Methods
Here, I describe the sources of data for the two power-grid networks considered (3-generator test system (3-gen) and New England test system (10-gen) [1–3].
Definition and diagram of symbols
[bookmark: _Ref128581273][image: C:\Users\Administrator\Desktop\fig1.jpg] 

Fig. S1 Schematic diagram of the power system operating coordinate system



a. Synchronised system operation before disturbance,and. The magenta dot indicates the operating point of the generator:.




b. The angle of rotation rate of the subsystems differ after the disturbance. are the per unit voltage of the port bus of the Kth and Lth generators, respectively, is the difference in the angle of rotation rate between the Kth and Lth generators. is defined as the coupling potential difference between generators Kth and Lth (yellow dotted line between Cyan dots). Correspondingly,  is constructed to describe the synchronous potential difference between generators Kth and Lth (solid blue line between magenta square dots). 




[bookmark: MTBlankEqn]Extensive interconnections between generators would make stability analysis very difficult(see Fig. S1). To solve this problem, the concept of a meta-generator is introduced here. At moment t, the instantaneous values of the n generators system are arranged in descending order by , relabelled, and then reconstituted as the n meta-generator system .
Data sources and experimental procedures
In this study, the New England test system and 3-generator test system (Fig. S4,S5,S6) were used. The two models are simulated separately using a simulation software package. Here, the fault was set as a three-phase short circuit to ground. The disturbed operating point of each generator was calculated. To observe the movement pattern of the disturbed operating points, the parameters of the control elements are set to 0. 







In advance, the fault location was fixed, and the fault duration  was set. This experiment simulated the rotation rate  and port bus voltage  of the ith generator after different disturbances. Then, the angle of rotation rate of the ith generator  was calculated.  was increased in a fixed step length and , were calculated again until the system was destabilised. The faulty position was replaced, and the above steps were repeated.


Subsequently, was arranged and relabelled as . This was then averaged as follows:




The mean of  over  was found: and .



The mean of  over  was also found: . There are several definitions of mean, and the simplest, i.e., the arithmetic mean, was used here.




This work added adjacent meta-generator data and  to the coordinate system  to assess the system stability (Fig.1(b)) and time intervals of instability  (Fig.1(d)).


An expression was fitted with  as the independent variable and  as the dependent variable (Fig. 3). The critical clearing time (CCT) and the unstable equilibrium point (UEP) were then calculated.

Near the boundary, was calculated at a finer scale.
Derivation of the boundary equation


As shown in Fig.S1,,.




Following the form of power in electricity , the coupling power  is defined to characterise the coupling between the meta-generators. To describe the energy required for the generator to maintain synchronous stability, the synchronous power is constructed: .  is the impedance between the Kth and Lth meta-generators.








When the system is synchronized, the meta-generators are not in balance and are still coupled (). When the system is disturbed,  increases from 0,  increases from 0, and  changes. When the coupling power between the two meta-generators is sufficient to provide synchronous power, i.e., , the system is synchronous and stable. Conversely, when , there is not enough coupling power to maintain synchronization, and the system is unstable. It is observed that . The set of points where  is the synchronous stability boundary.








In summary,  is the system stability boundary equation. When , the system is stable. When , the system is unstable. Geometrically,  describes a curved surface that, together with , encloses a stable domain. In summary, the boundary equation  can be found, where . The coordinate system  is established, and the boundary is visualized(Fig.1).

To determine the stability of a power system of n generators, only n pairs of variables  are needed, which are physically meaningful and easily obtainable.
Fitting of operating points to trajectories

The intersection of the disturbed trajectory with the stability boundary is the unstable equilibrium point (UEP), and the failure time of the operating point along the disturbed trajectory to reach the UEP is the CCT. To calculate these important results, it is necessary to fit the disturbed trajectory to the kinematic expression in the  coordinate system. The variables of the operating point obtained from the simulation are fed into commercial software to fit the expression of the disturbed operating point.
Operating point behaviour on the boundary








 is the derivative of  of the meta-generators with respect to . Near the boundary, the derivative of  of the partial meta-generators changes from positive to negative (Fig. 3). For this unusual phenomenon, on a finer scale,  is calculated sequentially for different . The standard deviation of  is calculated separately (Figure.2):.


Dynamic processes
In practical applications, it is crucial to study the response of the system to perturbations. The results of the response of the operating point to network and parameter changes are compared with the boundary to identify synchronous behavior.  For example, the stability margin at the operating point after the end of a disturbance is a very important parameter in power systems. The intersection of the disturbed trajectory with the stability boundary is the unstable equilibrium point (UEP), and the failure time of an operating point along the disturbed trajectory to reach the UEP is the critical clearing time (CCT). Therefore, it is necessary to study the trajectory of the disturbance response of the operating point to calculate the stability margin, the CCT and the UEP.
FIG. S2 Metagenerator perturbed trajectories (10-gen)
[image: FIG]


 A three-phase short circuit to a ground fault occurred at 12-node (). The arrow shows the direction of increase in . The red dashed lines are the results of the fit.










(a)-(e) are the projection of the disturbed trajectory in the planes , , , , and , respectively. In the  plane,  descended at s.  in the  plane.

Figures. S2.(a) and (b) show that the operating points move at a uniformly variable speed before the system becomes unstable.




Contrary to intuition [4],  suddenly decreases at s in Fig. S3.(c). As the perturbation increases, the speed difference between meta-generators  decreased instead. This indicated a consequent decrease in  (Fig.S9(b)).


 Figures. S2.(d) and (e) show that the perturbed trajectories of the subsystems of the coupled system are linearly correlated in the stability domain. This indicates that the effects of perturbations are global, reflecting the challenges of controlling the stability of complex systems [5–7]. The spacing between two neighboring points increases in equal proportions. This proves that  are constants when  in Figs. S2.(a) and (b).
The system of equations for (a)-(e) in Fig. S2 is given below:









Where i denotes the ith meta-generator, and .  denotes the maximum  at which  undergoes a phase transition. To clarify the details,  is illustrated by adoping the angle system.  and  are the initial values when .

When a high degree of accuracy of the results is not needed, . Then, the following expression can be derived:



For a determined power grid, each perturbed trajectory has almost the same ( for the 3-gen system, in Table S1).



This can be used to easily and quickly check the stability margin of the system after a disturbance [8]. By approximating  as the CCT [8,9], the coordinates of the critical stable operating point  and the critical rate of the meta-generator  in the current system can also be estimated [10].






In summary, the CCT and UEP can be calculated using only information about the rotation rate [11], but considering only a single information source may result in more errors. Since  and  are independent, the accuracy of  and  may be validated with (see Eq. S12). The form of the equations of motion is similar in the stability domain (Figs.S2,S3,S4).

FIG. S3. Generator perturbed trajectories (10-gen)
[image: FIG]

A three-phase short circuit to a ground fault occurred at 12-node ().
a. The projection of the disturbed trajectory in the [image: wps3] plane, the result of the fit is [image: wps4], and the adjusted R-squared value is 1. 
b. The projection of the disturbed trajectory in the [image: wps5] plane, the result of the fit is [image: wps6] and the adjusted R-squared value is 0.99905. 
c. The projection of the disturbed trajectory in the [image: wps7] plane, the result of the fit is [image: wps8] and the adjusted R-squared value is 0.9993.
d. The projection of the disturbed trajectory in the [image: wps9] plane, the result of the fit is [image: wps10] and the adjusted R-squared value is 1. 
e. The projection of the disturbed trajectory in the [image: wps11] plane, the result of the fit is [image: wps12] and the adjusted R-squared value is 0.99981.
The results prove that the expressions for the disturbed operating points of the meta-generators and generators have the same form before and after Permutation. 

FIG. S4. Metagenerator perturbed trajectories (3-gen)
[image: FIG]

A three-phase short circuit to a ground fault occurred at 4-node ().


a. The projection of the disturbed trajectory in the  plane. The result of the fit is . The adjusted R-squared value is 0.99997.


b. The projection of the disturbed trajectory in the  plane. The result of the fit is , and the adjusted R-squared value is 0.97679.


c. The projection of the disturbed trajectory in the  plane. The result of the fit is , and the adjusted R-squared value is 0.99519.


d. The projection of the disturbed trajectory in the  plane. The result of the fit is , and the adjusted R-squared value is 0.99925.


e. The projection of the disturbed trajectory in the  plane. The result of the fit is , and the adjusted R-squared value is 0.99973.

These results show that for different grids, with  as the independent variable, the disturbed operating point has the same law of motion.

[bookmark: _GoBack]Synchronization stability boundary and spontaneous synchronization of meta-generators (3-gen)
FIG. S5. Stability boundary for meta-generators for the 3-gen test system
[image: figs4]


a. Eq. (1) applied to the 3-gen system. A three-phase short circuit to a ground fault occurred at 4-node. At , both operating points are clustered at the boundary. At , an operating point is outside the boundary and away from another point.


b. Multiswing stabilization discrimination (Δt=0.245 s). The figure shows the trajectory of . It is out-of-sync in the time interval .


c and d are the results of the 4-node three-phase ground fault simulation. It is synchronized at  and out-of-sync at .

FIG. S6. Spontaneous synchronization behavior near the boundary(3-gen)
[image: C:\Users\Administrator\Desktop\FIG.S6.eps]
(a). The standard deviation of δ decreases from ∆t=0.227 s. It increase by 2200% at ∆t=0.245 s.



(b). The slope  changes from greater than 1 to less than 1 and  changes from positive to negative. In this case, K=1 and L=2, then .


(c). Near the boundary, , and .






Due to the monotonicity of  with respect to , i.e. . . , then [Figs. S2.(c) and S6.(c)].

Synchronization stability boundary and spontaneous synchronization of generators (10-gen)
FIG. S7. Stability boundary for generators
[image: FIG]
A three-phase short-circuit ground fault [12-node(a) and 18-node(b)]
The disturbed trajectory of the operating point crossed the boundary with gradually increasing ∆t(∆t increases from 0.02 s, until destabilization).
Fig. S7 clearly reflects whether the system is synchronously stable, and proves the validity of the synchronous stability boundary. However, compared with the meta-generator models, the generator models have the following drawbacks:



1)  and  are difficult to define. Therefore, for a system with n generators,  perturbed trajectories need to be examined.
2) It is difficult to correctly discriminate coherent generators.
This may indicate that the generator-based approach to power systems may face difficulties in complex networks.

FIG. S8. Self-organizing behavior of generators near the boundary in the 10-gen test system
[image: FIG]


A three-phase short-circuit ground fault at 18-node.  increases from 0.140 s to 0.154 s. The arrow shows the direction of increase of . 


a. In the  plane, operating points appear to cross the barrier before they reach the boundary, and the elliptical area marks the position of the barrier. From 0.147 s onward the interval between operating points decreases in the direction of increasing 

b. In the  plane, the trajectory of the operating point from 0.147 s onward is shown as a cycle, which appears simultaneously with the synchronous barrier. The ellipse indicates the position of the cycle. (in the shaded area).
The perturbed trajectory of the generator is similar to that of the meta-generator, as shown in Figs. 2. (b) and (c). That is, the generator has the same barrier and attractor as the meta-generator. This shows that the Permutation does not change the characteristics of the perturbed trajectory.

FIG. S9. In the 10-gen test system, spontaneous synchronization always occurs near the synchronization stability boundary
[image: C:\Users\Administrator\Desktop\FEIGURE\FIG(1).S9\FIG.S9.jpg]
A three-phase short-circuit ground fault is set at the corresponding node.

(a)-(e) show the decrease in  from the highest point indicated that near the critical point , and then it increases dramatically. [the fault at 6-node(CCT=0.124s), 12-node(CCT=0.285s), 24-node(CCT=0.135s), 30-node(CCT=0.286s) and 36-node(CCT=0.208s), respectively]. (f) and (g). Operating points crossed the potential barrier (the fault at 6-node and 24-node, respectively) (shaded area).

The results show that there is a significant decrease in  near the boundary. These results demonstrate a strong correlation between the synchronization stability boundary and spontaneous synchronization.
Table S1. Comparison of the calculation results and simulation results of the 3-gen test system
	
	

	

	

	

	CCT(sim)
	

	


	1-node
	0.216458436
	0.217493522
	101.7701068
	101.7899704
	0.261
	103.4561773
	102.717359

	2-node
	0.148766853
	0.148921901
	102.3039059
	102.3001305
	0.175
	103.1645046
	102.3751632

	3-node
	0.188837149
	0.191488989
	112.2667075
	113.1355617
	0.197
	103.7382964
	102.6255101

	4-node
	0.215642864
	0.221222679
	108.4552172
	109.6851241
	0.244
	103.5455826
	102.8048058

	5-node
	0.255519801
	0.259161898
	100.4223862
	100.7431053
	0.309
	104.3726544
	103.7297785

	6-node
	0.320606871
	0.319818644
	103.944007
	104.0812709
	0.335
	103.1684111
	102.3591619

	7-node
	0.152581415
	0.150874774
	102.2891604
	102.0961655
	0.178
	103.6087745
	102.9104997

	8-node
	0.243528417
	0.237249582
	105.8088309
	105.3768654
	0.246
	103.788144
	103.1207761

	9-node
	0.14511492
	0.145105771
	99.21400341
	99.04779081
	0.191
	102.5957322
	101.5372799












 and  are calculated from Eq. (S11). Then  and  are calculated from Eq. (S12). CCT(sim) is obtained from numerical experiment.  and  denote the simulation values of  and , respectively. Notably, only a single piece of information from  is used to calculate  here, so it may add to the error.
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