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Abstract. Gödel logic is a non-classical logic which naturally turns up
in a number of different areas within logic and computer science. By
choosing subsets of the unit interval [0, 1] as the underlying set of truth-
values many different Gödel logics have been defined. Unlike in classi-
cal logic, adding propositional quantifiers to Gödel logics in many cases
increases the expressive power of the logic, and motivates thorough in-
vestigation. In a series of recent papers [8, 7, 6, 5, 4], we have started
a research program to investigate quantified Gödel logics in a system-
atic manner. In this paper, we survey the results obtained so far. In the
conclusion, we outline the future directions of this research program.

1 Introduction

In 1932, Gödel [12] introduced a family of finite-valued propositional logics to
show that intuitionistic logic does not have a characteristic finite matrix. Dum-
mett [10] later generalized these to an infinite set of truth-values, and showed
that the set of its tautologies G∞ is axiomatized by intuitionistic logic extended
by the linearity axiom (A ⊃ B) ∨ (B ⊃ A). 1 Gödel logic naturally turns up in
a number of different areas of logic and computer science. In particular, it was
recognized as one of the most important formalizations of fuzzy logic [13].

Propositional Gödel logic can be extended by quantifiers in different ways,
in particular by first-order quantifiers (universal and existential quantification
over object variables) and propositional or “fuzzy” quantifiers (universal and
existential quantification over propositions).

While there is only one infinite-valued propositional Gödel logic, uncountably
many different quantified propositional Gödel logics are induced by different
infinite subsets of truth-values over [0, 1]. Of particular importance are the truth-
value sets V∞ = [0, 1], V↓ = {0} ∪ {1/n : n ≥ 1}, V↑ = {1} ∪ {1 − 1/n : n ≥ 1}
and Vk = {1} ∪ {1− 1/n : n = 1, . . . , k − 1}.

In contrast to classical propositional logic, propositional quantification may
increase the expressive power of Gödel logics. More precisely, statements about
the topological structure of the set of truth-values (taken as infinite subsets of
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the real interval [0, 1]) can be expressed using propositional quantifiers [8]. For
example, over the truth-value sets [0, 1

2 ]∪ {1} and [0, 1], we obtain two different
quantified propositional Gödel logics, but only one in the framework of first order
Gödel logic.

The purpose of this paper is to summarize and relate recent results about
quantified propositional Gödel logics [8, 7, 6, 5, 4]. We will consider the logics
based on the above-mentioned infinite sets V∞, V↓ and V↑. Particular emphasis
will be put on decidability, axiomatizability, and quantifier elimination. In the
conclusion, we outline the major directions for future research, as we envisage
them.

2 Gödel Logics

We work in the language of propositional logic containing a countably infinite set
Var = {p, q, . . .} of (propositional) variables, the constants ⊥,>, as well as the
connectives ∧,∨, and ⊃. Propositional variables and constants are considered
atomic formulas. Uppercase letters will serve as meta-variables for formulas. If
A(p) is a formula containing the variable p free, then A(X) denotes the formula
with all occurrences of the variable p replaced by the formula X. V ar(A) is the
set of variables occurring in the formula A. We use the abbreviations ¬A for
A ⊃ ⊥ and A↔ B for (A ⊃ B) ∧ (B ⊃ A).

Semantics. The most important form of Gödel logic is defined over the real unit
interval V∞ = [0, 1]; in a more general framework, the truth-values are taken
from a set V such that {0, 1} ⊆ V ⊆ [0, 1]. In the case of k-valued Gödel logic
Gk, we take Vk = {1 − 1/i : i = 1, . . . , k − 1} ∪ {1}. Moreover, we consider the
sets V↑ = {1− 1/i : i ≥ 1} ∪ {1} and V↓ = {1/n : n ≥ 1} ∪ {0}.

A valuation v : Var → V is an assignment of values in V to the propositional
variables. It can be extended to formulas using the following truth functions
introduced by Gödel [12]:

v(⊥) = 0
v(>) = 1

v(A ∧B) = min(v(A), v(B))

v(A ∨B) = max(v(A), v(B))

v(A ⊃ B) =

{

1 if v(A) ≤ v(B)

v(B) otherwise

A formula A is a tautology over a truth-value set V ⊆ [0, 1] if for all valu-
ations v : Var → V , v(A) = 1. The propositional logics G∞, G↑, G↓ and
Gk are the sets of tautologies over the corresponding truth-value sets, e.g.,
G∞ = {A : A a tautology over V∞}. We also write G |= A for A ∈ G (G ∈
{G∞,G↑,G↓,Gk}).

Equivalent semantics, which stress the close relationship with intuitionistic
logic, are provided by linearly ordered Kripke structures [10] and linearly ordered
Heyting algebras [14].

Remark 1. It is easy to see that for ordinary propositional Gödel logic, the tau-
tologies coincide for all infinite V .



The abbreviation A ≺ B for (A ⊃ B) ∧ ((B ⊃ A) ⊃ A) will be used extensively
below. It expresses strict linear order in the sense that

v(A ≺ B) =

{

1 if v(A) < v(B) or v(B) = 1

min(v(A), v(B)) otherwise

Propositional Quantification. In classical propositional logic we define (∃p)A(p)
by A(⊥) ∨ A(>) and (∀p)A(p) by A(⊥) ∧ A(>). In other words, propositional
quantification is semantically defined by the supremum and infimum, respec-
tively, of truth functions (with respect to the usual ordering “0 < 1” over the
classical truth-values {0, 1}). This can be extended to Gödel logic by using fuzzy
quantifiers. Syntactically, this means that we allow formulas (∀p)A and (∃p)A in
the language. Free and bound occurrences of variables are defined in the usual
way. Given a valuation v and w ∈ V , define v[w/p] by v[w/p](p) = w and
v[w/p](q) = v(q) for q 6≡ p. The semantics of fuzzy quantifiers is then defined as
follows:

v((∃p)A) = sup{v[w/p](A) : w ∈ V } v((∀p)A) = inf{v[w/p](A) : w ∈ V }

When we consider quantifiers, V has to be closed under infima and suprema,
since otherwise truth-values for quantified formulas are not defined.

Remark 2. In [8] it was shown that there is an uncountable number of different
quantified Gödel logics. This is done by encoding all ω-strings over the alphabet
{0, 1}.

Using the above definitions, it is straightforward to extend the notion of tau-
tologyhood to the new language. We write Gqp

∞ (Gqp
↑ , Gqp

↓ , Gqp
k ) for the set of

tautologies in the extended language over V∞ (V↑, V↓, Vk).
To investigate Gqp

↑ , we also add the additional unary connective ◦ to the
language. The truth function for ◦ is given by v(◦A) = v((∀p)((p ⊃ A)∨ p)). In
G

qp
↑ , this makes

v(◦A) =
{

1 if v(A) = 1

1− 1
n+1 if v(A) = 1− 1

n

We abbreviate ◦ . . .◦A (n occurrences of ◦) by ◦nA. We will show below that
every quantified propositional formula is equivalent in G

qp
↑ to a quantifier-free

formula, which in general can contain ◦. ◦A itself (or the equivalent formula
(∀p)((p ⊃ A) ∨ p)), however, is not in general equivalent to a quantifier-free
formula not containing ◦. Inspection of the truth tables shows that a quantifier-
free formula containing only the variable q takes one of 0, v(q), or 1 as its value
under a given valuation v, and thus no such formula can define ◦q.

3 Decidability

In this section we show that quantified propositional Gödel logics over the sets
V↑, V↓ and V∞ are decidable.



For V↑ and V↓ this is achieved by a reduction to S1S, the monadic theory of
one successor which was shown to be decidable by Büchi [9]. More precisely, S1S
is the set of second-order formulas in the language with second-order quantifi-
cation restricted to monadic set variables X, Y , . . . with one unary function ′

(successor) which are true in the model 〈ω,′ 〉.

Theorem 3. [8] Validity in Gqp
↓ is decidable.

Proof. We identify a truth-value 1/n with the infinite binary sequence 0n−11ω,
and 0 with 0ω. Since we consider validity, we may without loss of generality
assume that all variables in a Gödel logic formula are quantified.

The following translation associates with each Gödel logic formula φ an S1S
formula φx with one open first order variable x such that φx expresses the infinite
binary sequence which encodes the truth-value of φ:

px = Xp(x)

⊥x = X⊥(x)

>x = (∀z)(z = z)

(B ∧ C)x = Bx ∧ Cx

(B → C)x = (∃x)(Bx ∧ ¬Cx)→ Cx

(∀a)Bx = (∀A)[(∀z)(A(z)→ A(x′)→ Bx]

(∃a)Bx = (∃A)[(∀z)(A(z)→ A(x′) ∧Bx]

It follows immediately from the definitions that φ is a tautology in G
qp
↓ iff

∀xφx is true in S1S.

Theorem 4. [4] Validity in Gqp
↑ is decidable.

Sketch of Proof: Suppose φ is a quantified propositional formula, and B is
a formula in the language of S1S with only x free. Let TV (B(x)) abbreviate
(∀z)(B(z′) ⊃ B(z)). We define φx by:

(B ⊃ C)x = (∀y)(By ⊃ Cy) ∨ (∃y)(By ∧ ¬Cy) ∧ Cx

(∀p)Bx = (∀Xp)(TV (Xp(x)) ⊃ Bx)

(∃p)Bx = (∃Xp)(TV (Xp(x)) ∧B
x)

The remaining cases are defined as in the proof of the previous theorem.
Consider the following reduction:

Φ(φ) = (∀X⊥)((∀x)¬X⊥(x) ⊃ (∀x)φx)

The idea behind this is to correlate truth-values in V↑ with subsets of ω which
are closed under predecessor, i.e., predicates in

TV = {P ⊆ ω : if n ∈ P then m ∈ P for all m ≤ n}.

Under this correlation, 1 corresponds to ω, and 1−1/n corresponds to {1, . . . , n}.
One can prove that a formula φ is a tautology in Gqp

↑ iff S1S |= Φ(φ).



Let us now turn to G∞. Since V∞ is dense, a reduction to S1S appears to
be difficult to obtain. However, as we shall see in Section 5, there is an effective
quantifier elimination procedure for G∞, and therefore, G∞ turns out to be
decidable. Note that a similar argument can also be used to obtain an alternative
proof for decidability of Gqp

↑ .

4 Axiomatizations

All the calculi we consider are based on the following set of axioms:
I1 A→ (B → A) I6 B → (A ∨B)
I2 (A ∧B)→ A I7 (A ∧ ¬A)→ B
I3 (A ∧B)→ B I8 (A→ ¬A)→ ¬A
I4 A→ (B → (A ∧B)) I9 ⊥ → A
I5 A→ (A ∨B) I10 A→ >

I11 (A→ (B → C))→ ((A→ B)→ (A→ C))
I12 ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

These axioms, together with the rule of modus ponens, define the system IPC

that is sound and complete for intuitionistic propositional logic. The system GL

is obtained by adding to IPC the linearity axiom

Lin (A ⊃ B) ∨ (B ⊃ A).

which expresses the linearity of the ordering of truth-values or, equivalently, of
the states of Kripke models.

Theorem 5. [10] The system GL is sound and complete for G∞.

Turning to quantified propositional logic, a natural system IPC
qp to start with

is obtained by adding to IPC the following two axioms (see [11]):

⊃∃ A(C) ⊃ (∃p)A(p) ⊃∀ (∀p)A(p) ⊃ A(C)

and the rules:

A(p) ⊃ B(p)

(∃p)A(p) ⊃ B(p)
R∃

B(p) ⊃ A(p)

B(p) ⊃ (∀p)A(p)
R∀

where for any formula B, the notation B(p) indicates that p does not occur free
in B, i.e., p is a (propositional) eigenvariable.
The system QG

qp
∞ is obtained by taking all above-mentioned axioms and rules

plus the following two axioms:

Or-Shift ∀x(A(x) ∨B) → A(x) ∨ ∀xB
Density ∀x(A(x) → x ∨ x→ B(x)) → (A(x) → B(x))

Theorem 6. [8] The system QG
qp
∞ is sound and complete for Gqp

∞ .



It was shown in [8] that instances of the quantifier axioms, where the formula
X is quantifier free, suffice for the completeness of the calculus.

Let QG
qp
↑ be the system obtained by adding to IPC

qp the axioms (Lin),

∀∨ (∀p)[A ∨B(p))] ⊃ [A ∨ (∀p)B(p)]

where p /∈ A, and the following:

G1 ◦(A ⊃ B)↔ (◦A ⊃ ◦B) G4 (A ⊃ ◦B) ⊃ ((A ⊃ C) ∨ (C ⊃ B))
G2 A ≺ ◦A G5 (A↔ ⊥) ∨ (∃p)(A↔ ◦p)
G3 (◦A ⊃ ◦B) ⊃ ((A ⊃ B) ∨ ◦B) G6 (A ≺ B) ⊃ (◦A ⊃ B)

Theorem 7. [4] The system QG
qp
↑ is sound for and complete for Gqp

↑ .

Remark 8. The density axiom is not valid in Gqp
↑ . On the other hand, it is easy

to see that v(◦A) = v(A) in V∞, and hence axiom (G2) is not valid in Gqp
∞ .

Thus neither of Gqp
∞ and Gqp

↑ is included in the other. This is in contrast to the
situation in propositional entailment and first-order logic, where V∞ defines the
smallest Gödel logic and is included in all others.

An Analytic Calculus for Gqp

∞

In [5] an analytic calculus for Gqp
∞ has been defined. This calculus uses hyper-

sequents, a simple and natural generalization of Gentzen’s (ordinary) sequents
(see, e.g., [2] for an overview).

Definition 9. A hypersequent is a structure of the form Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 |
· · · | Γn ⇒ ∆n where each Γi ⇒ ∆i is a sequent called a component of the
hypersequent.

We consider sequents and hypersequents as multisets of formulas and multisets
of sequents, respectively.

In [1] Avron defined the hypersequent calculus GLC for G∞. GLC is simply
obtained by adding to the hypersequent calculus for intuitionistic logic the so
called communication rule (com) allowing to prove the linearity axiom. The
calculus HQGL for Gqp

∞ is obtained by augmenting GLC with suitable rules for
introducing propositional quantifiers as well as the (tt) rule allowing to prove
the density axiom.

More precisely, axioms and rules of HQGL are as follows:

Axioms and Cut rule:

⊥ ⇒, ⇒ >, A⇒ A

H | Γ ⇒ A H | A,Γ ⇒ B

H | Γ ⇒ B
(cut)

Internal structural rules:

H | Γ ⇒ C

H | A,Γ ⇒ C
(iw ⇒)

H | Γ ⇒

H | Γ ⇒ A
(⇒ iw)

H | A,A, Γ ⇒ C

H | A,Γ ⇒ C
(ic⇒)



External structural rules:

H
H | Γ ⇒ C

(ew)
H | Γ ⇒ C | Γ ⇒ C

H | Γ ⇒ C
(ec)

H | Γ1, Γ
′
1 ⇒ A1 H | Γ2, Γ

′
2 ⇒ A2

H | Γ ′1, Γ
′
2 ⇒ A1 | Γ1, Γ2 ⇒ A2

(com)

Logical rules:

H | A1, Γ ⇒ C H | A2, Γ ⇒ C

H | A1 ∨A2, Γ ⇒ C
(∨ ⇒)

H | Γ ⇒ Ai

H | Γ ⇒ A1 ∨A2
(⇒ ∨i) i ∈ {1, 2}

H | Ai, Γ ⇒ C

H | A1 ∧A2, Γ ⇒ C
(∧ ⇒i) i ∈ {1, 2}

H | Γ ⇒ A H | Γ ⇒ B

H | Γ ⇒ A ∧B
(⇒ ∧)

H | Γ ⇒ A H | B,Γ ⇒ C

H | A→ B,Γ ⇒ C
(→⇒)

H | A,Γ ⇒ B

H | Γ ⇒ A→ B
(⇒→)

Rules for propositional quantifiers:

H | A(X), Γ ⇒ C

H | (∀p)A(p), Γ ⇒ C
(∀ ⇒)

H | Γ ⇒ A(a)

H | Γ ⇒ (∀p)A(p)
(⇒ ∀)

H | A(a), Γ ⇒ C

H | (∃p)A(p), Γ ⇒ C
(∃ ⇒)

H | Γ ⇒ A(X)

H | Γ ⇒ (∃p)A(p)
(⇒ ∃)

The (tt) rule:

H | Π ⇒ a | a, Γ ⇒ C

H | Π,Γ ⇒ C
(tt)

In the above rules formula X is required to be quantifier free and the proposi-
tional variable a is subject to the usual eigenvariable condition; i.e., it must not
occur freely in the lower hypersequent.

Theorem 10. [5] HQGL is sound and complete for Gqp
∞ .

Theorem 11. [5] If a hypersequent H is derivable in HQGL then it is derivable
in HQGL without using the cut rule.

Note that a variant of the rule (tt) was used in [18] to axiomatize first-order
Gödel logic over V∞ (called “intuitionistic fuzzy logic” by Takeuti and Titani).
Takano [17] later showed that this rule is in fact redundant in the calculus
for first-order Gödel logic over V∞ by referring to arguments already present
in A. Horn’s [14]. However, an instance of the rule turned out to be essential
to obtain a complete (Hilbert-style) axiomatization of QGL [8]. Analogously, in
HQGL the (tt) rule is essential to derive instances of the density axiom. On the
other hand, this rule renders proof search in HQGL rather problematic. Therefore
it is useful to know for which fragments ofGqp

∞ the (tt) rule (or a variant thereof)
is actually needed to find a proof. One has

Theorem 12. [5] The (tt) rule is redundant in the calculus HQGLm obtained
from HQGL by dropping the rules (⇒ ∀) and (∃ ⇒).



5 Normal Forms and Elimination of Quantifiers

In this section we recall normal form results for G∞ and Gqp
↑ . These results are

crucial in the proofs of quantifiers elimination for QG
qp
∞ and QG

qp
↑ .

For G∞, a normal form similar to the disjunctive normal form of classical
logic was introduced in [7] (see also [3]). This so-called chain normal form is based
on the fact that, in a sense, the truth-value of a formula only depends on the
ordering of the variables occurring in the formula induced by the valuation under
consideration. The chain normal form can then be constructed by enumerating
all such orderings (using ≺ and ↔ to encode the ordering) in a manner similar
to the way one constructs a disjunctive normal form by enumerating all possible
truth-value assignments.

More precisely, let V = {v1, . . . , vn} be a set of propositional variables. Then
a ≺-chain over V is a formula of the form

(0 10 vπ(1)) ∧ (vπ(1) 11 vπ(2)) ∧ · · · ∧ (vπ(n−1) 1n−1 vπ(n)) ∧ (vπ(n) 1n 1)

such that π is a permutation of {1, . . . , n} and 1i is either ≡ or ≺.
Every ≺-chain describes an order type of the variables V . For a formula φ,

let φζ denote the value of φ under an evaluation which has the same order type
as described by ζ.

Theorem 13. [7] Let φ be a formula in propositional Gödel logic, and V =
var(φ). Then φ is equivalent to a formula

∨

ζ∈C(V ) ζ ∧ vζ such that vζ ∈ V ∪

{0, 1}.

This result allows to show:

Theorem 14. [8] For every formula φ there exists a quantifier-free formula ψ
such that QG

qp
∞ ` φ ≡ ψ.

As a corollary we have

– the system QG
qp
∞ is complete for QG

qp
↑ (Theorem 6)

– validity in Gqp
∞ is decidable.

– G∞ has interpolation [16], and in fact uniform interpolation [7].
– Gqp

∞ has uniform interpolation with quantifier-free interpolants.

The notion of chain normal form can be extended as follows in order to deal
with the ◦ connective of Gqp

↑ .

Definition 15. A formula A of QG
qp
↑ is in ◦-normal form if it is quantifier-free

and for all subformulas ◦B of A, B ∈ {⊥,>} ∪Var or B ≡ ◦B ′.

Proposition 16. [4] Let A be a quantifier-free formula of QG
qp
↑ . Then there

exists a formula A′ of QG
qp
↑ in ◦-normal form such that QG

qp
↑ ` A↔ A′.



By the previous proposition we can always push the ◦ in front of atomic sub-
formulas, so we only need to consider orderings of subformulas of the form ◦jB
with B atomic. Let Γ be a finite subset of {◦jp,◦j⊥ : p ∈ Var , j ∈ ω} ∪ {>}
and >,⊥ ∈ Γ .

Definition 17. A ◦-chain over Γ is an expression of the form

(S1 ?1 S2) ∧ · · · ∧ (Sn−1 ?n−1 Sn)

such that Γ = {S1, . . . , Sn}, S1 ≡ ⊥, Sn ≡ >, and ?i ∈ {↔,≺}, for all i =
1, . . . , n.

Definition 18. Let A be a quantifier free formula in ◦-normal form, ΓA be the
set of all subformulas of A of the form ◦jp,◦k⊥,>, Γ ⊇ ΓA, and C(Γ ) the set
of all possible ◦-chains over Γ . Then

∨

C∈C(Γ )

C ∧AC

is the ◦-chain normal form for A over Γ .

Theorem 19. [4] Let A and Γ be as above, and A′ be the ◦-chain normal form
for A over Γ . Then QG

qp
↑ ` A↔ A′.

Theorem 20. [4] For every closed formula A of QG
qp
↑ there exists a variable-

free formula Aqf such that QG
qp
↑ ` A↔ Aqf .

As a corollary we have

– the system QG
qp
↑ is complete for Gqp

↑ (Theorem 7)

– an alternative proof that validity in Gqp
↑ is decidable

– G
qp
↑ is the intersection of all finite-valued quantified propositional Gödel

logics Gqp
k .

6 Conclusions

We believe that we now have some initial understanding of the structure of the
class of all quantified propositional Gödel logics, and of their relation to the
topological and order-type properties of the underlying truth-value sets. A lot
of interesting questions remain to be settled. The following three questions are
currently under investigation:

– The logic Gqp
↓ [6] is the logic of linearly ordered well-founded Kripke struc-

tures, and is in the same relation to the temporal logic of “always” as intu-
itionistic logic is to S4. By Theorem 3,Gqp

↓ is decidable. The next step will be

to provide an axiomatization for Gqp
↓ and to prove by quantifier elimination

that it is complete.



– It can be shown that the intersection of all quantified propositional Gödel
logics is not a quantified propositional Gödel logic (in contrast to ordinary
propositional Gödel logics and first-order Gödel logics.) We intend to show
that the intersection is in fact axiomatized by the axiom system for Gqp

∞

without the Density axiom.
– Finally, we are looking for a set-theoretic characterization of those truth-

value sets V , over which Quantified Propositional Gödel Logics are well-
behaved, i.e., those which admit recursive axiomatizations and decidabil-
ity. A natural candidate for this characterization is V having finite Cantor-
Bendixson rank [15].
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