Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Influence of Sonication on the Molecular Characteristics of Carbopol® and Its Rheological Behavior in Aqueous Dispersions and Microgels

Version 1 : Received: 4 June 2024 / Approved: 5 June 2024 / Online: 5 June 2024 (10:57:53 CEST)

A peer-reviewed article of this Preprint also exists.

Pérez-González, J.; Muñoz-Castro, Y.; Rodríguez-González, F.; Marín-Santibáñez, B.M.; Medina-Bañuelos, E.F. Influence of Sonication on the Molecular Characteristics of Carbopol® and Its Rheological Behavior in Microgels. Gels 2024, 10, 420. Pérez-González, J.; Muñoz-Castro, Y.; Rodríguez-González, F.; Marín-Santibáñez, B.M.; Medina-Bañuelos, E.F. Influence of Sonication on the Molecular Characteristics of Carbopol® and Its Rheological Behavior in Microgels. Gels 2024, 10, 420.

Abstract

The effect of sonication on the molecular characteristics of poliacrylic acid (Carbopol® Ultrez 10) and its rheological behavior in aqueous dispersions and microgels containing 0.25 wt. % of the polymer was analyzed in this work by rheometry, weight-average molecular weight (Mw) measurements via static light scattering (SLS), Fourier transform infrared (FTIR) spectroscopy and confocal microscopy. For this, the precursor dispersion and the microgels were sonicated in a commercial ultrasound bath at constant power and different times. We observed a softening of the microgel microstructure consisting of a systematic decrease in its shear modulus, yield stress and viscosity with increasing sonication time, while their overall Herschel-Bulkley (H-B) behavior was preserved. SLS measurements evidenced a reduction of Mw of polyacrylic acid with sonication time. Separately, FTIR measurements indicate that sonication produces scission in the C-C links of the Carbopol® backbone, which results in chains with the same chemistry but lower molecular weight. Finally, confocal microscopy measurements revealed a concomitant diminution of the size of the microsponge domains with sonication time, which is reflected in a softer microstructure resulting from reduction of the molecular weight of polyacrylic acid. The present results indicate that both the microstructure and the rheological behavior of Carbopol® microgels, in particular, and complex fluids in general, may be manipulated or tailored by high-power ultrasonication.

Keywords

Carbopol® Ultrez 10 microgels; rheology; yield-stress fluids; ultrasonication; Fourier transform infrared (FTIR) spectroscopy; confocal microscopy

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.