⊃ ∃x¬A(x, ȳ)) : A(x, ȳ) formula}

where A(x, ȳ) ranges over all formulas with free variables x and ȳ . We
consider the entailment relation in V ′. Either

Π, Γ ðV ′ A

or
Π, Γ úV ′ A.

In the former case we know from the strong completeness of H for G
that there are finite subsets Π′ and Γ ′ of Π and Γ , respectively, such that

Π′, Γ ′ `H A.

Since all the sentences in Γ are provable in H+ iso0 we obtain that

Π′ `H+iso0 A.

In the latter case there is an interpretation I′ = 〈D′, s′〉 such that

inf{I′(G) : G ∈ Π∪ Γ} > I′(A).
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5. First-order Gödel logics Case 0 ∉ V∞, 0 isolated

It is obvious from the structure of the formulas in Γ that their truth value
will always be either 0 or 1. Combined with the above we know that

I′(G) = 1 for all G ∈ Γ .

Next we define a function φ(x) which shifts the interpretation back into
the original truth value set V

φ(x) =


0 x = 0

x + infV∞ 0 < x < 1

1 x = 1

and define an interpretation I = 〈D, s〉 by

s = s′ ◦φ, D = D′,

i.e. that s(P) = φ(s′(P)) for P atomic. Due to the fact that we just
shifted the truth value set back and forth, it is obvious that this function
in fact maps into V . It remains to show that this interpretation gives a
counterexample to Π ð A, i.e.

inf{I(G) : G ∈ Π} > I(A).

This is a consequence of the following lemma:

Lemma 5.7
I = I′ ◦φ

Proof: The proof is done by induction on the complexity of the for-
mula. For A ∧ B, A ∨ B, A ⊃ B this is obvious. The case of ∃xA(x) is
also easy to handle due to the carefully chosen V ′ such that φ(sup(V ′ \
{1})) < 1. So if ∃xA(x) is evaluated to 1 under I′ then there must be a
witness and therefore, it is also evaluated to 1 under I .

The important case is ∀xA(x) where we have to show that by shift-
ing the 0 away (in fact shifting the rest away from 0) we do not change
the evaluation. In the case the I′(∀xA(x)) > 0 it is obvious that

I(∀xA(x)) = φ(I′(∀xA(x))).

In the case where I′(∀xA(x)) = 0 we observe that since A(x) contains
a free variable and therefore,

¬∀xA(x) ⊃ ∃x¬A(x) ∈ Γ

we know that
I′(¬∀xA(x) ⊃ ∃x¬A(x)) = 1
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5. First-order Gödel logics Case 0 ∉ V∞, 0 not isolated

and thus that there is a witness c such that I′(A(c)) = 0. Using the
induction hypothesis we know that I(A(c)) = 0, too. Thus, we obtain
that

I(∀xA(x)) = 0,

which completes the proof. �

Thus we have shown that I is a counterexample to Π ðV A which
completes the proof of the theorem. �

5.4.3 Case 0 ∉ V∞, 0 not isolated

We will extend the proof given in Section 5.3 to the case that 0 is not in
the perfect kernel V∞ and it is not isolated. Alternatively, we could say
for truth value sets where a neighborhood of 0 exists which is countable
and no neighborhood of 0 is singular. We will again establish this result
by reducing classical validity of a formula in all finite models to the
validity of a formula in this Gödel logic.

Theorem 5.8 If 0 ∉ V∞ and 0 is not isolated, then GV is not axiomatiz-
able.

Proof: In the proof for Theorem 5.3 levels have been defined such that
if there are two distinct elements in a level ≤ i there is an element in
level i+1 which lies strictly between those two elements in the ordering
given by ≺. In the countable case we could carry out this construction
directly, in the present case we have to ensure that this construction is
carried out in a countable surrounding of 0. This is done by adding a
sequence decreasing to 0 by using

∀u¬¬P(u)∧¬∀uP(u)

which expresses that all the P(u) are greater than 0, but the infimum is
0. Then for all u the construction from Theorem 5.3 is carried out in the
interval [0, u] (interpreted as the interval [0, I(P(u))]) in parallel, and
if it terminates in one of these intervals, the next level is empty in all
intervals/parallel constructions.

We define Ag as follows: Let P be a unary and L be a ternary pred-
icate symbol not occurring in A and let Q1, . . . , Qn be all the predicate
symbols in A. We use the following abbreviations:

x ∈u y ≡ ¬¬L(x,y,u)
x ≺ y ≡ P(x) ≺ P(y) ≡ (P(y) ⊃ P(x)) ⊃ P(y)
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5. First-order Gödel logics Case 0 ∉ V∞, 0 not isolated

Note that for any interpretation I , I(x ∈u y) is either 0 or 1, and as long
as I(P(x)) < 1 (in particular, if I(∃zP(z)) < 1), we have I(x ≺ y) = 1
iff I(P(x)) < I(P(y)). Let

Ag ≡ S ∧∀u¬¬P(u)∧¬∀uP(u)∧∧∀u
{
c ∈u 0∧u ∈u 0∧¬P(c)∧

∧∀i
[
∀x,y∀j, k∃z Levels ∨∀u′∀x¬(x ∈u′ s(i))

]}
⊃

⊃ (A′ ∨ ∃uP(u))

where S is the conjunction of the standard axioms for 0, successor s and
≤, with double negations in front of atomic formulas,

Levels ≡ j ≤ i∧ x ∈u j ∧ k ≤ i∧y ∈u k∧ x ≺ y ⊃
⊃ (z ∈u s(i)∧ x ≺ z ∧ z ≺ y)

and A′ is A where every atomic formula is replaced by its double nega-
tion, and all quantifiers are relativized to the predicate

R(i) ≡ ∃u∃x(x ∈u i).

As in the mentioned proof, intuitively L is a predicate that divides
a subset [0, u] of the domain into levels, and x ∈u i means that x is
an element of level i in the interval [0, u]. If the construction of the
middle element cannot be done at one level in one neighborhood, the
next level in all neighborhoods is empty, this is accomplished by the
∀u′∀x¬(x ∈u′ s(i)). Again, the required points to fill a level can only
be found for finitely many levels in parallel if no neighborhood of 0 is
uncountable. By relativizing the quantifiers in A to the indices of non-
empty levels, we in effect relativize to a finite subset of the domain. We
make this more precise:

Suppose A is classically false in some finite structure I . Without loss
of generality, we may assume that the domain of this structure is the
naturals 0, . . . , n. We extend I to a GR interpretation Ig with domain N
as follows: Since V contains infinitely many values, we can choose c, L
and P so that ∀u∃x(x ∈u i) is true for i = 0, . . . , n and false otherwise,
and so that sup DistrIgP(x) < 1. The number theoretic symbols receive
their natural interpretation. The antecedent of Ag clearly receives the
value 1, and the consequent receives sup DistrIgP(x) < 1, so Ig ù Ag .

Now suppose that I ù Ag . Then I(∃x P(x)) < 1 and sup DistrIP(x) <
1. In this case, I(x ≺ y) = 1 iff I(P(x)) < I(P(y)), so ≺ defines a strict
order on the domain of I . It is easily seen that in order for the value of
the antecedent of Ag under I to be greater than that of the consequent,
it must be = 1 (the values of all subformulas are either ≤ sup DistrIP(x)
or = 1). For this to happen, of course, what the antecedent is intended
to express must actually be true in I , i.e. that x ∈u i defines a series of
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5. First-order Gödel logics Case with ∆

disjoint levels and that for any u and for any i, either level i+1 is empty
or for all x, y s.t. x ∈u j, y ∈u k with j, k ≤ i and x ≺ y there is a z
with x ≺ z ≺ y and z ∈u i+ 1. To see this, consider the relevant part of
the antecedent,

B = ∀i
[
∀x,y∀j, k∃z Levels ∨∀u′∀x¬(x ∈u′ s(i))

]
.

If I(B) = 1, then for all i, either

I(∀x,y∀j, k∃z Levels) = 1

or I(∀u′∀x¬(x ∈u′ s(i))) = 1. In the first case, we have

I(∀z Levels) = 1

for all x, y , j, and k. Now suppose it were not the case that for some
z, the I(Levels) = 1, yet I(∃z Levels) = 1. Then for at least some z
the value of that formula would have to be > sup DistrIP(z), which is
impossible. Thus, for every x, y , j, k, there is a z such that I(Levels) =
1. This means that for all x, y s.t. x ∈u j, y ∈u k with j, k ≤ i and
x ≺ y there is a z with x ≺ z ≺ y and z ∈u i+ 1.

In the second case, where I(∀u′∀x¬(x ∈u′ s(i))) = 1, we have that
I(¬(x ∈u′ s(i))) = 1 for all x and all u′, hence for all u′ I(x ∈u′ s(i)) =
0 and level s(i) is empty in all neighborhoods [0, u] of 0.

Since there is a neighborhood of 0 which does not contain a dense
subset, from some finite level s(i) onward the levels must be empty. Of
course, i > 0 since c ∈ 0. Thus, A is false in the classical interpretation
Ic obtained from I by restricting I to the domain {0, . . . , i} and Ic(Q) =
I(¬¬Q) for atomic Q. �

5.4.4 First-order Gödel logics with ∆

If the language lets us express the property of being 1, i.e. if the language
contains ∆, we can express an infinite ascending sequence of truth val-
ues with supremum equal to 1:

∀x¬∆A(x)∧∆∃xA(x)

This formula expresses that for all x the truth value of A(x) is less
than 1, but the truth value of ∃xA(x) is 1.

Similar to the case above we cannot put the countable dense lin-
ear subset arbitrarily in the perfect set, but the completion of the sub-
ordering must have 0 as smallest and additionally 1 as largest element.
This means for the perfect set that 0 and 1 must be contained in the
perfect set. If these conditions are fulfilled we can again use the adapted
function h̄ to show the completeness.
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5. First-order Gödel logics Case with ∆

Theorem 5.9 A formula of first-order language with ∆ is valid in a truth
value set whose perfect kernel contains 0 and 1 iff it is provable in H∆.

Proof: Analogous to the proof of Theorem 5.5. �

The extension to the mixture of cases where either 0 or 1 or both
are isolated or one of them is in the perfect kernel and the other one is
isolated is straightforward using the proofs for the case without ∆, so
we obtain

Theorem 5.10 The following axiom systems are complete for the respec-
tive logics:

0 ∈ V∞, 1 isolated H∆+ iso1

0 isolated, 1 ∈ V∞ H∆+ iso0

V∞ ≠∅, 0, 1 isolated H∆+ iso0 + iso1

Proof: Analogous to the proof of Theorem 5.6. �
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CHAPTER 6

First-order entailment

If we proceed to full first-order we can use Takano’s proof and its exten-
sion given in the previous chapter, as they provide a strong complete-
ness result, and therefore, all complete, i.e. complete recursive axioma-
tizable Gödel logics are also compact.

We will now show that the entailment relation of a Gödel logic, which
is not r.a., is not compact.

Lemma 6.1 If a Gödel logic permits the definition of finiteness, its entail-
ment relation cannot be compact.

Proof: We will prove this lemma by giving formulas which express
that the domain has at least n elements for every n. All these formulas
entail a formula expressing the fact that the domain is infinite. No finite
subset of these formulas entails it, thus the entailment relation is not
compact. More precisely, let equ(R) be the axioms asserting that the
binary predicate symbol R is an equivalence relation:

equ(R) =∀x¬¬R(x,x)∧
∧∀x∀y(¬¬R(x,y) ⊃ ¬¬R(y,x))∧
∧∀x∀y∀z(¬¬R(x,y)∧¬¬R(y, z) ⊃ ¬¬R(x, z))

and let
Fn = equ(R) ⊃ ∃x1 . . .∃xn

∧
i≠j
¬R(xi, xj)
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6. First-order entailment

then Fn expresses the fact that there are at least n elements in the do-
main. Furthermore let

A = S ∧∀u¬¬P(u)∧¬∀uP(u)∧

∧∀u
{
c ∈u 0∧u ∈u 0∧¬P(c)∧

∧∀i
[
∀x,y∀j, k∃zLevels ∨∀u′∀x¬(x ∈u′ i)

] }
be similar to the formula we know from the proof of Theorem 5.8, with
Levels as on p. 52 defined. Now consider the following entailment:

F1, F2, . . . ð A ⊃ ∃u∃i∀x¬(x ∈u i)

As we have explained in the proof of Theorem 5.3 and Theorem 5.8 in
any countable truth value set the above relation will hold for any inter-
pretation. Now assume that there is a finite subset F ′ of {F1, F2, . . .} such
that

F ′ ð A ⊃ ∃u∃i∀x¬(x ∈u i).

But as the set F ′ only asserts the existence of a finite number N of ob-
jects we can define an interpretation I such that the process described
in Levels will only collapse after N steps and thus the set F ′ does not
entail the given formula.

This proves that the entailment relation for Gödel logics based on
truth value sets where there is a neighborhood of 0 which is countable
and 0 is not isolated, is not compact. This includes the case where the
truth value set is countable and 0 not isolated. The case were 0 is iso-
lated in a countable truth value set is treated similar, with A from above
replace by the more simple formula A from Theorem 5.3. �

Theorem 6.2 The entailment relation of a Gödel logic is compact if and
only if the logic admits a complete recursive axiomatization.

Proof: We have shown that in all logics which do not admit a complete
recursive axiomatization, finiteness can be defined, and using the above
lemma we conclude that their entailment relation is not compact. �
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CHAPTER 7

Conclusion

In the last years the area of many-valued logics, and in particular Gödel
logics, have attracted many scientists and substantial improvements in
the understanding of this large family have been achieved. In Gödel
logics, the entailment relations in the propositional case have been fully
characterized [BZ98]. The most important quantified propositional Gödel
logics have been analyzed. The proof-theoretic foundations of some im-
portant first-order and propositionally quantified Gödel logics have been
established [Avr91, BCF].

From every solved problem many new emerge, thus, there are a host
of interesting problems which still await settling. We would like to men-
tion a few which we consider as of primary interest for the understand-
ing of Gödel logics:

Topological characterization Gödel logics are defined extensionally
as the set of valid sentences over a certain truth value set. As we
have shown, many of these logics coincide. The development of
standard models for Gödel logics overcoming this peculiarity will
provide enormous insight.

Relation to Kripke semantics As intermediate logics, i.e. intermedi-
ate between intuitionistic and classical logic, the relationship to
Kripke models, which form the standard models for intuitionistic
logic, is not well understood. Only in very specific cases (see Sec-
tion 1.3, and [Cor89, Cor92]) there is a known relationship.
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7. Conclusion

Number of Gödel logics The number of different Gödel logics is still
unknown in the first-order case. We only know that there are
at least countably many, but there may exist uncountably many.
This question has only been settled for the entailment relation and
quantified propositional Gödel logic.

Expressiveness Strongly connected to the above question is the ques-
tion for the limits of expressiveness of Gödel logics. This includes
the comparison of expressiveness of formulas and rules, which are
more expressive. E.g., the strong soundness of the Takeuti-Titani
rule expresses that the truth value set is everywhere dense, but
there is no first-order formula with this property.

Monadic fragments From a computational point of view the monadic
fragment often is one of the most interesting fragments of a logic,
as this fragment naturally turns up in logic programming and for-
malizations. A different view of the monadic fragment allows the
interpretation of the predicates as fuzzy sets, allowing to work
with this well accepted notion.

All these questions, and many more, will be considered and the respec-
tive answers will provide fundamental insights into many-valued logics
and Gödel logics.

Finally, the table on the following page presents an overview of the
obtained results.
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7. Conclusion

Survey of results
Propositional Logic

V infinite LC = H0,H∆0 complete for the logic
Theorem 3.4, p. 32, Theorem 3.10, p. 35

V finite (n) LCn = H0
n,H∆0

n complete for the logic
Theorem 3.9, p. 34, Theorem 3.11, p. 35

Propositional Entailment

V finite G0
V compact Theorem 4.5, p. 38

V countable G0
V not compact Theorem 4.7, p. 40

V uncountable G0
V compact Theorem 4.6, p. 39

First-order logic

V finite (n) Hn complete for the logic
Theorem 5.1, p. 42

V countable not recursively enumerable
Theorem 5.3, p. 43

V∞ ≠∅, 0 ∈ V∞ H complete for the logic
Theorem 5.5, p. 49

V∞ ≠∅, 0 isolated H+ iso0 complete for the logic
Theorem 5.6, p. 50

V∞ ≠∅, 0 ∉ V∞, 0 not isolated not recursively enumerable
Theorem 5.8, p. 52

First-order logic with ∆

V finite (n) H∆n complete for the logic
Theorem 5.2, p. 43

0,1 ∈ V∞ H∆ complete for the logic
Theorem 5.9, p. 55

0 ∈ V∞, 1 isolated H∆+ iso1 complete for the logic
Theorem 5.10, p. 55

0 isolated, 1 ∈ V∞ H∆+ iso0 complete for the logic
Theorem 5.10, p. 55

V∞ ≠∅, 0, 1 isolated H∆+ iso0 + iso1 complete
Theorem 5.10, p. 55

V∞ ≠∅, 1 ∉ V∞, 1 not isolated not recursively enumerable
Theorem 5.8, p. 52

First-order entailment
recursive axiomatizability = compactness
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