Appendix A. The numerical procedures
 
A.1 The fractional time step procedure

The two numerical models applied in this paper are based on a time-splitting approach, where a prediction and a correction problem are sequentially solved. For both the numerical procedures, it has been shown that the prediction and the correction steps have the characteristics of a convective and a diffusive problem, respectively [2-5]. For these reasons, we call the prediction system "convective prediction" (CP) system and the correction system "diffusive correction" (DC) system. 
Let's assume a general system of balance laws,

                                                        (A.1),
where U,  F(U) and B(U) are the vector of the unknown variables, the flux vector and the source term respectively. Let Fp(U) and Bp(U) be a suitable numerical flux and source term respectively, further defined, applying a fractional time-step procedure, we set:

                                            (A.2,a),      

                                            (A.2,b).
Applying integration in time, we split system (A.1) in the two following ones: 

                                             (A.3,a),

                                   (A.3,b),




and we call systems (A.3,a) and (A.3,b) prediction and correction systems respectively. In Eqs (A.3), the overbar symbol marks the mean in time values of the numerical flux and source terms computed during the prediction step and apices k, k+1/2 and k+1 mark the values of the unknown variables computed at the beginning of the time step, at the end of the prediction step and at the end of the correction step respectively. The integrals  and  in Eq. (A.3,b) are computed “a posteriori” after the solution of the prediction problem, as explained in [2, 3, 5] for the fully dynamic model and in [4] for the diffusive model, respectively. Observe that summing systems (A.3,a) and (A.3,b), the integral of the original system (A.1) is formally obtained. The difference (Uk+1 - Uk+1/2) in Eq. (A.3,b) is close to zero as far as the differences of the flux terms integrals  and of the source terms , respectively on the l.h.s. and r.h.s. in the same equation, are small. 
A suitable choice of terms Fp(U) and Bp(U) in the prediction step allows a much easier solution of the two steps in Eqs. (A.3) with respect to the original formulation in system (A.1). 
In the FDSWEsM, vectors U,  F(U) and B(U) have the following expressions:

           (A.4,a), 

        (A.4,b),
where (.)T is the transposed of vector (.). 
In the 0ISWEsM, the same vectors assume the following forms:

                                              (A.5,a).


                                                      (A.5,b).
In both the FDSWEsM and 0ISWEsM, the gradients of the water level in the prediction step are computed at time level tk and are kept constant during the time step (in the source term vector Bp and in the flux term Fp, respectively for the FDSWEsM and 0ISWEsM. More details in [2-5].

A.2. Spatial integration of the governing equations

In both the numerical solvers, the governing equations are integrated over unstructured triangular meshes satisfying the Generalized Delaunay (GD) property [4]. Let Th be an unstructured GD triangulation of the 2D bounded domain . We call basic mesh the triangulation Th with NT triangles and N nodes and its generic triangle and node are denoted as kT and Pi (i = 1, ..., N), respectively. We construct a dual mesh Eh over the basic mesh and its dual element (or dual finite volume), associated with the node Pi, is denoted as ei (i = 1, .., N). This is the closed region obtained by merging the sub-triangles given by subdividing each triangle kT sharing node Pi, by means of its axes (see figure 1). ei is the Voronoi region (or Voronoi polygon) ([4] and cited references).  

[image: ]
Figure A.1. The basic and the dual mesh 

A.3. The numerical solution of the 0ISWEsM

In the 0ISWEsM [4], the computational cell is the Voronoi polygon ei and the storage capacity is concentrated in the node Pi in the measure of 1/3 of the area of all the triangles sharing Pi. The authors in [4] assume a linear variation of the water level H inside each triangle, according to the three nodal values. 
In the 0ISWEs physical problem, the flow field has an exact scalar potential, that is the water level. For the application of the MAST procedure, at the beginning of each time step, the cells are ordered on the base of their potential values, computed at the end of the previous time step or, for the first time iteration, given by the initial condition. 
According to Eqs. (4), (A.2)-(A.3) and (A.5), after integration in space and application of the Green theorem, the integral form of the CP system for the generic computational cell i is [4]



,    with ,  ,   i=1,…, N   (A.6),






where Ai is the area of cell i,  is the area of triangle n, i,n is equal to 1 if triangle n shares node i, 0 otherwise,  is the flux leaving cell i to the any neighbouring downstream (in the potential scale) cell j (with ),  is the flux coefficient, further defined,  is the flux entering cell i from any neighbouring upstream (in the potential scale) cell m with  and pi is source term in node i. The flux coefficient is defined as (see Eqs.(19)-(22) in [4])

                                                      (A.7),

where dij is the distance between nodes i and j, indices 1 and 2 mark the two triangles sharing side ij, the coefficient  is

          m = 1, 2                                          (A.8),





where the sub-index m marks all the parameters of the triangle m sharing the same side and  is the distance between the midpoint of side ij and the circumcentre of triangle m. If side ij shares only one triangle,  and  are zero. The distance  is computed as in Eqs. (19) in [4], where the authors prove that the proposed formulation guarantees the consistency of the flux between cells i and j and the difference of the corresponding potentials  for an unstructured GD mesh. 
If the r.h.s. of system (A.6) is approximated with its mean value in the time step, the solution of the same system is disentangled in the sequential solution of N Ordinary Differential Equations (ODEs) [4],

                                            (A.9),


one for each cell, going from the cell with highest to the cell with the lowest potential value. In Eq. (A.9),  is the mean in time value of the flux entering from the upstream (in the potential scale) cell m, previously solved, and  is the mean (in time) value of pi. A very fast semi-analytical solution of the ODEs (A.9) is proposed in [4], which allows to save a lot of computational time.



Call  the water depth at the beginning of the time step and  its asymptotic steady-state value (i. e. when =0), computed according to Eqs. (A.9),


      with                                (A.10).
Eq. (A.9) can be written in dimensionless form as:




,  ,        if                  (A.11,a),




, 	,	  	if            (A.11,b).
The proposed semi-analytical solution proposed in [4] is 


      if                                  (A.12,a),   


   if                             (A.12,b),

with a proper choice of the c1, c2 and c3 coefficients. Using any c3  value it is possible to match the initial value ξ0 and its first derivative  by setting:



,              if               (A.13,a),



,               if                   (A.13,b).




[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK5][bookmark: OLE_LINK6]The c3 coefficient affects the maximum error that is obtained according to functions (A.12) using different time step sizes. This optimum depends on ξ0, if  and on ξf, if . The optimum coefficients have been computed numerically for different possible ξ0 and ξf values by comparing functions (A.12) with a numerical solution computed using a very small time step. See in table 1 and in figure 7 in [4] the computed optimum c3 values. See in figures 8,a and 8,b in [4] the numerical solution of Eqs. (A.11) in the case of respectively ξ0 = 0 and ξf = 0, compared with the semi-analytical solutions (A.12) corresponding to the optimal c3 values (respectively 0.7469 and -0.8171 ). The maximum error computed with the initial conditions ξ0 = 0, for , or ξf = 0, for , is the worse one and it is smaller than 10-3. More details can be found in [4]
After the solution of each ODEs (A.9), the mean in time total flux going from cell i to the neighbouring downstream (in the potential scale) cells is computed applying the local mass balance for cell i [4]. In the framework of the MAST procedure, due to the sequential solution of the cells and their ordering at the beginning of the time iteration, the mean (in time) entering flux is always known before each solution of the ODEs (A.9) [4]. 
The same spatial discretization adopted for the CP problem is used in the DC problem and the initial condition of the DC problem is the final state obtained after the solution of the CP step, marked with the index k+1/2. Starting from Eqs. (4), (A.2)-(A.3) and (A.5), after spatial integration of the correction problem inside each Voronoi cell, the following DC system is obtained [4]

        i = 1, …, N      (A.14,a),




where   ,   ,  ,        (A.14,b),                        



with initial condition  = 0. In Eq. (A.14,a), i,n has been previously specified and the sum in Eq. (A.14,b) is extended to the two triangles m sharing side ij.  l = i  if ,  l = j  if  . The proposed formulation of the coefficients  provides the same flux estimation of the CP step [4] and it is similar to the one of a standard linear (P1) Finite Element Galerkin scheme. Analogies and differences between the flux formulation adopted in the present DSWEs model and the one of a P1 Galerkin scheme are presented and discussed for a GD triangulation in [4]. 
The matrix of the linear system resulting from Eqs. (A.14) has order N (the number of the nodes) and, in the case of a GD triangulation, it is symmetric, positive-definite, strictly diagonally dominant, with M-property and system (A.14) is well-conditioned [4]. After the  unknowns are computed by solving the system (A.14), the final values of the water levels are updated as 

                                                        (A.15).
The splitting of the original governing equations in the CP and DC steps, allows this 0ISWEsM solver to easily deal with waves/flooding propagation problems over dry domains, as well as a robust solution of wetting/drying problems [4]. 

A.3.1. Investigation of the behaviour of the proposed 0ISWEsM over refined meshes and smooth surfaces 



If the area Ai of the ith Voronoi cell goes approaches zero, the dimensionless variable  in Eqs. (A.11) approaches infinity, and the solution of the prediction step is given to the asymptotic values in Eqs. (A.12,a) or (A.12,b), respectively if  or , shown in figures 8 in [4].


In the correction step, the value of the capacity term Aii/t  in system (A.14) becomes negligible compared with the flux terms and 




If the Manning coefficient n approaches zero, coefficient  in Eq. (A.8) approaches infinity, as well as the flux coefficient in the prediction step  in Eq. (A.7) and   in Eq. (A.10). This implies that the asymptotic steady-state value  in Eq. (A.10) approaches zero and the dimensionless variable  in Eqs. (A.11) approaches infinity. In this case, the dimensionless solution ξ of the semi-analytical procedure of the prediction step is given by the asymptotic value of Eq. (A.12,b).


Coefficient  in the correction system in Eq. (A.14,a) approaches infinity (see the third of  Eq. (A.14,b)). By dividing the terms in Eq. (A.14,a) by coefficient , the capacity term becomes negligible with respect to the other terms in the same equation.

A.3.2. Preservation of the water at rest condition (C-property)



The proposed 0ISWEsM preserves the C-property (e.g., [7]). For quiescent water, we have, in the prediction step, zero flux entering in each cell and zero gradient of the water level H. This implies that in Eq. (A.6) we have  = 0 and, from Eqs. (A.7)-(A.8) = 0. The solution of the prediction step gives Hk+1/2 = Hk. System (A.14) in the correction step becomes  

                                       (A.16),

since , and this implies that the correction of the water level  is zero.

A.4. The numerical solution of the FDSWEsM
	
In the FDSWEsM, the computational cell is the triangle kT, with the storage capacity  concentrated in the circumcentre of kT in the measure of the area of kT and a piecewise constant value of the unknown variables h (as well as H), uh ad vh is assumed inside each triangle [3, 5].
According to Eqs. (1)-(2), (A.2)-(A.4), by integrating in space the prediction problem and applying the Green's theorem, the integral form of the CP system is [3, 5]

     e = 1, …, NT      (A.17),


,   with   s = x, y,   (A.18),



where index e marks the values of the variables in triangle kT,e,  and are the flux and the x(y) component of the momentum flux, leaving (entering) cell kT,e across side j (j = 1, 2, 3) of kT,e, respectively, j,e = 1 (0) if the flux across side j of kT,e is oriented outward (inward) kT,e, pe is the source term in cell kT,e and  is the source term defined as [3],  



      with    and        (A.19).


The first term on the l.h.s. of Eq. (A.18) is the integral form of the local inertia (or local acceleration), the two summations of the same equation, on the l.h.s. and r.h.s., respectively, represent the integral form of the convective inertia (or convective acceleration), computed as the line integral of the momentum fluxes across the sides of the computational cell, the third term on the l.h.s of Eq. (A.18), is the sum of the integral form of the bottom friction  and water level gradient  terms.    
As for the 0ISWEs problem, the authors in [3, 5] disentangle the solution of the prediction system in Eqs. (A.17)-(A.18) in the sequential solution of NT ODEs, by approximating the r.h.s. of the same equations with their mean values in time computed during the time step.
To apply the sequential solution of the computational cells, it is necessary to order them [3, 5], but, unlike the previous DSWEs problem, an exact scalar potential of the flow field does not exist in the FDSWEs physical problem. For this reason, the authors in [2, 3, 6] add a convective corrective (CC) step, splitting the original prediction step in a "convective prediction" (CP) system and in a "convective correction" (CC) system [3, 6]. 

The computational cells are ordered by applying an iterative procedure based on the inter-cell flux direction between adjacent cells, proposed in [5] and further modified in [6]. In the following, we call  the order number of cell kT,e at the beginning of the generic time step (time level tk).






After the ordering of the computational cells, the CP step is solved as a sequence of small systems of ODEs, from time level tk to time level tk + t [5], proceeding from the cell(s) with the lowest value to the cell(s) with the highest  value. The same procedure is repeated in the CC step, proceeding in the opposite direction, from the cell(s) with the highest to the cell(s) with the lowest  value [6]. Cell kT,e with order  is solved only after the solution of the neighbouring kT,ep cells with  (), in the CP (CC) step [5]. The ODEs system of the CP problem is [3, 5]

       e = 1, ..., NT   (A.20),

   s = x, y   (A.21),


with the symbols specified as above and the leaving flux and momentum flux  and  defined as follows. If the two neighbouring triangles kT,e and kT,ep share side ri,ip between nodes i and ip, where ri,ip is the jth side of kT,e and the mth side of kT,ep  (j, m = 1, 2, 3), we define the flux across side j of kT,e as [3]

                                            (A.22),
and the flux and the momentum fluxes between kT,e and kT,ep as [3]                                     



   if       and                                (A.23,a),     

   otherwise                                             (A.23,b),                                  



,                if                 (A.24,a),    


 ,               otherwise                   (A.24,b).


Flux/momentum flux continuity is guaranteed at each triangle side by Eqs. (A.23)-(A.24) and  and .



The leaving flux/momentum flux  and  in Eqs. (A.20)-(A.21) of the CP step, going from cell   kT,e to the neighbouring cell kT,ep  (with ), are defined as [3]




      if       (A.25,a),              if                                  (A.25,b).




 and  on the r.h.s. of Eqs. (A.20)-(A.21) are the mean in time values of the incoming fluxes and momentum fluxes, respectively (know from the solution of the previously solved neighbouring kT,ep cells with  [2, 3, 5, 6]) and  is the mean in time value of the source term in kT,e. 




Once the ODEs system (A.20)-(A.21) is solved for kT,e, the mean in time value of the total flux  leaving from kT,e, from tk to tk + t, is computed according to the local mass balance for cell kT,e [3]. The mean in time flux  and momentum fluxes , leaving from the jth side of kT,e to the mth side of the neighbouring cell kT,ep  (with ) are estimated as in [2, 3, 5]. After that, the same ODEs system (A.20)-(A.21) is solved for cell kT,ep, selected among the unsolved ones according to 

                       (A.26). 
The same procedure is applied for the solution of the CC step, whose ODEs system is

                          (A.27),

   s = x, y       (A.28),



with j,e defined as above and the leaving flux/momentum flux  and  in Eq. (A.27)-(A.28) of the CC step, going from cell kT,e to the neighbouring cell kT,ep  (with ), are defined as [3]




     if        (A.29,a),                         if                                     (A.29,b).
As motivated in [2, 3], the source terms are allocated in the CP step.

After the solution of the ODEs system (A.27)-(A.28) for cell kT,e, the total leaving fluxes/momentum fluxes from side j of kT,e to the neighbouring cell kT,ep with  are computed as for the previous CP step. More details in [2, 3, 6]. 
According to Eqs. (1)-(2), (A.2)-(A.4), after integration in space, neglecting the inertial terms in the momentum equations (as motivated in [2, 3]), substituting the momentum equations in the continuity equation and applying the Green's theorem, we obtain a linearized system in the unknown water level [2, 3, 5],  

   (A.30.a),

   with        and    e = 1, ..., NT     (A.30,b),



where Lj,e is the length of side j of triangle kT,e,  is  its unit orthogonal vector,  and qcc are the mean in time value of the flow rate vector computed during the (CP + CC) steps and its final value, respectively [5] and symbols  in Eq. (A.30) is the mean in time value of (*) computed during the (CP + CC) steps. The initial state for the DC step is the solution computed at the end of the CC step. The matrix of the linear system resulting from Eqs. (A.30) has order NT (the number of the triangles) and, in the case of a GD triangulation, is well conditioned, symmetric, positive-definite, strictly diagonally dominant, with M-property and system (A.30) is well-conditioned [5]. After solving the DC step, uh and vh are updated, as well as the spatial gradients of the water levels, as explained in [5]. 
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Appendix B. Supplementary material for the presented tests

In this Appendix we plot the figures and tables recalled in the text of the main paper. 

Test 1. Steady flow in a 1D channel with undulating bottom profile

Table B.1. Test 1. L1 and L2 norms of the relative errors for h and uh. Unstructured meshes
[image: ]

Table B.2. Test 1. L1 and L2 norms of the relative errors for h and uh. Structured meshes
[image: ]




Test 2. Rain in a 1D channel

[image: ]
Figure B.1. Test 2. L1 and L2 norms of qout 

Test 3. Rainfall in a 2D catchment

[image: ]
Figure B.2. Test 3. L1 and L2 norms of qout 
[image: ]
Figure B.3. Test 3. Computed water depth and vectors of unitary flow rate at different durations. 22 s (top), 30 s (middle), 52 s (bottom)




Test 4. The Toce river case

Table B.3. Test 4. Values of the L1, L2 Linf norms of the relative errors at the gauges [-]
	
	FDSWEsM   n0
	0ISWEsM   n0
	0ISWEsM   nopt

	gauge
	L1
	L2
	Linf
	L1
	L2
	Linf
	L1
	L2
	Linf

	P1
	6.65E-04
	8.04E-04
	3.65E-02
	9.07E-04
	1.10E-03
	5.96E-02
	9.07E-04
	1.09E-03
	5.83E-02

	P2
	6.83E-04
	9.29E-04
	3.97E-02
	2.69E-03
	2.56E-03
	7.34E-02
	1.64E-03
	1.44E-03
	5.25E-02

	P3
	9.53E-04
	8.73E-04
	2.09E-02
	1.33E-03
	1.39E-03
	6.25E-02
	1.27E-03
	1.39E-03
	5.95E-02

	S4
	1.29E-03
	1.69E-03
	5.59E-02
	1.40E-03
	1.90E-03
	5.08E-02
	1.23E-03
	1.74E-03
	4.60E-02

	P4
	5.51E-04
	1.04E-03
	7.59E-02
	9.74E-04
	1.32E-03
	6.64E-02
	9.74E-04
	1.32E-03
	6.64E-02

	S6S
	4.29E-04
	5.66E-04
	1.44E-02
	3.45E-03
	3.95E-03
	5.46E-02
	2.31E-03
	2.99E-03
	4.29E-02

	S6D
	1.12E-03
	9.76E-04
	2.15E-02
	1.49E-03
	2.43E-03
	3.46E-02
	8.78E-04
	1.32E-03
	3.16E-02

	P5
	1.23E-03
	1.43E-03
	4.07E-02
	2.71E-03
	3.28E-03
	6.39E-02
	1.64E-03
	1.80E-03
	5.29E-02

	P8
	1.53E-03
	2.87E-03
	4.32E-02
	2.46E-03
	3.84E-03
	7.06E-02
	1.54E-03
	2.09E-03
	6.30E-02

	S8D
	6.33E-04
	8.87E-04
	2.30E-02
	2.96E-03
	4.95E-03
	5.42E-02
	7.10E-04
	9.80E-04
	2.70E-02

	P9
	8.31E-04
	1.07E-03
	3.96E-02
	4.68E-03
	7.33E-03
	7.90E-02
	2.46E-03
	3.89E-03
	7.63E-02

	P10
	8.06E-04
	1.08E-03
	2.69E-02
	3.18E-03
	6.54E-03
	7.89E-02
	1.15E-03
	1.55E-03
	4.45E-02

	P12
	5.94E-04
	8.53E-04
	1.70E-02
	1.00E-03
	1.60E-03
	3.91E-02
	8.86E-04
	1.33E-03
	3.91E-02

	P13
	1.42E-03
	2.32E-03
	6.75E-02
	2.97E-03
	5.61E-03
	6.92E-02
	2.18E-03
	3.22E-03
	6.75E-02

	P18
	2.05E-03
	3.63E-03
	5.80E-02
	2.24E-03
	3.61E-03
	7.97E-02
	1.16E-03
	1.87E-03
	4.87E-02

	P19
	3.78E-04
	7.50E-04
	3.00E-02
	1.90E-03
	2.40E-03
	5.57E-02
	1.45E-03
	1.45E-03
	3.88E-02

	P21
	1.19E-03
	1.37E-03
	4.17E-02
	3.63E-03
	7.23E-03
	8.14E-02
	1.57E-03
	2.28E-03
	5.39E-02

	P23
	2.59E-03
	2.37E-03
	4.95E-02
	5.52E-03
	8.32E-03
	1.35E-01
	4.38E-03
	5.76E-03
	8.41E-02

	P24
	2.67E-03
	2.22E-03
	3.53E-02
	7.69E-03
	1.63E-02
	1.80E-01
	5.53E-03
	9.97E-03
	1.38E-01

	P25
	2.76E-03
	2.44E-03
	3.62E-02
	5.86E-03
	1.65E-02
	1.86E-01
	3.83E-03
	8.07E-03
	1.07E-01

	P26
	1.80E-03
	2.50E-03
	4.53E-02
	7.31E-03
	8.32E-03
	1.69E-01
	6.12E-03
	6.26E-03
	8.35E-02




[image: ]
Figure B.4. Test 4. Measured and computed water levels at gauges S6S, P4 and S6D
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