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Abstract

Defined over sets of truth values V' which are closed subsets of [0,1] containing both 0
and 1, Godel logics Gy are prominent examples of many-valued logics. We investigate a
first-order fragment of Gy extended with A that is powerful enough to formalize important
properties of fuzzy rule-based systems. The satisfiability problem in this fragment is shown
to be NP-complete for all Gy, also in presence of an additional, involutive, negation. In
contrast to the one-variable case, in the considered fragment only two infinite-valued Godel
logics extended with A differ w.r.t. satisfiability. Only one of them enjoys the finite model

property.
Keywords: First-order Godel logics, satisfiability, monadic logic, one-variable fragment,
involutive negation

1. Introduction

Many-valued logics provide a foundation for reasoning in presence of vagueness. The
idea behind them is to extend the scope of classical logic by considering sets of truth values
larger than the usual {0,1}. To this aim, various many-valued systems have been defined.
Among them Godel logics Gy are the only ones that are completely specified by the order
structure of the underlying set V' of truth values. This fact characterizes Gy as logics of
comparative truth and make them important formalizations of Fuzzy Logic, see [14].

The addition of the projection operator A or of the classical (involutive) negation ~
enhances the expressive power of Godel logics and their applicability. For instance, Godel
logic with truth value set [0, 1] extended with ~ is used in [9] to formalize the rules of the
fuzzy medical expert system CADIAG-2 [1].
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In contrast with the propositional case, where there is only one infinite-valued Gdédel
logic w.r.t. tautologies and only one set of satisfiable formulas [5], different infinite sets
of truth values determine different first-order Godel logics. Their number has been settled
to countable in [7|, when considering the sets of tautologies. Nothing is known about the
number of different sets of satisfiable formulas, henceforth denoted by SAT-Gy, .

In this paper we investigate the satisfiability problem for a fragment of Gy extended
with A, which is a subset of both the monadic and the one-variable fragment FO'(V). We
call this fragment FO! (V). For formulas without A, satisfiability in FO! (V) is equivalent
to satisfiability in classical propositional logic.

To appreciate the usefulness of this fragment, notice that the formulas in [9] formalizing
the system CADIAG-2 belong to FO! (V). The considered fragment is also interesting
from the mathematical point of view. Indeed, as shown in [4] the presence of the modality
A (or of the negation ~) renders the satisfiability problem for infinite-valued Godel logics
undecidable already in the monadic case. In contrast with this result here we prove that
the satisfiability problem for FO! (V) is decidable, and in fact NP-complete, for all Gédel
logics. The proof distinguishes two cases determined by a simple topological property of
the set of truth values V: 1 isolated and 1 non isolated in V. Prominent examples for the
former case being finite-valued Godel logics (witnessed Godel logics [15] can be treated in
the same way), while for the latter case, Godel logic with set of truth values [0, 1]. Despite
its decidability, FO;., (V) with 1 non isolated in V' does not enjoy the finite model property.
Our results still hold when extending Gdédel logics with the involutive negation ~. An
algorithm to actually check satisfiability in FO. (V) for Godel logics with and without ~
is presented. The algorithm is based on a reduction of the problem to suitable propositional
finite-valued Godel logics.

Our decidability proof also shows that for V' infinite, in contrast with monadic FO*(V) for
which countably many distinct sets of satisfiable formulas do exist, FO! (V) only exhibits

two different SAT-Gy, .

2. Preliminaries on Gddel logics

Introduced by Gédel in 1932 to show that intuitionistic logic does not have a character-
istic finite matrix, Gddel logics naturally turn up in a number of different contexts; among
them fuzzy logic [14], Kripke frames [8|, relevance logics [10], the provability logic of Heyting
arithmetic [19] and strong equivalence in logic programming [17].

To present their semantics, we consider below a standard first-order language £ with
finitely or countably many predicate symbols P and finitely or countably many function
symbols f for every finite arity k. In addition to the two quantifiers V and 3 we use the
connectives V, A, — and the constant L (for ‘false’); other connectives are introduced as
abbreviations, in particular we let =4 = (A — 1), T := =L and A < B = (4 —
B)A (B — A).

Definition 2.1 (Gddel set). A Godel set is a closed set V' C [0, 1] which contains 0 and 1.



Let V' be any Godel set. The semantics of Godel logic, with respect to V' as truth value
set and to a fixed language £ of predicate logic, is defined using the extended language LY,
that is £ extended with constant symbols for each element of the universe U.

Definition 2.2 (Semantics of Gédel logic). A V-interpretation (or simply interpretation)
@ into V' consists of

1. a nonempty set U = U¥, the ‘universe’ of p,
2. for each k-ary predicate symbol P, a function P¥ : U* — V,
3. for each k-ary function symbol f, a function f#:U* — U.

4. for each variable v, a value v¥ € U.

Given an interpretation @, we can naturally define a value t¥ € U for any term t and
a truth value p(A) € V' for any formula A of LY. For a term t = f(uy,...,ux) we define
o(t) = fe(uy,...,u) (d¥ =d, for alld € U). For atomic formulas A = P(ti,...,t,), we
define p(A) = P?(t7,...,t¥). For composite formulas A, ¢(A) is inductively defined by:

p(L)=0
(AN B) = min(p(A), p(B))
p(AV B) = max(p(A), p(B))

(A — B) = {1 #(A) < p(B)

©(B)  otherwise
(Ve A(z)) = inf{p(A(u)) : u € U}
p(3r A(z)) = sup{p(A(u)) s w € U}

—~

(Here we use the fact that V' is a closed subset of [0, 1] in order to be able to interpret ¥V and
3 as inf and sup in V.)

Remark 2.3. When V' = {0, 1}, ¢ is an interpretation of classical logic.

In Godel logics, the validity of a formula depends only on the relative ordering and the
topological type of the truth values of atomic formulas, and not on their specific values. We
recall the following definition from the theory of polish spaces (see, e.g., [16])

Definition 2.4 (Non isolated point). A non isolated point of a topological space is a point x
such that for every open neighborhood U of x there is a point y € U with y # x.

For each Godel set we associate two sets of formulas: the set of tautologies and the set of
satisfiable formulas. We refer to the first set as logic in the traditional sense (closed under
substitution, generalization and modus ponens).



Definition 2.5 (Gy and SAT-Gy ). For a Gidel set V we define the set of valid formulas
Gy (referred to as Godel logic Gy ) and the set of satisfiable formulas SAT-Gy as the set
of formulas A of L such that p(A) = 1 for all, respectively at least one, V -interpretations .
FEach such interpretation is called a model of A.

Notice that in contrast with classical logic (that is Godel logic with truth value set
V ={0,1}), in Gédel logics validity and satisfiability are not dual concepts®.

Equivalence between formulas of Godel logics are defined in the usual way, i.e., two
formulas A and B are equivalent in Gy (A =g, B, in symbols) if for all V-interpretations
v, ¢(A) = ¢(B). The expression A SéTGV B indicates that A is satisfiable in Gy if and

only if so is B. (Henceforth we use = and "= when the considered logic is clear from the
context.)
Proposition 2.6. Let V be any Godel set. The following properties hold in each Gy :

1. (ANBVC)=(AANB)V(AND))

2. x(A(z) A B*) = (FzA(x) A B*), where x does not occur free in B*

3. Vax(A(z) A B(z)) = (Ve A(z) AVaB(x))

2.1. Some extensions

Interesting extensions of Gddel logics Gy are obtained by adding to £ the unary operator
A of [2]| or a classical, involutive negation ~, see e.g., [11, 12]. We denote these extensions
by G£ and Gy, respectively. The semantics of G and Gy extend that of Gy as follows
(notice that the Godel set V' in G/ has to be symmetric with respect to 1/2).

1 if p(A) =1
P(DA) = w
0 otherwise.
p(~A) =1 —p(A)
Definitions and terminology for Gy also apply to G£ and Gy
Remark 2.7. In GY/ the operator A is derivable (AA = —~A).

G and Gy are strictly more expressive than Gy. E.g., unlike Gy, in G$ we can express
‘strict linear order’ as
-A(A — B) (1)
Henceforth we denote by A < B the formula above. It is easy to see that for every interpre-
tation ¢ of G one has p(A < B) = 1 if and only if p(A4) < ¢(B).

S

Proposition 2.8. Let V' be any Gadel set, then VaxB(x) %TGV VeAB(z).

Notice that the corresponding statement does not hold for the existential quantifier. E.g.,
consider the formula B(z) = (A(x) AVa—=AA(z)); JxB(z) is satisfiable in any G in which
1 is non isolated in V' while JzAB(x) is not.

4The duality holds instead when considering the notion of positive satisfiability: a formula A is positive
satisfiable if there exists a V-interpretation ¢ such that ¢(A4) > 0.
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2.2. (Un)decidability of the monadic fragment

Monadic logic is the fragment of first-order logic with no function symbol and in which all
predicates are unary. A general investigation of the (un)decidability status for the validity
and the satisfiability problem in monadic Gédel logics was carried out in |3, 4], respectively.

[3] proved that with the possible exception of Gddel logic with truth values set V; =
{1}u{l =+ | k> 1} (whose (un)decidability status is left open), validity is undecidable
when V' is infinite.

[4] identified suitable conditions on the topological type of V' which determine the de-
cidability or undecidability of SAT-Gy in monadic Gddel logics. SAT-Gy is decidable
when 0 is an isolated point in V' (i.e., 0 has Cantor-Bendixon rank |0|cg = 0, see e.g., [16]).
In the remaining monadic Godel logics the presence of at least three predicate symbols,
one of which is a constant different from 0 or 1, makes SAT-Gy undecidable. Moreover
without this constant predicate, the problem remains undecidable for all monadic Godel
logics in which 0 is a limit point of limit points in V' (i.e., [0lcg > 2). Gddel logic Gy 1),
with V' = [0, 1] (also known as Intuitionistic Fuzzy Logic [18]) being a prominent example.
Only one Gdédel logic is left out from the classification; this is the logic with truth value set
Vi ={0} U{} | k > 1} for which the (un)decidability status of SAT-Gy, is left open.

The addition of A renders both the validity and the satisfiability problem undecidable
for all monadic G£ (and therefore G7) with V infinite, in presence of at least two predicate
symbols. The problems remain undecidable even when we restrict to prenex formulas® |3, 4].

3. The fragment FO!

mon

(V)

We introduce the class FO} (V) of formulas of Gédel logics and provide a suitable
normal form for them. The defined normal form will be crucial for the decidability proof in

Section 4.2.

Definition 3.1 (FO}, . (V)). The class FO,

mon mon (V) consists of all closed formulas in the first-
order language L extended with /N, of the form

\n/(Ela:Aﬁ (z) A ... AFzAL (z) AVaBi(z) A... AVzB], (z))

i=1

where each A%, Bl is a monadic and quantifier-free formula containing no function and
constant symbol.

Notice that FO! (V) is contained in the one-variable fragment (FO'(V)). The satis-

fiability problem for formulas in FO! (V) without A is classically decidable. The proof

proceeds as in the case of monadic Gy in which 0 is isolated in V' (see [4]). Indeed

Proposition 3.2. Let V be any Gédel set. Formulas in FOL (V) without /\ are satisfiable
n Gy if and only if they are satisfiable in classical logic.

°In general Godel logics do not admit equivalent prenex formulas, see e.g. [6].

>



Proof. Let Q = \/7_,(3xAl(z) A...ATzAl, (x) AVeBij(z) A... AVxB], (x)) be any formula
in FO! (V) without A. If Q is satisfiable in classical logic then clearly @ is satisfiable in
Gy. For the converse direction, consider any V-interpretation such that pg(Q) = 1. An
interpretation pcr, of classical logic such that ¢cr(Q) = 1 is defined as follows: for any
atomic formula P

poL(P) =

0 otherwise.

Indeed, let @; be any quantifier-free (sub)formula of ). By induction on the complexity of
Q; we can prove that ¢g(Q;) = 0 if and only if pcr(Q;) = 0 and pg(Q;) > 0 if and only if
voL(Q;) = 1. The claim easily follows. O

Notice that each formula in FO! (V) is equivalent in G£ to a prenex formula with prefix

3*v*. Therefore, by Proposition 3.2, FO!, (V) without A is contained in the Bernays-Schon-
finkel class that, for classical logic is known to be effectively propositional, i.e., its formulas
can be effectively translated into propositional logic formulas by replacing all existing vari-

ables by Skolem constants and then grounding the universally quantified variables.

3.1. Chain Normal Form

A normal form similar to the disjunctive normal form of classical logic was introduced
in [2| for formulas of propositional Gddel logic. This normal form (called chain normal
form) is extended below to formulas of FO} (V). The idea behind it is to enumerate all the
orderings of unary predicates over the same variable in a way similar to how one constructs a
disjunctive normal form by enumerating all possible truth value assignments of propositional
atoms. Notice that, unlike Gy, these orderings are expressible by formulas of G$. We use

below the following abbreviations (cf. Equation 1)

A<B for -A(B—A), and
A=A B for A(A— B)ANA(B — A).

Definition 3.3 (A-chain). Let F be any formula in FO! (V) and Py, ..., P, be the predi-
cates occurring in F'. A A-chain over F' is any formula of the form

(L ™o Pry () A (Pr1y() )1 Pria)(2)) A (Prny (@) X5 T)

where 7 is a permutation of {1,...,n}, X; is either < or =, and at least one of the X;’s
15 <.

Every A-chain describes a possible ordering of the values of predicates of F'. We denote
by C; the A-chain defined by a permutation 7; in some fixed enumeration of all permutations
and by Cp the set of all A-chains over F, i.e., Cp = {C; | m; permutation of {1,...,n}}.

Every A-chain C; induces equivalence classes over the predicates of F'. These are ordered
as

[L]=ap<a; <... <, =[T] with «o; ={P(z),... ,P,z(a;)}

6



where P!(z) =a P! (x) for all n,m € {1,...k;} in C; and at least one element in «; is
related to at least one element in a;,; with < in C;. Notice that the union of all a; is the
set of all predicate symbols (plus T and 1) occurring in F', and the intersection of any two
a; 18 empty.

Furthermore, every interpretation uniquely defines a A-chain induced by the natural
order of the valuations in the reals.

Lemma 3.4. \/ ., C is a tautology in GS.

Every A-chain over F in FO} (V) induces a ‘syntactic evaluation’ of the (quantifier-free)
formulas in F'.

Definition 3.5 (Syntactic evaluation). Let F' be a formula in FO! (V) and A(z) any
quantifier-free subformula of F. Its evaluation CDC(x) with respect to a A-chain C over F' is
as follows:
. CDA?(I) is T (if A(x) =T),is L (if A(x) = L) and is A(x), otherwise.
° CDZA(I) s T if @g(x) =T and CIDZA(x) 1s L, otherwise.
° ®gk(1)/\Al(9¢) is either @gk(x) or (I)gz(x) depending on which of the two occurs earlier in
the chain.
° @gk(a:)vAl(x) 18 either @ik(z) or @il(z) depending on which of the two occurs later in the
chain.
. @ik(x)_)Al(x) s T is @gk(x) occurs earlier than (I)gz(x) in the chain, otherwise it is (I)iz(r)

@g(x) is a predicate symbol, T or L (only T or L, when A(z) is a formula prefixed by
A). (I)S;(x) is a syntactic evaluation of A(z) in the following sense

Proposition 3.6. Let F be a formula in FO. (V) and A(z) be any quantifier-free subfor-
mula of F. For each interpretation ¢ of G& and /\-chain C over F

P(CNA(z)) =9(CA (I)A(w))

Proof. Let C be (J_ X 77(1)( )) A ( 7( x)( ) Pﬂ(g)(af)) VANEREIVAN (Pﬂ-(n)(x)(x) X5 T). If for
acertain i € {1,...,n}, (P (x)) ®} cp(P (Z+1)( x)) where X} is = when X; = < or X} is

< when x; ==, then o(C) =0. The rest follows by Definition 3.5. O

4. Decidability Results

We show that the satisfiability problem for FO} (V) is decidable for all Godel logics. We
consider two cases, distinguished by the property that 1 is isolated in the truth value set V'
or it is not. All finite V' being prominent examples of the first case, while V' = [0, 1] belongs
to the second case. Though both cases are decidable, only FOmon( ) in which 1 is isolated
in V' enjoys the finite model property. These results also hold in presence of the additional
negation ~.



4.1. 1 isolated in V

In presence of /A, the satisfiability problem for FO
SAT in classical logic.

1

- on(V) is not anymore equivalent to

Example 4.1. The formula 3x(——A(z) N=AA(x)) is not satisfiable in classical logic while
it is satisfiable in G, for any Gddel set V # {0,1}.

We show below that for any Godel set V' in which 1 is isolated (i.e., 1 has Cantor-
Bendixon rank |1|cg = 0) the decidability proof of the satisfiability problem for FO} (V)

mon
proceeds similarly to that for classical formulas: by a process of grounding and instantiation.

Lemma 4.2. Let V' be any Gddel set in which 1 is isolated and C and D be any quantifier
free formulas of G£. Then

VzC(z) AJzD(x) € SAT-G5 <  C(d) A D(d) € SAT-G
where d is a new constant symbol (Skolem constant).

Proof. (=) Assume that there is an interpretation ¢ such that ¢(VzC(z) A 3zD(z)) = 1.
Then all the instances of C(u) for u € U will evaluate to 1 under ¢. Furthermore, due
to ¢(3dxD(x)) = 1 and the isolation of 1 in V' there exists an object u € U such that
@(D(u)) = 1. Thus, the interpretation that evaluates the Skolem constant d to the element u
is a model for C'(d) A D(d).

(<) The one-element universe together with the interpretation satisfying C(d) A D(d) is
a model of VxC'(z) A JxD(x). O

Theorem 4.3. The satisfiability problem for FO. (V) in which 1 is isolated in V is decid-
able.

Proof. Let V be any Godel set in which 1 is isolated and P be any formula in the class
FO! .(V). P is satisfiable in G£ if and only if so is one of its disjuncts. This has the general

mon
form

AxAy(z) Ao A TzA, () AV By (z) A ... AVz By, (). (2)

and it is equivalent to JzA;(z) A ... AJzA,, (x) AVz(Bi(x) A ... A By, (z)) by Proposition
2.6. The claim follows by Proposition 2.8 and (an easy generalization of) Lemma 4.2. [

4.2. 1 non isolated in V

When 1 is non isolated in V/, the satisfiability of an existential formula 3z D(z) under any
interpretation ¢ does not imply anymore that there exists an element u of the domain such
that o(D(u)) = 1. Therefore the grounding process in Lemma 4.2 does not work and the
decidability proof is more involved. This is also to be expected, as formulas in FO!  (V),

with 1 non isolated in V', are not finitely controllable, that is not all satisfiable formulas have
a finite model.



Example 4.4. The formula F in FO! (V)

drA(z) ANVe-AA(z)
is satisfiable in G$ where 1 is non isolated in' V but it has no finite model (see Ezample 6.5).

Theorem 4.5. The satisfiability problem for FO. (V) in which 1 is non isolated in V is
decidable.

Proof. Let V be any Godel set in which 1 is non isolated and F be any formula in the class
FO! . (V). First recall that F' is satisfiable if and only if so is one of its disjuncts, which

has the general form of Equation 2 (cf. Theorem 4.3). Consider, to fix ideas, the case

n; = m; = 1. The general case follows by easy adaptations. Let F' be JzA(z) AVxB(x). We
first transform F' into a suitable equivalent formula using the chain-normal form. Consider
JrA(z). By Lemma 3.4:

JrA(x) = 3x((\/ C) A Ax))

CeCp

now we push in the existential quantifier (cf. Proposition 2.6)

= \/ dx(C' A A(x))

CeCp

and evaluate the formula A(z) with respect to the chain C' (cf. Proposition 3.6), syntactic
evaluation

CeCp

Some of the @g(x) might be L. We delete these disjuncts (keeping equivalence of satisfia-

bility). The chains C; leading to ‘syntactic evaluations’ @ii(l,) different from L are collected

into the set
['={C;:iel} (3)

Consider now the universal conjunct VzB(z) of F. By Proposition 2.8:
VaB(x) = VeAB(x)

Similarly as above, by using Lemma 3.4, Proposition 2.6 and Proposition 3.6 we obtain:

=va((\/ C)AAB) =Va( \/ (CAAB()) =Va( \/ (C AP 4)

CeCr CeCr CeCp

As a formula with leading A can only evaluate syntactically to L or T (cf. Definition 3.5),
we remove the disjuncts with L and arrive at

= va(\/ C) (4)
cex
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where 3 C Cr is the set of chains for which ®¢ Ba) = T
The original formula JxA(z) A VxB(x) has a model if and only if this holds for its
SAT-equivalent formula (where I' arises from JzA(z), cf. Equation 3)

F'i=\/ 3(C A5, AVz \/ C (5)
cer ces

Claim: JzA(x) A VaB(x) is satisfiable if and only if there is a A-chain C e I'N X.
We will refer to this condition as satisfiability condition.

(=) Let ¢ be an evaluation satisfying the original formula. The A-chain ‘induced’ by
this evaluation naturally satisfies the condition above.

(<=) We show below that if the satisfiability condition holds, we can construct an
interpretation ¢ of G£ that is a model for F” (and hence for the original formula F).

Indeed, let C' be a A-chain matching the satisfiability condition above. Consider the
equivalence classes over the predicates of F' induced by C. Assume that they are ordered as

[Ll=ao <1 <...<a,=[T] with o ={P/(z),...,P. (2)}

Furthermore assume that the equivalence class of @g(x) is ay, i.e., @g(x) € .

By the property that 1 is non isolated in the truth value set, we can define the evaluation
of atomic formulas on the universe of natural numbers in a way that the following properties
are fulfilled (for simplicity below we omit the subscripts in P}(z), and indicate only the
respective equivalence class by the superscript):

(1) ¢(P°(c)) =0, for all ¢, which is necessary as all the P°(z) are in oy = [L].
(2) if i < j then for all P € a; and P’ € a; and for all ¢, p(P'(c)) < p(P’(c)).
(3) if i > k and P’ € a, then lim,. o, ¢(P'(c)) =1

As an example, for V' = [0, 1] a satisfying evaluation ¢ can be defined as

; 1
AP =1 g )
For truth value sets other than [0, 1] (with 1 non isolated) we define the evaluation ¢ itera-
tively (cf. Figure 1): for ¢ = 0 select the evaluations in the truth value set such that condi-
tions (1) and (2) are satisfied. Having defined the evaluations of P¥(c) select the evaluations
of P'(c+1) (for i > k) above all the evaluations P'(c), i.e., above max{o(P'(c)) : 0 < i < n}.
This is possible due to the fact that 1 is non isolated. Furthermore, we can again ensure
conditions (1) and (2). Continuing this way we only have to make sure that for all predi-
cates P’ with ¢ > k the maximums of the evaluations for ¢ are actually having 1 as the limit
(condition (3)). This is again possible being 1 non isolated in V.

We now evaluate in ¢ the formula F’ that is SAT-equivalent to F'. Due to conditions (1)
and (2) the A-chain C' is satisfied, that is for all ¢, (C(c)) = 1. From this and the fact
that C' € ¥ (satisfiability condition) it follows that

p(ve \/ C) =1,
cex
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c=2 | | | P ae—N |

[ [ [ ) S |

O=ri<ri<...<ri'l< <rk<.<ril< <rp=1
P e

c=1 | % % S — |

0=rd<ri<...<ri < <rb <. <l < <rr=1
a4

c=0 | % % “—  ———» |

O=rd<ri<...<rilt<rl <. << <=1

Figure 1: Model construction, 7% = o(P¥(c)) for P* € ay,

Considering that @fj(x) cannot be member of ay = [L] (otherwise the A-chain C' would not
be part of I') and by (3) we have lim._,« gp(cﬁ[)i(x)(c)) =1, thus

p(F2(C A Oy (@) = 1.

Hence ¢ is a model for F’ and therefore F' is satisfiable.

The extension of the proof to the general case, i.e., to formulas JzA;(x) A ... ATz A, A
VaeBy(x) A ... \VzB,, (cf. Equation 2) is easy. As in the restricted case we obtain I'y, ...,
I',, from each of the Ay, and sets ,...,,, from the B;. The satisfiability condition for

the general case is therefore
ce (\oin ()

1<i<n 1<j<m
i.e., there has to be a common chain in all the solutions. The proof in the forward direction
is trivial as a satisfying evaluation provides one chain that fulfills this condition. For the
reverse direction we proceed exactly as in the basic case.

The decidability of the satisfiability problem for FO., . (V) follows from the fact that the
satisfiability condition is a finite check over finite objects (i.e. A-chains). O

Example 4.6. Consider the formulas
F :=3rA(z) AVo-AA(z) and F :=3JzAA(x) A\Vo-AA(z)

F is satisfiable in Gjoq). Indeed, I'p = {A(x) =a T, L < A(xz) < T} while ¥p = {L <
A(z) < T, A(x) =a L}. The chain C = L < A(z) < T meets the satisfiability condition.

F is not satisfiable in Gjoqy. Indeed, I'yz = {A(x) =a T} while X5 = Ep.
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Remark 4.7. In constructing the satisfying evaluation ¢, the interpretations of the formulas
P'(c) in all equivalence classes (but [L]) could have been shifted closer and closer to 1 with
increasing c¢. We instead did that only for formulas in the equivalence classes «; with @ > k
(cf. condition (3)), as this is used in the next section to make a similar proof working in
presence of ~.

4.8. Adding the involutive negation

The presence of the involutive negation does not change the decidability results for the
satisfiability problem for FO} (V). The proof for the case 1 isolated in V proceeds exactly
as that in Section 4.1. We show below how to modify the decidability proof in Section 4.2
to deal with ~.

To define a chain normal form for formulas in FO,,,,, (V) with ~ we allow the constant 1

as predicate constant in the language and fix its evaluation under every interpretation to
be 1/2.

Definition 4.8 (Literal). Let P(x) be an atomic formula. Both P(x) and ~ P(x) are called
literals.

Recall that when considering ~ we require that the Godel set V' is symmetric with respect
to the rational number 1/2. The notion of A-chains is extended to ~-A-chains as follows:

Definition 4.9 (~-A-chain). Let F be any formula in FO} (V) with ~, let Ay, ..., A,
be the predicates occurring in F and Ly, ..., L,, My, ..., M, be the literals made from these
predicates, where in addition L; and M; are dual literals, i.e., if L; = P(x), then M; =
~P(z), and if L; = ~P(x), then M; = P(x). A ~-A-chain over F is any formula of the
form

1

1
(J_ X Ln)/\(Ln Mp—1 Ln,1>/\/\(L1 X1 5)/\(5 X1 Ml)/\(Ml Mo Mg)/\/\(Mn X T)

where X; is either < or =, and at least one of the x;’s is <.

Note that in ~-A-chains each x; is mirrored on the left and right side w.r.t. % This
reflects the relation between dual literals.

Furthermore, the definition of syntactic evaluation (Def. 3.5) has to be extended for ~
by letting

c — LHC
¢ CDNA(x) = @A(:z:)

As a consequence the structure of the equivalence classes induced by a ~-/\-chain changes
as follows

[J_]zﬁn<...<51<[%]<a1<...<an:['l']

where for all 1 <i <mn, if oy = [Lg], then §; = [My], i.e., dual literals are representatives of
equivalence classes with the same index, but on different side of [3].

12



Proposition 4.10. Let F be any formula in FO, (V) with ~ and A(z) any quantifier-free

mon

subformula of F'. For each interpretation ¢ of Gy and each ~-A-chain C' over I
p(C A A(x) = p(C A DY)
Proof. Similar to the proof of Proposition 3.6. n

Theorem 4.11. The satisfiability problem for FOL (V) in G& extended with ~ is decidable
for all V.

Proof. The case 1 isolated in V' proceeds as in the proof of Theorem 4.3.
Assume that 1 is non isolated in V' and F is the formula JzA(x) AVzB(x) of FOL (V)

mon

in G{. As in the proof of Theorem 4.5 (cf. Equation 5) F' is satisfiable if and only if so is

cerl’ cex

where I and X contain all ~-A-chains leading to ‘syntactic evaluations’ CID%@ and CIDZZ'B(@,
respectively, different from 1.
Claim: (satisfiability condition) F' is satisfiable if and only if

(sat,) there is a ~-A-chain C € 'NX.
Moreover let

1
[L]:ﬁn<...<ﬁl<[§]<a1<...<an:[T]
be the equivalence classes induced by this ~-A-chain C,

(saty) the equivalence class of @g(x) is ay,.

(«<=) Condition (sat,) is proved as in Theorem 4.5. Due to the fact that the valuations
satisfies the existential quantifier, the equivalence class of the syntactic evaluation of A(x)
needs to be between (the equivalence class of) i and (the equivalence class of) T, which
gives (saty).

(=) When conditions (sat,) and (sat,) hold we can define an interpretation ¢~ that is
a model for F’ (and hence for F') similarly to the interpretation ¢ in the proof of Theorem
4.5. Indeed let [@i(z)] = ai. As in the case without ~, the idea is to push to 1 all the
equivalences classes «; greater or equal to ay, i.e., for which i > k (see Remark 4.7). Due
to the presence of the constant 3 this can be achieved only if [@g(x)] is strictly greater than
[3]. This is guaranteed by condition (saty).

For the case V' = [0,1] we present below an explicit definition of the interpretation

1

¢~ (P(c)), whose domain is the set of natural numbers plus 5 (and n is the number of

equivalence classes on each side of % arising from the satisfiability condition above)

5 (5)=1/2
0~ (P(c)) =1/2(1 —i/n) if P(x) € B;,i <k
0~ (P(c)) =1/c" - 1/2(1 —i/n) if P(z) € Bi,i >k
e~ (P(c)) =1 — ¢~ (~P(c)) if P(r) € a



It is easy to see that the following properties hold:
(1) ¢~ (P(c)) =0, for all ¢, if P(z) € Ba(= [L]).

(2)" if i < j then for all P* € a; and P’ € «; and for all ¢, ¢~ (P*(c)) < ¢~ (P’(c)) (and,
symmetrically if ¢ > j then for all P* € §; and P? € f;, ¢~ (P'(c)) < ¢~ (Pi(c))).

(3)" if P(x) € o with @ > k, then lim. o, ¢~ (P(c)) =1

From the above properties easily follows that o™~ (F’) = 1.

In the case of arbitrary (but symmetric) truth value sets we use the construction given
in the proof of Theorem 4.5 for the «;’s (with ¢ > k) and define the evaluations for all
predicates in the symmetric equivalence classes (; by 1 minus the evaluation of those in «;.
Finally, the evaluations of the predicates in the remaining equivalence classes are chosen to
satisfy conditions (1) and (2)’.

The extension of the proof to the general case proceeds as in Theorem 4.5.

O

Remark 4.12. The results in this section also hold when 1/2 is not in the Gédel set V. In
this case we still require that V' is symmetric with respect to 1/2 and we define a ~-/A-chain
as (J_ NnLn)/\(LQ Mo L1>/\<L1 <M1)/\(M1 X o MQ)/\/\(Mn Xy T)

5. On the number of SAT-G@

Consider the two sets of formulas associated to each truth value set V' (cf. Definition 2.5).
In propositional logic the choice of any infinite subset of [0, 1] leads to the same set of valid
formulas. The same holds for the set of satisfiable formulas, see [5]. At the first-order level
different infinite Gédel sets V' induce instead different sets of valid and of satisfiable formulas.
For (validity) Godel logics their number has been settled to countable in |7]. Nothing is
known about the number of SAT-G$ with infinite Godel set V. We show below that these
are at least countable, as this is already the case when we restrict to monadic formulas of G$
only containing one variable. In contrast with this result, the decidability proofs in Section 4
also reveals that in FO} (V) only two infinite-valued Gédel logics extended with A (or ~)

mon

differ w.r.t. satisfiability.

Proposition 5.1. There are countably many distinct monadic and one-variable SAT- Ge,,
with infinite Gadel set V.

Proof. For n > 1 let V,, be the truth value set:

k k 1
= 1 — 1 <EkL
oo kel uf

n—|—1+l(n+1)

:1§k§n,l22}

V,, has exactly n accumulation points niﬂ strictly between 0 and 1. Each of them is the

infimum of the points niﬂ + m We show that SAT—G\A,H, for n > 1, are all different.

Consider indeed the following formula

INFy, := A(Cy = Ve Py(z)) ANV2(Cr < Py(x))
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(where «» and < are defined as in Section 2). INF} expresses that Cj is a proper infimum
in the sense that under a given evaluations ¢, INF; evaluates to 1 if and only if the truth
value of C is the infimum but not a minimum of the truth values of Py(c).

Using INF};, we can now define the formulas

k=1

that distinguish SAT—G\A,H‘. For each n > 1, F,, expresses indeed the fact that there are at
least n proper infimum in the open interval (0,1). It is easy to see that F,, € SAT-G\A,D,
i.e., there is a V,-interpretation satisfying F,,, if and only if n > m. The if part follows
by the existence of more than m accumulation points in V,, while for the only if part notice
that every V,,-interpretation with n < m assigns to one of the INF, a value less than 1. [

In contrast with the above result, as an immediate consequence of Proposition 3.2 and

the fact that there is only one set of classically satisfiable formulas, the following corollary
holds

Corollary 5.2. There is only one SAT-Gy in FO. (V) without A.

The decision methods given in Theorems 4.3 and 4.5 show that the only difference be-
tween the sets of formulas SAT-G$ in FO! (V) is the isolation of 1, which gives the
following corollary:

Corollary 5.3. There are only two different SAT-GY5 in FOL (V).

6. Reduction to propositional satisfiability

We reduce the satisfiability problem for FO} (V) to satisfiability in suitable proposi-
tional finite-valued Godel logics. As a corollary it follows that the satisfiability problem for
FO. (V) is NP-complete for all Gédel sets V , with or without the involutive negation ~.

mon

Definition 6.1 (Propositional reduct). Let A be any formula in FO}
~. The propositional reduct AP of A is inductively defined as follows:

(V) with or without

PP =P (P=x for=e{015)
(VoA = A7 (TrA)P = AP
(Ax B)P = AP« BP for x € {\,V,—}

(xA)P = x AP for x € {—,~, A}

Henceforth we denote by G*_ the propositional infinite-valued Gédel logic® extended with
x € {A\,~}. The following theorem reduces SAT for (first-order) formulas in FO. (V) to
SAT for propositional formulas.

6Recall that for propositional formulas all infinite-valued Gédel logics coincide.
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Theorem 6.2. Let V' be any infinite Godel set,
F =VzAi(x) A.. . AVz Ay (z) AJzBi(z) A ... A JxB,(x)

be any formula in FO) (V) (with or without ~) and A = VaA(A(x) A ... A Ay()).

mon

1. If 1 is isolated in V, we have

FeSAT-G; < APA(32Bi(2))? € SAT-G~.
AND ... AND
AP N (xB,(z))? € SAT-G%,

2. If 1 is non isolated in V, we have

FeSAT-G;, « APAX, e SAT-G
AND ... AND
AP A X, € SAT-GY,

where X; = ~—(3xB;(x))P, if x = A and X; = ~~((FaBy(z) — 3) — FaBy(x))?,
when * = ~.

3. If 1 is non isolated in V and F € SAT-GY,, then

F is satisfiable in a finite model < AP A\ (JxB;(z))? € SAT-G%, foralli=1,... ,n.

Proof. 1. Immediately follows by Lemma 4.2.

2. The satisfiability conditions in the proof of Theorem 4.5 and 4.11 correspond, on the
propositional side, to the satisfiability of A? A——(B;(x))? (i.e., the syntactic evaluation @gi (@)
evaluates to an atom not in the equivalence class of L), for the case x = A, and to X; =
—~((3zB;(z) — %) — JzB;(z))? (i.e. the syntactic evaluation (Dgi(x) evaluates to an atom
in an equivalence class bigger than [%]), for the case x = ~.

3. By Proposition 2.8, F is satisfiable in Gy, if and only if so is AAJz By (x)A. . .AJxB,(z).
(=) Let ' be a finite interpretation that is a model for F'. Then for each j = 1,...n there
exists ¢; in its domain such that ¢/ (B;(c;)) = 1. Therefore all A(A;(¢;)A. . .AAn(c;))ABi(c:)
for 1 < i < n are satisfiable in ¢/ which induces the propositional evaluations satisfying
each AP A (FzB;(x))P in G%,. (<=) Assume that each AP A (3zB;(z))? € SAT-G_ and {°
is a model in G%,. Let Py,..., P, be the atomic formulas in A? A BY for all i = 1,...,n.
A (finite) model for F' in G3, is simply defined by taking ¢y, ..., ¢, as domain elements and
assigning to each Pj(c;) a value in V' which respects the ordering of the values ¢5°(F;) for
alli=1,...,1 O

The above theorem together with the proposition below allow us to reduce the satisfiabil-
ity problem for FO! (V) to a check on propositional finite-valued Gédel logics. Henceforth

mon

G will stand for propositional Godel logic with & truth values.
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Lemma 6.3. Let A be a propositional formula containing n distinct variables.
A€ SAT-G:, iff Ac SAT-G3,,

If A contains ~ then
A€ SAT-G:, iff Ac SAT-G5, .,

Proof. In presence of ~ we have to consider, for each of the (n 4 2) values, their negation
w.r.t. ~, i.e. for each x, also 1 — x. These are 2n + 2 (notice that 0 is the negation of 1, and
vice versa) with in addition the value 1/2. O

Corollary 6.4. Let I be a formula in FO,) (V) containing n different predicates. F is
satisfiable in G (G5, respectively) if and only if the corresponding propositional formulas

in Theorem 6.2 are satisfiable in Gfﬁ (G5, 13, respectively).

Example 6.5. Consider the formula F' = JxA(z) A Ve-AA(x) of Example 4.4. F is
satisfiable in Gy with 1 non isolated in V being (A—-A) A =—=A satisfiable in G%. The

satisfiability of the propositional formula can be checked in GgA. Note that F' has no finite
models being (A=A) A A not satisfiable in GZ.

Corollary 6.6. The satisfiability problem for FOL (V) with and without ~ is NP-complete.

Proof. The inclusion in the class NP follows by Corollary 6.4 and e.g., [13]. For the NP-
completeness note that SAT in propositional classical logic can be expressed as SAT in G4
by prefixing with A each variable in the classical formula. m

Final Remark

CADIAG-2 (Computer Assisted DIAGnosis) is a ‘MY CIN-like’ expert system assisting in the
differential diagnosis in internal medicine, developed at the Medical University of Vienna. Its
knowledge base contains more than 20.000 IF-THEN rules expressing relationships between
medical entities, e.g., patient’s symptoms and diagnoses. In most cases, the relationships and
the involved entities are not boolean (yes/no). To check the representation of the medical
knowledge in the system, CADIAG-2’s rules were formalized in 9] as suitable formulas of
Go,1) belonging to the class FO! (V). The resulting formalization is consistency preserving,
that is the unsatisfiability in G[B,H of the logical formulas implies the existence of errors in the
system’s rules. The (un)decidability status of the satisfiability problem for these formulas
was left open. Theorem 4.11 provides an answer to this question. Furthermore, Corollary 6.4
can be used to actually check the rules of CADIAG-2. This calls first for the development
of suitable provers and SAT solvers for propositional finite-valued Godel logics extended
with ~, capable of handling the large set of logical formulas representing the system’ rules.
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