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Fig.S1. Effects of ACE mutations on mAbs binding to mutant ACEs. 

A. ACE was precipitated from the EDTA-plasma of subjects with different mutations using mAbs 

9B9 and i1A8 to the N domain of ACE. ACE activity was quantified fluorometrically using HHL 

as a substrate as described in Fig.2. Data are presented as the 9B9/1IA8 binding ratio expressed as 

% obtained from control patients without ACE mutations.  

B-F. Precipitated ACE activity was determined in the plasma of carriers of different ACE 

mutations as in A, but using mAbs 1G12 and 5F1, and expressed as (B, C) precipitated ACE 

activity (% of control samples without ACE mutations) and (D) as the 1G12/5F1 binding ratio for 

each mutant (% of control). Each value represents the mean of 3-5 independent experiments. 

Coloring is the same as in Fig.2. 

 

Figure S2. Localization of theY215C mutation in the N domain of ACE. 

Shown is the Cryo-EM structure of truncated (1-1201) human somatic ACE (PDB 7Q3Y) [29] 

using molecular surface representation. Key amino acids are denoted using somatic ACE 

numbering. The surface is colored light beige. Specific amino acid residues are colored as 

following: Asn as putative glycosylation sites are highlighted in green; ACE Y215C mutation is 

highlighted in magenta; the last visible residue in the C-terminal end of this truncated somatic 

ACE is marked by its amino acid number (1201). The epitopes for the mAbs to the N domain 

(9B9, 1G12, 5F1) and the C domain (2H9) that are used to analyze these blood samples are marked 

by 30 Å diameter black circles, which correspond to an approximately 700 Å2 area covered by 

each mAb. 

 

Fig. S3. Conformational mAb fingerprinting of ACE mutations (P476A and G610S).  

ACE activity in subjects with P476A and G610S ACE mutations was determined from EDTA-

plasma samples after precipitation by 7 different mAbs to the N and C domains of ACE as 

described in Fig.2.  
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A-B. ACE activity determined with ZPHL as a substrate expressed as a % of control samples.  

C-D. Data represent the ZPHL/HHL binding ratios expressed as % of controls.  

E. Shown is the Cryo-EM structure for the residues 450-613 of human somatic ACE (PDB 7Q3Y) 

[29] displayed as a ribbon presentation. ACE mutations P456R, P476A, P601L and G610S are 

highlighted with magenta. Putative glycosylation sites (N480 and N494) are highlighted with 

green. The 472-498 C2-loop (as defined in [29]) is highlighted with grey. Highlighted in red are 

the residues K489 and Y498 within the cleft of the active center. A Zn2+ ion is also shown. 

 

Previously we established the ACE phenotyping approach for comprehensive 

characterization of ACE in the blood. This approach includes not only measurement of blood ACE 

activity with different substrates and estimation of catalytical properties, but also quantification of 

immunoreactive ACE protein and conformational changes in ACE molecules using a wide set of 

mAbs [22,23,25,26,31,32]. 

Unfortunately, most sequencing facilities have access to only EDTA-plasma samples, which 

prevent direct measurement of ACE activity and estimation of catalytic properties of mutant ACEs. 

Nevertheless, using mAbs to ACE which we have generated in combination with multiple ACE 

substrates allows for the precipitation of ACE from EDTA-plasma samples and estimation of ACE 

activity. With this approach we can characterize the effects of ACE mutations in fine detail from 

EDTA-plasma samples. 

When we performed primary estimation of the blood ACE levels in EDTA-plasma samples for 

different ACE mutations (Fig.2,5), we used strong, high-affinity mAbs 9B9 and 1G12 [24] for 

precipitation of the enzyme. Precipitated ACE activity quantified by these mAbs generally did not 

depend on the nature of substrates which we used (ZPHL or HHL) (not shown). However, when 

we perform conformational fingerprinting of mutant ACE using a wider set of mAbs, we need to 

consider that precipitation of ACE activity with some weak mAbs may be substrate-specific. This 

is possible because immobilization of some mAbs on plates can result in anti-catalytic properties 
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toward the N or C domain active center when precipitating ACE (see below in Fig.S4). Therefore, 

the preferred approach should be to use HHL for the quantification of precipitated ACE activity 

with mAbs to the N domain (because HHL is cleaved 9-fold more effective by the C domain active 

center), while ZPHL should be used for precipitation of ACE activity with mAbs to the C domain 

active center - discussed in [27].  

As an example, the effect of ACE mutation Y215C on the 9B9/i1A8 ratio (Fig.S2A) was de-

creased only with HHL as a substrate, while the effect of this mutation on this ratio was absent 

with ZPHL as a substrate (not shown). 

 

One of the goals of this study was to test multiple mAbs and substrates to determine a combi-

nation which will allow for the detection of mutant ACE in the blood and distinguish it from native 

(control) ACE. Identification of markers for ACE mutations will provide a method for monitoring 

changes in mutant ACE activity in the blood. Such an approach would be particularly useful for 

assessing the effectiveness of therapies designed to increase surface ACE expression. We hypoth-

esize that this type of therapeutic strategy could be protective for some patients at risk for ACE-

dependent Alzheimer’s disease. Fig.S1B-D describes the effects of different ACE mutations on 

the precipitation of blood ACE activity by mAbs 1G12 and 5F1. The binding of mAb 5F1 was 

increased in ACE mutant G325R and decreased in ACE mutant P476A. Therefore, the 1G12/5F1 

binding ratio could be a convenient marker for these two ACE mutations, G325R and P476A. 

These results could be especially important for carriers of the G325R ACE mutation because it is 

likely damaging and results in a transport-deficient ACE (Fig.2,5). Carriers of this mutation may 

benefit from rescue of impaired trafficking of mutant ACE to the cell surface through use of a 

cocktail of chaperones and protease inhibitors as we have previously described for the Q1069R 

ACE mutation [14]. 

Our results provide additional insights into the functional consequences of these mutations. 

The effects of the P476A mutation on ACE activity after precipitation by different mAbs (Fig.S3A) 
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and the localization of this mutation in the ACE protein (Fig.4 and Fig.3E) combine to shed light 

on the putative mechanism of action by which this mutation results in increased ACE shedding 

and altered catalytic properties (Fig.S3C and S3E). 

 

Fig. S4. Effects of mAbs and various ACE mutations on the ZPHL/HHL ratio.  

A. ACE was precipitated from EDTA-plasma samples of control subjects (without ACE 

mutations) using7 different mAbs to the N and C domains of ACE. ACE activity was quantified 

fluorometrically with ZPHL and HHL as substrates as described in Fig.2. ZPHL/HHL ratios are 

presented as % of that for mAb 9B9. 

B-F. ACE activity was determined in plasma samples from carriers of different ACE mutations as 

in A. Data are expressed as ZPHL/HHL ratios for each mutant and mAb as % of control ACE 

activity (without ACE mutations). B. ACE activity results are presented individually from the 

plasma of patient #5534 with the Y215C mutation. Other values are presented as the mean from 

multiple carriers of a given mutation. C. G325R; D. P476A; E. G610S; F. R1250Q. Each value is 

a mean of 3-10 independent experiments. Coloring is the same as in Fig.2. 

 

Quantification of the ZPHL/HHL ratio for carriers of these ACE mutations not only provided an 

explanation for catalytic changes in P476A (Fig.S3C, E), but this approach also helped to identify 

a marker for further study of an outlier in the Y215C group of ACE mutations (patient 5534 in 

Fig.2,5). 

 

Table S1. Existing human ACE mutations.1234_62 (09/29/23)- 

separate excel file due to high volume. 

 

Table S2. 62 ACE mutations for which blood ACE levels were estimated or measured. 

Separate excel file. 
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