Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism

Version 1 : Received: 23 May 2024 / Approved: 23 May 2024 / Online: 23 May 2024 (09:54:35 CEST)

A peer-reviewed article of this Preprint also exists.

Shi, J.; Wang, W.; Li, Z.; Shi, Y. Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism. Molecules 2024, 29, 2928. Shi, J.; Wang, W.; Li, Z.; Shi, Y. Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism. Molecules 2024, 29, 2928.

Abstract

RM (red mud) was acidified with sulphuric acid and the acidified ARM (acidified red mud) was utilized as an innovative adsorption material for treating antibiotic-contained wastewater. The adsorption conditions, kinetics, isotherms, thermodynamics, and mechanism of ARM for CIP (ciprofloxacin) were investigated. Characterization of the ARM involved techniques such as scanning electron microscopy(SEM), transmission electron microscope(TEM), brunauer- emmett-teller (BET), X-ray diffraction (XRD), X-ray fluorescence (XRF), thermogravimetric analysis (TGA) and NH3-TPD analysis. Adsorption studies were conducted employing response surface methodology (RSM) for experimental design. The results showed that ARM can absorb CIP effectively. The RSM optimal experiment indicated that the most significant model terms influencing adsorption capacity were solution pH, CIP initial concentration and ARM dosage, under which the predicted maximum adsorption capacity achieved 7.30 mg/g. The adsorption kinetics adhered to a pseudo-second-order model, while equilibrium data fitted the Langmuir-Freundlich isotherm, yielding maximum capacity values of 7.35 mg/g. The adsorption process occurred non-spontaneously and absorbed heat, evidenced by ΔG0 values between 2.06 and 0.87 kJ/mol, ΔS0 at 39.41 J/mol/K, and ΔH0 at 13.8 kJ/mol. Analysis using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) indicated there existed complex reaction between Al-O in ARM and the ester group –COO in CIP. The C=O bond in CIP was likely to undergo a slight electrostatic interaction or be bound to the internal spherical surface of ARM. The findings indicate that ARM is a promising and efficient adsorbent for CIP removal from wastewater.

Keywords

acidified red mud; ciprofloxacin; adsorption; response surface methodology

Subject

Environmental and Earth Sciences, Other

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.