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Abstract
Purpose of review—Chronic obstructive pulmonary disease (COPD) and lung cancer are the
leading causes of morbidity and mortality worldwide. The current research is focused on
identifying the common and disparate events involved in epigenetic modifications that
concurrently occur during the pathogenesis of COPD and lung cancer. The purpose of this review
is to describe the current knowledge and understanding of epigenetic modifications in
pathogenesis of COPD and lung cancer.

Recent findings—This review provides an update on advances of how epigenetic modifications
are linked to COPD and lung cancer, and their commonalities and disparities. The key epigenetic
modification enzymes (e.g. DNA methyltransferases – CpG methylation, histone acetylases/
deacetylases and histone methyltransferases/demethylases) that are identified to play an important
role in COPD and lung tumorigenesis and progression are described in this review.

Summary—Distinct DNA methyltransferases and histone modification enzymes are
differentially involved in pathogenesis of lung cancer and COPD, although some of the
modifications are common. Understanding the epigenetic modifications involved in pathogenesis
of lung cancer or COPD with respect to common and disparate mechanisms will lead to targeting
of epigenetic therapies against these disorders.
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Introduction
The incidence of chronic obstructive pulmonary disease (COPD) and lung cancer is among
the major medical challenges, and the current research is focused on understanding the
pathogenesis and therapeutic approaches of these disorders. Environmental risk factors and
(epi)-genetic predisposition contribute to the development of both diseases. COPD is shown
to increase the susceptibility for lung tumorigenesis up to four-fold to five-fold [1].
Furthermore, there is a shared mechanism driving the progression of both diseases [2] in
which cigarette smoke-mediated oxidative stress has a major impact on the epigenome
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leading to epigenetic modifications, compared to genetic (inherited germline sequence-
based) susceptibility which occurs only approximately 1% of smokers. The current research
is focused on identifying the common and disparate events involved in epigenetic
modifications that concurrently occur between COPD and lung cancer. This review focuses
on current knowledge of specific processes or molecules that are at the nexus of COPD and
lung cancer, with particular emphasis on shared or common and disparate epigenetic
alterations via histone modification enzymes, but not by other regulatory elements, such as
microRNAs.

Chromatin remodeling or epigenetic modifications
Cigarette smoke is the cause of 80–90% cases of COPD and lung cancer because, in part, of
its ability to induce oxidative stress and inflammation either directly by inhaled oxidants or
influx of inflammatory cells in the lung. Oxidative stress and inflammatory response
eventually then alter the redox status of the cells leading to destabilization of the genome
culminating in epigenetic modifications.

Histone tails are modified by an extensive group of nonhistone chromatin-associated
proteins called chromatin-modifying enzymes, which exist in cells as multicomponent
protein complexes that are frequently recruited to chromatin in association with DNA-bound
transcription factors [3]. Various covalent post-translational modifications (PTMs) in
histones and associated regions of DNA play vital roles in genomic functions by binding
specific transcription factors and co-activators, which in turn serve to alter the structural
property of chromatin [4].

The chromatin modification enzymes are classified into several enzyme classes based on
their functions: acetylation by histone acetyltransferases (HATs), deacetylation by histone
deacetylases (HDACs), methylation by histone methyltransferases (HMTs), and
demethylation by histone demethylases (HDMs) (Fig. 1). The resulting PTMs may act alone
or in concert to facilitate the activation or repression of chromatin-mediated gene expression
for inflammatory mediators, genes for cell cycle arrest, apoptosis, senescence, anti-oxidants,
growth factors, and tumor suppressor genes involved in COPD and lung cancer [5,6]. The
possible link for specific epigenetic modifications on genes involved in the above events in
different disease phenotypes might be due to the environment and alterations in gene
expression patterns [7], which occurs in patients with COPD and lung cancer.

CpG methylation: role of DNA methyltransferases
Lung cancer exhibits profound alterations in chromatin structure. Genome-wide DNA
demethylation with site-specific hypermethylation occurs in the bronchial epithelium of
smokers, lung cancer cells, and lung tumors [8,9,10••]. Clinical data from patients with lung
cancer demonstrated that the overexpression of DNA methyl-transferase 1 (DNMT1), which
catalyzes methylation of DNA in CpG islands, was associated with p53 mutation and
increased expression of specificity protein 1 (Sp1) [11]. Nicotine-derived nitrosamine ketone
(NNK)-induced activation of DNMT1 causes epigenetic alterations, such as
hypermethylation of promoters of multiple tumor suppressor genes leading to lung
tumorigenesis and poor prognosis, thus providing an important link between tobacco
smoking and lung cancer [12•].

There are conflicting reports in the literature regarding the relationship between gene-
specific DNA methylation and smoking [13]. Studies in methylation from lung tissue of
non-small cell lung cancer (NSCLC) patients showed no significant association between
smoking history and promoter hypermethylation in the genes APC1 [14], DAPK [15], and
p16 [16]. On the contrary, significant associations between promoter hypermethylation and
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with smoking history has been reported in NSCLC patients in CDKN2A [17–19], HIC1
[20], HtrA3 [21], and CHFR [22].

There are several reports that describe promoter hypermethylation and associated gene-
silencing of various genes in lung cancer [8]. Several of these studies likely include a subset
of COPD patients; however, they are not typically studied separately to identify COPD-
specific signals. The identification of CpG methylation events in COPD as precursor events
in lung cancer could have predictive clinical significance. It is plausible that genes which are
involved in COPD pathways would represent commonalities in their regulation, including
possible silencing via CpG hypermethylation. Examples of such candidate genes that have
been reported as hypermethylated in lung cancer or COPD are listed in Table 1 [23•,24–
30,31•].

Histone acetyltransferases
Cigarette smoke induces acetylation of histone H3 in macrophages and in lung of humans
and rodents, which implies that histone acetylation plays a vital role in chromatin
remodeling, and is subsequently associated with sustained lung inflammatory response in
patients with COPD [32–35]. Global HAT activity does not change despite acetylation of
histones H3 and H4 on specific lysine residues in response to cigarette smoke in mouse
lungs [32,35], and in lungs of smokers and COPD patients [34,36]. CREB-binding protein
(CBP) and p300 are the key transcriptional co-activators regulated by mitogen-activated
protein kinase (MAPK), and possess intrinsic HAT activity [37–39]. A recent study
demonstrated the role of protein kinase C zeta in cigarette smoke or reactive aldehydes and
bacterial lipopolysaccharide (LPS)-induced lung inflammation via CBP-mediated
acetylation of RelA/p65 causing histone phosphorylation and acetylation on promoters of
pro-inflammatory genes [40•]. Cigarette smoke-derived oxidants activate IKKα and
phosphorylate RelA/p65 (Ser276) and histone H3 (Ser10), and acetylate histone H3 (Lys9)
by interacting with RelA/p65 and CBP/p300 [35,41].

CBP gene alterations include mutations and deletions detected in lung cancer cell lines, as
well as in surgical specimens from patients with lung cancer, suggesting the role of CBP in
the tumorigenesis and/or progression of a subset of lung cancers [42]. Horwitz et al. [43]
reported that adenovirus E1A interacts with histone modification enzymes possibly via CBP/
p300, forming a basis for global epigenetic modifications that leads to cellular
transformation particularly seen in lung of patients with COPD and lung cancer. Hence,
development of small molecule inhibitors against various HATs including co-activators
(p300, CBP, PCAF, and GCN5) may be potential targets for pharmacological and
therapeutic applications to treat COPD and lung cancer [44,45] (Table 2).

Histone deacetylases
Reduction of HDACs, particularly HDAC2, is associated with steroid resistance in COPD.
The levels and activities of histone deacetylases, particularly HDAC2 [36,46,47] and sirtuin
1 (SIRT1), are reduced in lungs and alveolar macrophages of patients with COPD [48,49]. A
recent study showed the role of the HDAC2–Nrf2 axis on steroid resistance to control lung
inflammatory response [50•]. Reduction in HDAC2 levels or activity leads to acetylation of
NF-κB and glucocorticoid receptor α, resulting in abnormal inflammatory response and
steroid resistance in lungs of patients with COPD [51] (Table 2). Restoring HDAC2/SIRT1
levels or activities will have a significant impact on steroid efficacy, thus inhibiting chronic
inflammatory response in COPD [52,61,62].

In contrast, alterations in expression and somatic gene mutations encoding HDACs have
been linked to tumor progression and aberrant transcription of key genes regulating
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important cellular functions, such as cell proliferation, cell cycle regulation, and apoptosis
[63]. Aberrant expression of HDACs is implicated in the progression of tumorigenesis as
well as in metastatic phenotypes. Examples of this include increased HDAC1, and decreased
HDAC5 and HDAC10 expression correlated with advanced stages of disease with adverse
outcome in lung cancer patients [53] (Table 2). Another study showed the involvement of
HDAC6 in epithelial–mesenchymal transition of lung cancer cell metastasis in vitro via the
TGF-β SMAD3 signaling cascade [64]. Recently, Haberland et al. [65] using a genetic
approach found that deletion of single class I HDAC is not sufficient to cause cell death but
both HDAC1 and HDAC2 play redundant and essential roles in the survival of tumor cells,
as well as in DNA-damage response by promoting double-strand break repair. This provides
deeper insight into the radio-sensitizing effects of a combination of HDAC inhibitors
(HDACi) that are under development for cancer therapies [66••]. Further studies are required
to understand the mechanism of such disparity in HDAC regulation in lung cancer and
COPD.

Histone methyltransferases
HMTs are deregulated in several types of cancers and thus affect the global methylation
levels. Methylation at H3K4, H3K36, and H3K79 is linked to gene activation, whereas
H3K9, H3K27, and H3K20 methylation is associated with gene repression [67]. Loss of
trimethylation of histone H3K20 in selective tumor cells [68] and in-vivo demonstration of
HMT SUV39H deficiency sensitizes mice to tumorigenesis [54]. These findings provide
evidence that alterations in histone methylation may play a vital role in tumor onset and/or
progression [69].

Epigenetic silencing of CXCL14 by histone methylation in sputum samples of early-stage
asymptomatic lung cancer patients were associated with increased (2.9-fold) risk of lung
cancer compared to the controls [70]. Protein arginine N-methyltransferases (PRMTs), such
as PRMT1 and PRMT6, have been identified to play a role in carcinogenesis [55], but no
information is available in lung cancer. Liu et al. [71] established an in-vitro system to
examine the effects of cigarette smoke-induced cancer-associated epigenomic alterations,
such as decreased levels of H4K16ac and H4K20me3, but increased relative levels of
H3K27me3 coincided with decreased DNMT1 and increased DNMT3b expression in
cultured normal human small airway epithelial cells and cdk-4/hTERT-immortalized human
bronchial epithelial cells. These features help to delineate some early epigenetic mechanisms
regulating gene expression during lung cancer development [56,71] (Table 2).

Histone demethylases
The HDMs are classified into two kinds, such as lysine-specific demethylase 1 (LSD1) and
Jumonji C (JmjC) domain family proteins involved in the regulation of gene expression
[72]. Aberrant expression of HDMs is manifested during the course of tumor initiation and
progression [73]. The role of HDMs in lung cancer and COPD is not known though hypoxia,
which is known to occur in the tumor microenvironment and in lungs of patients with
COPD, alters HDMs, such as JMJD1A, JMJD2B, and JARID1A [57•–59•].

A recent report showed the involvement of another HDM, JARID1B (KDM5B), in growth
of cancer cells through the E2F/RB1 cell cycle regulation pathway in various cancer cell
lines. Microarray analysis and immunohistochemistry revealed an elevated expression of
KDM5B in lung tumor tissues of both NSCLC and SCLC compared to non-neoplastic
tissues, suggesting the role of JARID1B overexpression in lung carcinogenesis [60]. Thus,
the inhibition of histone demethylase represents a viable tool in epigenetic therapeutics
potentiating the activity of hypomethylating agents [74] (Table 2).
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Conclusion
Cigarette smoke-mediated alterations in histone modification enzymes and molecules are
linked to molecular and cellular functions such as post-translational modifications of
histones, gene expression of inflammatory mediators, cell cycle arrest, apoptosis,
senescence, autophagy, unfolded protein response, antioxidants or stress response, growth
factors, and tumor suppressor genes, and DNA replication, recombination, and repair.
Understanding the epigenetic mechanisms that influence the human genome based on the
effects from the environment results in transcriptional activation of specific genes, at a
specific time point, in specific cell types or organs are the important areas of further research
in development and progression of COPD and lung cancer. This understanding will lead to a
deeper insight into identifying the potential link between CpG methylation, chromatin
modification enzymes, and microRNAs (which modulate certain DNMTs) implicated in the
pathogenesis of cigarette smoke or environmental stress-mediated chronic lung diseases
such as COPD and lung cancer [75]. Further studies on the molecular mechanisms
underlying histone modification enzymes involved in chromatin modification will provide
insights into specific therapeutic targets based on either common and/or disparate
mechanisms and devising treatment strategies based on epigenetics against lung cancer and
COPD.
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Key points

• This review highlights the importance of epigenetic alterations mediated by
chromatin modification enzymes that are at the nexus of chronic obstructive
pulmonary disease (COPD) and lung cancer.

• Post-translational modification of histones facilitates activation or repression of
genes linked to pathogenesis of COPD and lung cancer.

• DNA methyltransferases, causing hypermethylation of genes and promoters,
histone acetyltransferases and histone deacetylases play a crucial role in opening
and closing the chromatin to modulate gene expression.

• Histone methyltransferases and histone demethylases are vital to maintain the
structure of hetero-chromatin, which is implicated in pathogenesis of COPD and
lung cancer.

• Understanding the signaling molecules and pathways involved in epigenetic
modifications will provide a new insight to help identify therapeutic targets and
devise therapies based on epigenetics against these disorders.
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Figure 1.
Major chromatin modification enzymes involved in posttranslational modification of
histones in chronic obstructive pulmonary disease and lung cancer
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Table 1

Examples of candidate genes methylated and their functions in chronic obstructive pulmonary disease and
lung cancer

Gene name Function References

IL-12Rβ2, Wif-1 Cell transduction/signaling genes involved in the development of COPD-related NSCLC [23•]

KEAP1 Redox-sensitive transcription factor regulates antioxidant genes [24]

SERPINB5 Serpin peptidase inhibitor [25]

TIMP3, TIMP4 Tissue inhibitor of metalloproteinase 3 and 4, involved in degradation of extracellular matrix [26]

DUOX1, DUOX2 Dual oxidases: hydrogen peroxide production and host defense in airways [27]

GSTP1 Glutathione-S-peroxidase, local detoxification and protective function in lung [28]

CYGB Detoxification of reactive species [29]

ECSOD Maintenance of normal redox homeostasis in the lung [30]

P16, GATA4 Cell transduction/signaling [31•]

COPD, chronic obstructive pulmonary disease; NSCLC, non-small cell lung cancer.
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Table 2

Chromatin modification enzymes, associated histone modifications and their role in chronic obstructive
pulmonary disease and cancer

Enzymes Cigarette smoke/COPD Cancer Role in cigarette smoke/COPD and cancer References

DNA methyltransferase

 DNMTs DNMT1↓, DNMT3b↑ DNMT1↑, H4K16ac↓,
H4K20me3↓,
H3K27me3↑

Regulate gene expression in lung cancer
development

[10••,12•]

Histone acetyltransferases

 CBP/p300 H3S10↑, H3K9ac↑ H3K9ac↓, H3K56ac↓ Chromatin remodeling and sustained
inflammatory response in COPD. Interaction
of E1A and p300 in prostate cancer and
cellular transformation. DNA damage
response in human cell lines

[32,39,40•,42,45]

 GCN5 –

Histone deacetylases

 HDACs HDAC2↓, SIRT1↓ SIRT1↓, HDAC1↑,
HDAC5↓, HDAC10↓

Abnormal inflammatory response and steroid
resistance. Aberrant expression of HDACs in
tumor progression

[36,46–49,50•,51–53]

Histone methyltransferases

 SUV39H – SUV39H↓ Impairs heterochromatin and genome stability [54]

 PRMTs – PRMT1↑, PRMT6↑ Role in growth and regulation of cancer cells [55,56]

Histone demethylases

 JMJD2B – JMJD2B↑ Hypoxia dependent HIF-1α and ERα
signaling regulates histone methylation in
hypoxia. Hypoxia-mediated global activation
of H3K4me3 involved in growth of cancer
cells through E2F/RB1 cell cycle regulation
pathway in NSCLC and SCLC

[57•]

 JMJD1A – – [58•]

 JARID1A – H3K4me3↑ [59•]

 JARID1B JARID1B↑ [60]

COPD, chronic obstructive pulmonary disease; DNMT, DNA methyltransferase; HDAC, histone deacetylase; NSCLC, non-small cell lung cancer;
SCLC, small cell lung cancer.
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