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Abstract—We introduce a simple but effective technique in
automatic hand gesture recognition using radar. The proposed
technique classifies hand gestures based on the envelopes of
their micro-Doppler (MD) signatures. These envelopes capture
the distinctions among different hand movements and their
corresponding positive and negative Doppler frequencies that
are generated during each gesture act. We detect the positive
and negative frequency envelopes of MD separately, and form
a feature vector of their augmentation. We use the k-nearest
neighbor (kNN) classifier and Manhattan distance (L1) measure,
in lieu of Euclidean distance (L2), so as not to diminish small
but critical envelope values. It is shown that this method
outperforms both low-dimension representation techniques based
on principal component analysis (PCA) and sparse reconstruction
using Gaussian-windowed Fourier dictionary, and can achieve
very high classification rates.

Keywords—Hand gesture recognition; time-frequency repre-
sentations; micro-Doppler.

I. INTRODUCTION

Radar systems assume an important role in several areas of
our daily life, such as air traffic control, speed enforcement
systems, and advanced driver assistance systems [1–3]. Re-
cently, radar has also become of increased interest for indoor
applications. In particular, human activity monitoring radar
systems are rapidly evolving with applications that include gait
recognition, fall motion detection for elderly care and aging-
in-place technologies [4, 5].

Over the past decade, much work has been done in hu-
man motion classifications which include daily activities of
walking, kneeling, sitting, standing, bending, falling, etc. [6–
18]. Distinguishing among the different motions is viewed
as an inter-class classification [6–12], whereas the intra-class
classification amounts to identifying the different members of
the same class, e.g., classifying normal and abnormal gaits
[13–18]. There are two main approaches of human motion
classifications, namely those relying on handcrafted features
that relate to human motion kinematics [7, 8, 13–15], and
others which are data driven and include low-dimension rep-
resentations [6, 16], frequency-warped cepstral analysis [12],
and neural networks [9–11, 17, 18].
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In addition to classifying human motions, radars have been
recently used for gesture recognition which is an important
problem in a variety of applications that involve smart homes
and human-machine interface for intelligent devices [19–27].
The latter is considered vital in aiding the physically impaired
who might be wheelchair confined or bed-ridden patients.
The goal is to enable these individuals to be self-supported
and independently functioning. In essence, automatic hand
gesture recognition is poised to make our homes more user
friendly and most efficient through the use of contactless
radio frequency (RF) sensors that can identify different hand
gestures for instrument and household appliance control. The
most recent project Soli by Google for touchless interactions
is a testament of this emerging technology [27].

The same approaches employed for classifying human daily
activities can be applied for recognition of hand gestures
using the electromagnetic (EM) sensing modality. However,
there is an apparent difference between MD signatures of
hand gestures and those associated with motion activities
that involve human body. Depending on the experiment setup
and radar data collection specs, MD representations of hand
gestures can be simple, limited to short time duration and small
frequency bandwidth, and are mainly characterized by their
confined power concentrations in the time-frequency domain.
On the other hand, the MD signatures of body motions are
intricate, of multi-component signals, span relatively longer
time periods and assume higher Doppler frequencies.

In this paper, we present a method to discriminate five
classes of dynamic hand gestures using radar MD sensor.
These classes are swiping hand, hand rotation, flipping fingers,
calling and snapping fingers. We begin with several types of
hand motions, and use the canonical angle metric to assess
the subspace similarities constructed from their respective
time-frequency distributions [28]. Based on the results, we
group these motions into five most dissimilar classes. Two
MD features are extracted from the data spectrograms. They
correspond to the positive and negative frequency envelopes
of the hand gesture MD signatures. Only two envelopes
implicitly capture, for each motion, the positive-negative fre-
quency differences, the time alignments and misalignments
of the peak positive and negative Doppler frequencies, and
the signature extent and occupancy over the joint time and
frequency variables.
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We compare the proposed approach with that based on
subspace decomposition methods, namely PCA [6, 16] and
with the one using compressive sensing methods, namely
sparse reconstruction employing Gaussian-windowed Fourier
dictionary [19]. In the latter, the classifier was applied to hand
gesture data showing signatures comprising rather detached
power concentrated time-frequency regions. The data collected
from our radar sensing experiments demonstrate that our
proposed method outperforms the above two methods, and
achieve a classification accuracy higher than 96%.

The remainder of this paper is organized as follows. In
Section II, we present the extraction method of MD signature
envelopes and discusses the employed classifier. Section III
describes the radar data collection and pre-processing of hand
gestures. Section IV gives the experimental results based on
the real data measurements. Section V is the conclusion of the
paper.

II. HAND GESTURE RECOGNITION ALGORITHM

A. Time-frequency Representations

Hand gestures generate non-stationary radar back-scattering
signals. Time-frequency representations (TFRs) are typically
employed to analyze these signals in the joint-variable do-
mains, revealing what is referred to as MD signatures. A
typical technique of TFRs is the spectrogram. For a discrete-
time signal s(n) of length N , the spectrogram can be obtained
by taking the short-time Fourier transform (STFT)

S (n, k) =

∣∣∣∣∣
L−1∑
m=0

s(n+m)h(m)e−j2π
mk
N

∣∣∣∣∣
2

(1)

where n = 0, · · · , N − 1 is the time index, k = 0, · · · K − 1
is the discrete frequency index, and L is the length of the
window function h(·). The zero-frequency component is then
shifted to the center of the spectrogram. It is noted that if the
MD signal can be modeled as a sum of frequency modulated
signals, then the signal parameters can be estimated using
maximum likelihood techniques [29]. However, the MD signal
of the hand gesture does not conform to this model and, as
such, spectrograms will be used for feature extractions. It is
also noted that the signal s(n) in equation (1) is considered
as a non-stationary deterministic signal rather than a random
process [30].

B. Extraction of the MD Signature Envelopes

We select features specific to the nominal hand gesture
local frequency behavior and power concentrations. These
features are the positive and negative frequency envelopes in
the spectrograms. The envelopes attempt to capture, among
other things, the maximum positive frequency and negative
frequencies, length of the event and its bandwidth, the relative
emphases of the motion towards and away from the radar,
i.e., positive and negative Doppler frequencies. In essence,
the envelopes of the signal power concentration in the time-
frequency domain may uniquely characterize the different
hand motions. The envelopes of the MD signature can be

determined by an energy-based thresholding algorithm [31].
First, the effective bandwidth of each gesture frequency
spectrum is computed. This defines the maximum positive
and negative Doppler frequencies. Second, the spectrogram
S(n, k) is divided into two parts, the positive frequency part
and the negative frequency part. The corresponding energies of
the two parts, EU (n) and EL(n), at slow-time are computed
separately as,

EU (n) =

K
2 −1∑
k=0

S(n, k)
2
, EL (n) =

K−1∑
k= K

2

S(n, k)
2 (2)

These energies are then scaled to define the respective thresh-
olds, TU and TL,

TU (n) = EU (n) · σU , TL(n) = EL(n) · σL (3)

where σU and σL represent the scale factors, both are less than
1. These scalars can be chosen empirically, but an effective
way for their selections is to maintain the ratio of the energy
to the threshold values constant over all time samples. For
the positive frequency envelope, this ratio can be computed
by finding both values at the maximum positive Doppler
frequency. Once the threshold is computed per equation (3),
the positive frequency envelope is then found by locating
the Doppler frequency for which the spectrogram assumes
equal or higher value. Similar procedure can be followed
for the negative frequency envelope. The positive frequency
envelope eU (n) and negative frequency envelope eL(n), are
concatenated to form a long feature vector e = [eU , eL].

C. Classifier

We apply proper classifiers based on the envelope features
extracted from the spectrograms. The kNN and Support vector
Machine (SVM) are among the most commonly used clas-
sifiers in pattern recognition which are used in this paper.
In particular, the kNN is a simple machine learning classi-
fication algorithm, where for each test sample, the algorithm
calculates the distance to all the training samples, and selects
the k closest training samples. Classification is performed by
assigning the label that is most frequent among these samples
[32]. Clearly, the best choice of k would depend on the data.
In this work, k is set to 1. Four different distance metrics
are considered, namely, the Euclidean distance, the Manhattan
distance [33], the Earth Mover’s distance (EMD) [34] and the
modified Hausdorff distance (MHD) [35].

SVM is a supervised learning algorithm [36]. It exhibits
clear advantages in nonlinear and high dimension problems.

III. HAND GESTURE SUBCLASSES

The data analyzed in this paper was collected in the Radar
Imaging Lab at the Center for Advanced Communications,
Villanova University. The radar system used in the experiment
generates continuous wave, with carrier frequency and sam-
pling rate equal to 25 GHz and 12.8 kHz, respectively. The
radar was placed at the edge of a table. The gestures were
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performed approximately 20 cm away from radar at zero angle
while the individual was sitting down using the dominant hand,
and the arm remained fixed as much as possible during each
gesture motion.

As depicted in Fig.1. The following 15 hand gestures were
conducted: (a) Swiping hand from left to right, (b) Swiping
hand from right to left, (c) Swiping hand from up to down,
(d) Swiping hand from down to up, (e) Horizontal rotating
hand clockwise, (f) Horizontal rotating hand counterclockwise,
(g) Vertical rotating hand clockwise, (h) Vertical rotating
hand counterclockwise, (i) Opening hand, (j) Flipping fingers,
(k) Clenching hand, (l) Calling, (m) Swipe left with two
fingers, (n) Snapping fingers, (o) Pinching index. Four persons
participated in the experiment. Each hand gesture was recorded
over 8 seconds to generate one data segment. The recording
was repeated for 5 times. Each data segment contained 2 or
3 individual hand motions, and a 1 second time window is
applied to capture the individual motions. As such, repetitive
motions and associated duty cycles were not considered in
classifications. In total, 755 segments of data for 15 hand
gestures were generated.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 1. Illustrations of 15 different hand gestures.

Fig. 2 shows examples of spectrograms and the corre-
sponding envelopes for different hand gestures. The employed
sliding window h(·) is rectangular with length L =2048 (0.16
s), and K is set to 4096. It is clear that the envelopes can well
capture the salient features of the respective spectrograms. It
is also evident that the MD characteristics of the spectrograms
are in agreement and consistent with each hand motion kine-
matics. For example, for the hand gesture ‘Swiping hand’, the
hand moves closer to the radar at the beginning which causes
the positive frequency, and then moves away from the radar
which induces the negative frequency.

Observing the spectrograms in Fig. 2, it is noticeable that
similar motions generate similar signatures. To mathematically
confirm these resemblances, we consider sub-grouping the 15
hand gestures using the Canonical correlation measure [28]. In
this case, the spectrograms are converted to gray-scale images
with the size 100 × 100, and then vectorized with the size
1× 10000.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l) (m)

(n) (o)

Fig. 2. Spectrograms and corresponding envelopes of 15 different hand
gestures.

Define matrix X contains M vectorized images Si, i =
1, · · · ,M of a specific hand gesture,

X = [x1|x2| · · · |xM ] (4)

The d-dimensional subspace of a specific hand gesture can
be obtained by taking PCA of X [37]. Suppose Φ1 and Φ2 are
two d-dimensional linear subspaces, the canonical correlations
of the two subspaces are the cosines of principal angles, and
are defined as [38],

cos θi = max
ui∈Φ1

max
vi∈Φ2

uTi vi (5)

subject to ||u|| = ||v|| = 1, ui
Tuj = vi

T vj = 0, i 6= j. Let U
and V denote unitary orthogonal bases for two subspaces, Φ1

and Φ2. The singular value decomposition (SVD) of UTV is

UTV = PΛQ (6)

The canonical correlations are the singular values Λ, i.e.,
cos(θi) = λi, i = 1, · · · , d. The minimum angle is used to
measure the closeness of two subspaces. Table I shows the
canonical correlations coefficients, from which we can clearly
witnessed the similarities between the different hand gestures;
larger coefficient indicates the two hand gestures are more
similar. The red color of the table indicates the coefficient
exceeds 0.9, and the yellow part means the coefficient is over
0.85. According to the Table numbers, we group the 15 hand
gestures into 5 Class. Class I is the gesture ‘Swiping hand’
which contains motions (a), (b), (c) and (d). Class II represents
the gestures ‘Hand rotation’ which contains motions (e), (f),
(g) and (h). The gesture ‘Flipping fingers’, which involves
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motions (i) and (j), makes Class III. Class IV is the gesture
‘Calling’, which has motions (k), (l) and (m). The last Class
V is the gesture ‘Snapping fingers’; it has motions (n) and
(o). It is important to note that other similarity measures [39]
can be applied, in lieu of the canonical correlation. However,
we found the canonical correlation most consistent with the
visual similarities.

TABLE I. CANONICAL CORRELATIONS COEFFICIENTS
b c d e f g h i j k l m n o

a 0.79 0.83 0.91 0.70 0.75 0.79 0.84 0.69 0.66 0.78 0.77 0.76 0.77 0.81
b 0 0.92 0.80 0.70 0.68 0.82 0.82 0.65 0.61 0.78 0.82 0.83 0.73 0.60
c 0 0 0.76 0.64 0.59 0.85 0.88 0.72 0.65 0.80 0.80 0.82 0.76 0.69
d 0 0 0 0.61 0.68 0.81 0.75 0.57 0.55 0.78 0.67 0.60 0.63 0.64
e 0 0 0 0 0.86 0.70 0.75 0.59 0.66 0.56 0.72 0.66 0.72 0.71
f 0 0 0 0 0 0.78 0.83 0.70 0.70 0.67 0.73 0.70 0.78 0.79
g 0 0 0 0 0 0 0.85 0.67 0.67 0.78 0.66 0.71 0.74 0.73
h 0 0 0 0 0 0 0 0.55 0.60 0.72 0.67 0.61 0.71 0.71
i 0 0 0 0 0 0 0 0 0.87 0.75 0.61 0.67 0.76 0.74
j 0 0 0 0 0 0 0 0 0 0.68 0.61 0.68 0.83 0.73
k 0 0 0 0 0 0 0 0 0 0 0.94 0.94 0.83 0.76
l 0 0 0 0 0 0 0 0 0 0 0 0.93 0.73 0.66

m 0 0 0 0 0 0 0 0 0 0 0 0 0.77 0.63
n 0 0 0 0 0 0 0 0 0 0 0 0 0 0.82

IV. EXPERIMENTAL RESULTS

In this section, all 755 data segments are used to validate the
proposed method where 70% of the data are used for training
and 30% for testing. The classification results are obtained
by 1000 Monte Carlo trials. Three different automatic hand
gesture approaches are compared with the proposed method.
These are: 1) the empirical feature extraction method [21];
2) the PCA-based method [16]; 3) the sparse reconstruction-
based method [19].

A. Empirical Feature Extraction Method

Three empirical features are extracted from the spectro-
grams to describe the hand gestures motions, namely the
length of the event, the ratio of positive-negative frequency
and the signal bandwidth. Fig. 3 is an example showing these
handcrafted features.

Fig. 3. Empirical feature extraction.
Fig. 4. Scatter plot of three extracted
empirical features.

1) Length of the event T : This describes the effective time
duration to perform each hand gesture,

T = te − ts (7)

where ts and te represent the start time and the end time of a
single hand gesture, respectively.

2) Ratio of positive-to-negative peak frequencies R: This
feature is obtained by finding ratio of the maximum positive
frequency value, fp, and maximum negative frequency value,
fn,

R =

∣∣∣∣ fpfn
∣∣∣∣ (8)

where | · | is the absolute function.
3) Bandwidth Bw: This is a measure of the the signal

effective width,

Bw = |fp|+ |fn| (9)

The scatter plot of the above extracted features is shown in
Fig. 4. Table II depicts the nominal behavior of these values
over the different classes considered. When using kNN-L1 as
the classifier, the recognition accuracy based on these features
is only 68% with the confusion matrix shown in Table III.

TABLE II. NOMINAL BEHAVIOR OF EMPIRICAL FEATURES OVER DIFFER-
ENT CLASSES

Empirical features
Time Ratio Bandwidth

Class I large moderate moderate
Class II large moderate small
Class III small large large
Class IV small small moderate
Class V small moderate moderate

TABLE III. CONFUSION MATRIX YIELDED BY EMPIRICAL FEATURE
EXTRACTION METHOD

I II III IV V
I 66.79% 13.80% 4.08% 9.18% 6.15%
II 20.04% 64.65% 3.53% 4.88% 6.90%
III 9.94% 5.59% 76.53% 0.03% 7.91%
IV 19.04% 6.74% 0.65% 71.79% 1.78%
V 12.03% 10.96% 12.28% 11.59% 53.14%

B. Proposed Envelope-based Method

As discussed in Section II, the extracted envelopes are fed
into the kNN classifier, with different distance measures, and
the SVM classifier. The recognition accuracy is presented in
Table IV. It is clear that the kNN classifier based on L1
distance achieves the highest accuracy, over 96%, followed
by those employing the modified Hausdorff distance and
the Euclidean distance. Different from other distances, the
L1 distance attempts to properly account for small envelope
values. The confusion matrix of the kNN classifier based on
the L1 distance is shown in Table V, from which we can
observe that Class III and Class IV are most distinguishable,
with an accuracy over 98%.

TABLE IV. RECOGNITION ACCURACY WITH DIFFERENT TYPES OF CLAS-
SIFIER

Accuracy
SVM 83.07%

kNN-L1 95.23%
kNN-L2 93.87%

kNN-EMD 81.51%
kNN-MHD 93.95%

TABLE V. CONFUSION MATRIX YIELDED BY ENVELOPE METHOD BASED
ON kNN-L1 CLASSIFIER

I II III IV V
I 95.23% 3.17% 0.14% 1.46% 0
II 3.03% 95.39% 0.01% 0.06% 1.51%

III 0.07% 0 99.01% 0.28% 0.64%
IV 0.61% 0 1.16% 98.21% 0.02%
V 0 2.31% 2.61% 2.83% 92.25%
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TABLE VI. CONFUSION MATRIX YIELDED BY PCA-BASED METHOD
WITH d = 30

I II III IV V
I 89.50% 3.02% 0.67% 6.80% 0.01%
II 2.92% 94.83% 0 1.45% 0.80%
III 2.85% 1.23% 94.42% 0 1.50%
IV 5.24% 0.25% 1.37% 93.14% 0
V 3.24% 8.14% 5.03% 1.83% 81.76%

C. PCA-based Method

For the PCA-based method, each sample represents a spec-
trogram image of 100× 100 pixels. The number of principal
components d is determined by the eigenvalues. Fig. 5 shows
how the classification accuracy changes with d, with the
recognition rate increases as d increases. However, there is
no significant improvement of the recognition accuracy past
d = 30. Table VI is the confusion matrix using 30 eigenvalues.
Although the PCA method can achieve an overall accuracy of
92.71%, it is clearly outperformed by the proposed method.

Fig. 5. Performance of PCA with different number of principal components.

D. Sparsity-based Method

The features used for this method are the time-frequency
trajectories. Details of the sparsity-based method can be found
in [19]. The trajectory consists of three parameters, namely
the time-frequency position (ti, fi), i = 1, · · · , P and the
intensity Ai, P is the sparsity level that is set to 10 in
this paper. Hence, each sample contains 30 features. The
spectrograms of reconstructed signals and the P locations
of time-frequency trajectory are plotted in Fig. 6 and Fig.
7. In the training process, the K-means algorithm is used
to cluster a central time-frequency trajectory [40]. In the
testing process, the kNN classifier based on the modified
Hausdorff distance is applied to measure the distance between
the testing samples and central time-frequency trajectories.
The corresponding confusion matrix is presented in Table VII.
The overall recognition accuracy was found to be only about
70% when applied to our data.

TABLE VII. CONFUSION MATRIX YIELDED BY SPARSITY-BASED
METHOD

I II III IV V
I 71.72% 11.36% 1.45% 11.74% 3.73%
II 10.95% 81.29% 2.57% 0.28% 4.91%
III 7.40% 2.10% 83.63% 0.69% 6.18%
IV 16.04% 6.52% 1.22% 74.14% 2.08%
V 6.65% 15.05% 9.96% 10.02% 58.32%

V. CONCLUSION

We introduced a simple but effective technique for auto-
matic hand gesture recognition based on radar MD signature

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l) (m)

(n) (o)

Fig. 6. Spectrograms of reconstructed signals with P = 10.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l) (m)

(n) (o)

Fig. 7. Locations of time−frequency trajectories with P = 10.

envelopes. No range information was incorporated. An energy-
based thresholding algorithm was applied to separately extract
the positive and negative frequency envelopes of the signal
spectrogram. We used the canonical correlation coefficient
to group 15 different hand gestures into five classes. The
members of each class have close signature behaviors. The ex-
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tracted envelopes were concatenated and inputted to different
types of classifiers. It was shown that the kNN classifier based
on L1 distance achieves the highest accuracy and provided
over 96 percent classification rate. The experimental results
also demonstrated that the proposed method outperformed
the lower dimensional PCA-based method, the sparsity-based
approach using Gaussian-windowed Fourier dictionary, and
existing techniques based on handcrafted features. The pro-
posed approach does not use deep learning, though it might
reach a classification performance close to that offered by
Google Soli.
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