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Graphical Abstract

Finely-grained annotated datasets for image-based plant phenotyping
Massimo Minervini, Andreas Fischbach, Hanno Scharr, Sotirios A. Tsaftaris

In this paper we present a collection of benchmark datasets for the development and evaluation of computer vision
and machine learning algorithms in the context of plant phenotyping. We provide annotated imaging data and suggest
suitable evaluation criteria for plant/leaf segmentation, detection, tracking as well as classification and regression
problems. The Figure symbolically depicts the data available together with ground truth segmentations and further
annotations and metadata.



Research Highlights

• First comprehensive annotated datasets for computer vision tasks in plant phenotyping.

• Publicly available data and evaluation criteria for eight challenging tasks.

• Tasks include fine-grained categorization of age, developmental stage, and cultivars.

• Example test cases and results on plant and leaf-wise segmentation and leaf counting.



1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Finely-grained annotated datasets for image-based plant phenotyping

Massimo Minervinia,∗∗, Andreas Fischbachb, Hanno Scharrb, Sotirios A. Tsaftarisa,c

aPattern Recognition and Image Analysis Research Unit, IMT Institute for Advanced Studies, 55100 Lucca, Italy
bInstitute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
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ABSTRACT

Image-based approaches to plant phenotyping are gaining momentum providing fertile ground for sev-
eral interesting vision tasks where fine-grained categorization is necessary, such as leaf segmentation
among a variety of cultivars, and cultivar (or mutant) identification. However, benchmark data fo-
cusing on typical imaging situations and vision tasks are still lacking, making it difficult to compare
existing methodologies. This paper describes a collection of benchmark datasets of raw and anno-
tated top-view color images of rosette plants. We briefly describe plant material, imaging setup and
procedures for different experiments: one with various cultivars of Arabidopsis and one with tobacco
undergoing different treatments. We proceed to define a set of computer vision and classification
tasks and provide accompanying datasets and annotations based on our raw data. We describe the
annotation process performed by experts and discuss appropriate evaluation criteria. We also offer ex-
emplary use cases and results on some tasks obtained with parts of these data. We hope with the release
of this rigorous dataset collection to invigorate the development of algorithms in the context of plant
phenotyping but also provide new interesting datasets for the general computer vision community to
experiment on. Data are publicly available at http://www.plant-phenotyping.org/datasets.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the phenotype expressed by cultivars (or mu-
tants) of the same plant species under different environmen-
tal conditions is central to our understanding of plant function.
Identifying and evaluating a plant’s actual phenotype, is rele-
vant to, e.g., seed production and plant breeders. The phenotype
relies on the fine-grained categorization of a plant’s properties:
e.g., how many leaves, of which architecture, visual age or ma-
turity level, to which cultivar a plant is similar.

Previously, such categorization was annotated manually by
experts, but recently image-based approaches are gaining mo-
mentum. In the last decades several approaches have been pro-
posed to measure visual traits of plants in an automated fashion
(Granier et al., 2006; Walter et al., 2007; Jansen et al., 2009;
Nagel et al., 2012) together with customized image processing
pipelines to analyze aspects of the acquired image data (Au-
gustin et al., 2015; De Vylder et al., 2012; Hartmann et al.,

∗∗Corresponding author.
e-mail: m.minervini@imtlucca.it (Massimo Minervini)

2011; van der Heijden et al., 2012; Walter et al., 2007; Yin et al.,
2014; Müller-Linow et al., 2015). However, several of the com-
puter vision tasks encountered (for example leaf segmentation
and counting) are particularly challenging and remain unsolved.
In fact, most experts now agree that lack of reliable and auto-
mated algorithms to analyze these vast datasets forms a new
bottleneck in our understanding of plant biology and function
(Minervini et al., 2015b). We must accelerate the development
and deployment of such computer vision algorithms, since ac-
cording to the Food and Agriculture Organization of the United
Nations (FAO), large scale experiments in plant phenotyping
are a key factor in meeting agricultural needs of the future, one
of which is feeding 11 billion people by 2050.

One of the factors that could accelerate the development of
better algorithms and their consistent and systematic evaluation
is the availability of benchmark data focusing on typical imag-
ing situations and tasks in plant phenotyping. Till now, despite
the 20 year history of imaging plants, a comprehensive col-
lection of benchmark datasets for image-based non-destructive
plant phenotyping is still lacking, with the only exception of the
recent multi-modality dataset in (Cruz et al., 2015). While plant
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Fig. 1: Closeups of examples plants. Left column: Young plants with few
leaves. Middle: Rosettes with elongated petioles (Arabidopsis). Right: Com-
pact rosettes with or without rich structure within single leaves (tobacco).

related datasets exist for leaf or flower recognition (Goëau et al.,
2012; Silva et al., 2013; Wu et al., 2007; Nilsback and Zisser-
man, 2010), these datasets were obtained in an uncontrolled or
destructive manner and not in a phenotyping context.

Here we present a collection of raw and annotated images
of the most frequently used rosette model plants (Arabidopsis
and tobacco). We briefly describe plant material, environmen-
tal conditions, and imaging setup and procedures, which led to
the collection of color images showing top-down views. Shape
variability in these images is high, cmp. Figure 1.

They show compact plants, plants with long petioles, over-
lapping and non-overlapping leaves, different leaf numbers,
etc., such that a wide range of shapes typically found in young
dicotyledon plants is covered (cmp. e.g. growth stages ‘1.’ or
‘30’ of oilseed rape, sunflower, or beet in (Meier, 2001)). Using
these raw images we describe a collection of datasets, with ap-
propriate expert annotations and metadata, for a series of com-
puter vision tasks. We emphasize tasks such as plant/leaf de-
tection, segmentation, and tracking, leaf counting, boundary
estimation, and general regression and classification. Figure 2
shows examples of such annotations. For consistency in eval-
uation methodologies we also discuss appropriate criteria. To
offer exemplary use cases we also show results on plant and

Fig. 2: Example annotations superimposed on an image of Arabidopsis (Col-0,
wild-type), acquired 17 days after germination. Shown are: the plant bounding
box (green), leaf bounding boxes (yellow), the plant mask (outlined in purple),
three leaf masks (blue overlays), and five leaf centers (red dots).

leaf segmentation and counting. While not all raw images have
been annotated, our annotation is continuing and the datasets
size is increasing. We devised and released an annotation tool
(Minervini et al., 2015a) in order to facilitate future annotation.
This article will serve as the reference point for describing the
process and tasks for which the data can be used.

This article is organized as follows: Section 2 presents data
collection; Section 3 presents datasets and annotations for a va-
riety of vision tasks; Section 4 outlines exemplary use cases and
results; and Section 5 offers discussion and conclusions.

2. Imaging setup and data

Non-invasive plant investigations are performed using var-
ious modalities with spatial scales varying from the micro-
scopic to large outdoor fields (Chavarria-Krauser et al., 2008;
Bergsträsser et al., 2015; Müller-Linow et al., 2015). Typi-
cal problems in measuring a plant’s visible properties comprise
measuring size, shape, color or spectral reflection, and other
structural and functional traits of whole plants, their organs, or
plant populations. Plants are not static, but self-changing sys-
tems with complexity in shape and appearance increasing over
time. For example, a single leaf appears in the scene and can
grow several cm2, i.e. orders of magnitude change in size till it
stops growing. Leaves can grow rapidly, in the range of hours,
with the whole plant changing over days or even months, in
which the surrounding environmental (as well as measurement)
conditions may also change. Biologists grow model plants,
such as Arabidopsis (Arabidosis thaliana) and tobacco (Nico-
tiana tabacum), in controlled environments and monitor and
record the phenotype. Such experiments are fundamental and
ubiquitous, and recovering the phenotype implies that computer
vision algorithms must deal with the complexity of the plant,
the experiment and the environmental conditions.

Starting from such typical experiments, we devised imaging
apparatuses and setups to acquire three imaging datasets (Fig-
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(a) Ara2012

(b) Ara2013 (Canon)

(c) Tobacco

Fig. 3: Example raw images (left) and close-ups showing individual plant sub-
jects (right) of: (a) Arabidopsis (Col-0, wild-type), (b) 5 different cultivars of
Arabidopsis, and (c) tobacco undergoing different treatments. (a)-(b) Arabidop-
sis and (c) tobacco were imaged with the setups shown in Figure 4 and 5, re-
spectively.

ure 3), which form the basis of this work. They were acquired
in two different labs with highly diverse equipment, as shown
in Figures 4 and 5. Arabidosis images were acquired using two
setups for investigating affordable hardware for plant pheno-
typing. Tobacco images were acquired using a robotic imaging
system for the investigation of automated plant treatment op-
timization by an artificial cognitive system. Images differ in
resolution, fidelity and scene complexity, with plants appearing
in isolation or in trays, and with subjects belonging to different
cultivars (mutants), or undergoing different treatments (see ex-
amples in Figure 3). The vision tasks required to estimate sev-
eral phenotyping parameters include detection, segmentation,
and tracking across time, for plants and individual leaves.

Prior to discussing the datasets (Section 3) and the computer
vision tasks they can be used for (Section 4), we briefly describe
below how plants were grown and imaged, with additional de-
tails available in Scharr et al. (2014).

2.1. Arabidopsis imaging with an affordable setting

Arabidopsis images were acquired in two data collections:
in June 2012 and in September-October 2013, hereafter named

Fig. 4: Affordable acquisition setup for ‘Ara2012’ and ‘Ara2013’.

Ara2012 and Ara2013, respectively, both consisting of top-view
time-lapse images of Arabidopsis thaliana rosettes. Experiment
composition is summarized in Table 1. Plants were grown in
individual pots with randomized arrangement to eliminate pos-
sible bias in the results due to variations in watering or lighting
conditions. No treatments were performed.

The imaging setup (cf. Figure 4) consisted of a growth shelf
and an automated affordable sensing system (Tsaftaris and
Noutsos, 2009), to acquire and send images of the scene via
a wireless connection to a receiving computer (http://www.
phenotiki.com). Example images are shown in Figure 3a-b,
illustrating plant arrangement and scene complexity.

Plants were illuminated artificially and controllably to em-
ulate daylight imaging in a fixed day cycle. Camera sensors
were positioned between the lights, approximately 1 m above
the plants, and operated as intervalometers, i.e. acquiring im-
ages at preset times with preset imaging conditions (such as fo-
cus, exposure, field of view). Images were captured during day
time only for a period of time (cf. Table 1). Two cameras were
used: a 7 Mpixel consumer grade camera (Canon PowerShot
SD1000), shorthanded as Canon, and an even lower cost system
based on the Raspberry Pi (http://www.raspberrypi.org),
Model B, with the Raspberry Pi 5 Mpixel camera module,
shorthanded as Rpi. Ara2012 used only Canon but Ara2013
used both cameras, permitting the evaluation of algorithms on
images of the same scene but with different image quality. Ad-
ditionally for Ara2013, multiple focus images were acquired.
All acquired images (width × height for Canon: 3108×2324
pixels; for Rpi: 2592×1944 pixels) were stored as lossless PNG
files.

2.2. Tobacco image dataset

The tobacco images were acquired in the context of the Euro-
pean project ‘Gardening with a cognitive system’ (GARNICS,
http://www.garnics.eu). The GARNICS project aimed at
3D sensing of plant growth and building perceptual representa-
tions for learning the links to actions of a robot gardener. This
robot must deal with the inherent complexity of plants, which
changes over time. Actions performed at plants (like watering),
will have strongly delayed effects, making monitoring and con-
trolling plants a difficult perception-action problem.

2.2.1. Imaging setup
The setup allowed for looking at plants from different poses

(see Figure 5). We release top views of the plants only, as top
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Table 1: Summary of information of the Arabidopsis and tobacco raw imaging data.

Experiment Subjects Wild- Mutants Period Total images Image Field Plant
types resolution of View resolution

Arabidopsis (Ara2012) 19 Col-0 No 3 weeks 150 7 MPixel large 0.25 MPixel
Arabidopsis (Ara2013, Canon) 24 Col-0 Yes (4) 7 weeks 4186 7 MPixel large 0.25 MPixel
Arabidopsis (Ara2013, Rasp. Pi) 24 Col-0 Yes (4) 7 weeks 1951 5 MPixel large 0.06 MPixel

Tobacco (23.01.2012) 20 Samsun No 18 days 34560 5 MPixel single same
Tobacco (16.02.2012) 20 Samsun No 20 days 38400 5 MPixel single same
Tobacco (15.05.2012) 20 Samsun No 18 days 34560 5 MPixel single same
Tobacco (10.08.2012) 20 Samsun No 30 days 57600 5 MPixel single same

Fig. 5: Hardware setup of the GARNICS robot gardener. (A) The robot arm, in
the lab environment. (B) Camera head with illumination and watering system.
(C) Workspace with light, temperature, and humidity sensors.

view images are used in many plant screening applications. No-
tice, however, that a setup performing only this type of acquisi-
tion can be considerably simpler and more affordable than the
setup used here. Beneath the robot and environment sensors the
implemented system featured: a) a watering and nutrient solu-
tion dispensing system for treatment application; b) high power
white LED illumination (switched off for imaging); and c) low
power white fluorescence illumination used for imaging.

The robot head consisted of two stereo camera systems
(4× Point-Grey Grashopper, 2448×2048, pixel size 3.45 µm),
black-and-white and color, and high quality lenses (Schnei-
der Kreuznach Xenoplan 1.4/17-0903). We added lightweight
white and NIR LED light sources to the camera head. Using
this setup, each plant was imaged separately from different but
fixed poses. In addition, for each pose small baseline stereo im-
age pairs were captured using each single camera by a suitable
robot movement, allowing for 3D reconstruction of the plant.

Data released here stems from experiments aiming at acquir-
ing training data for the robot gardener. Images were acquired
every hour in a 24/7 manner for up to 30 days. More details on
the four experiments can be found in Table 1. Overview images

of the plants from these experiments are shown in Figure 3c.

2.2.2. Plant material and growing conditions
Tobacco plants (Nicotiana tabacum cv. Samsun) were grown

in 7×7 cm pots under constant light conditions with a 16h/8h
day/night rhythm. Water was provided by the robot system ev-
ery two hours. Nutrients were applied either manually twice
a week or every other hour by the robot system. In GARNICS
treatments were selected to produce training data for a cognitive
system. The amounts of water and nutrient solution are there-
fore well adapted to the soil substrate such that the plants show
distinguishable performance of generally well growing plants.
Finding an optimal treatment was left to the system.

Images show growth stages from germination well into the
leaf development stage, i.e. starting observations at growth
stage 09 and stopping at stage 1009 to 1013 (according to the
extended BBCH-scale presented in (CORESTA, 2009)), due to
size restrictions. Figure 3c shows images of the final growth
stages. For further details on treatments, environmental condi-
tions, and acquisition times we refer to Scharr et al. (2014).

3. Annotated datasets

In order to provide specialized standalone datasets for a num-
ber of computer vision tasks, parts of the raw image data de-
scribed in Section 2 have been carefully annotated by experts.
Note that not all data have been annotated (thousands of raw
images are available) and annotation is a continuing process.
However, even augmented versions of the datasets in the future
will follow the structure described here. Among those that have
been annotated, not all are publicly available, to permit future
competitions and challenges based on data which are blind to
participants. Other computer vision competitions, such as PAS-
CAL VOC (Everingham et al., 2010), and biologically inspired
challenges follow this strategy. In addition, for each specific
task the datasets are considered standalone and as such the user
is unaware of other information (e.g., mutant type for leaf seg-
mentation). This limits domain and prior knowledge and should
lead to methodologies that are more robust to the changing and
complex morphology of plants.

In the following paragraphs we describe first the semantic
hierarchy considered, the manual annotation procedure, and
then proceed in detailing available subsets of the data for each
computer vision and machine learning task, defining annota-
tions and appropriate metadata, and suitable evaluation criteria.
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Fig. 6: Hierarchy of relationships among data, metadata, and annotations. In
parentheses we provide examples of annotation variables, and we also pro-
vide pictorial examples of imaging data and annotations such as segmentation
masks, bounding boxes, and leaf boundaries. Gray boxes denote metadata.

Dataset size refers to the current state of annotation as to the
current date.

3.1. Overview of semantic hierarchy

Each experiment has generated a vast amount of imaging
data with Arabidopsis experiments showing tray images whilst
tobacco individual plants. Our internal database and annotation
strategy follows the hierarchy visible in Figure 6. These origi-
nal images are higher in our semantic hierarchy.

Gray boxes in Figure 6 denote related annotated metadata:
experiment type, mutant type, camera used, acquisition time,
experimental treatment, segmentation difficulty, etc. Non-
shaded boxes denote imaging and image level annotations.
Note that an experiment may contain both tray and individual
plant images such as Arabidopsis for example. However, this is
not a rule: for example, for tobacco datasets tray images are not
available, and for Arabidopsis experiments no treatment was
performed. To construct each of the standalone datasets de-
scribed below, we trace information in this hierarchy and pro-
vide related metadata and annotations wherever appropriate.

3.2. Expert segmentations

A significant number of object-based annotations, e.g.,
bounding boxes, can be obtained computationally on the basis
of pixel-level segmentation masks of plants and leaves, respec-
tively, which have been manually annotated by experts. Here
we describe how we obtained the latter and next we detail the
level of annotation for each task.

Annotation consisted of three steps. First, we obtained a
binary segmentation of the plant objects in the scene in a
computer-aided fashion. For Arabidopsis, we used the ap-
proach based on active contours described by Minervini et al.
(2014), while for tobacco, a simple color-based approach for

(a) Ara2012

(b) Ara2013 (Canon)

(c) Tobacco

Fig. 7: Examples of single plant images at different developmental stages with
the corresponding ground truth leaf labeling denoted by color.

plant segmentation was used. The result of this segmentation
was manually refined using raster graphics editing software, to
ensure that all the visible part of the shoot is included in the
plant mask and that the background (earth, moss, etc.) is ex-
cluded. Next, within the binary mask of each plant, we de-
lineated individual leaves (including both the petiole and the
blade) completely manually. A pixel with black color denotes
background, while all other colors are used to uniquely iden-
tify leaves of the plants in the scene. Across the frames of
the time-lapse sequence, we consistently used the same color
code to label occurrences of the same leaf. To reduce observer
variability and increase accuracy, the labeling process involved
always two annotators: one annotating the dataset and one in-
specting the other. For future extensions of the datasets, the
annotation of additional images is supported by a tool that we
recently released for semi-automated leaf segmentation and an-
notation (Minervini et al., 2015a). Figure 7 shows examples of
plant images from the datasets, with corresponding pixel level
annotation masks.

On a secondary inspection of the data, additional categori-
cal qualitative annotations were recorded by annotators such
as: estimate of segmentation difficulty (in the 1[easy]-5[hard]
scale), plant appears in focus, leaves appear in vertical posi-
tions which is typical in tobacco (due to the so called nastic
movements), plant is occluded by another one (when pots are
placed close by), and scene contains complexities (water in the
background, green moss on soil, debris or damage on leaves).
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3.3. Computer vision tasks and datasets

Fine-grained information to be extracted from images is
ubiquitous in plant phenotyping, since we do have to deal with
how different mutants or treatments affect plant shape and char-
acteristics. Even the same plant will have leaves of different
shape and size according to their maturity, as it can also be seen
in Figure 7. In some cases the phenotype of a mutant is not
known, and typically researchers assign qualitative characteris-
tics, which is simple when gross phenotype differences are ev-
ident (e.g., radically different leaf shape). However, it is when
such differences are subtle that the ability to extract fine-grained
information directly from images would make a tremendous
impact: it would permit biologists to identify small traits to be
explored further. Computer vision and machine learning could
enable biologists to assess a new mutant’s phenotype by evalu-
ating how similar it is to known lines of cultivars and mutants
in a quantitative fashion.

Doing this in a fully automated fashion is fertile ground for
a series of interesting vision tasks, which we outline below to-
gether with descriptions of appropriate for the task datasets and
evaluation criteria. To test and develop robust solutions for a re-
alistic range of conditions, we constructed the datasets by care-
fully choosing images according to our qualitative annotations
(Section 3.2), and also allowing several challenging situations
to occur by design in the experiments. For the evaluation crite-
ria we took inspiration from standard criteria used in computer
vision and also devised some that are relevant to phenotyping.
Since each task is different and the number of available anno-
tated images is increasing, we refrain from supposing a cer-
tain split into training, validation and testing sets –a procedure
typically adopted when evaluating learning-based approaches.
However, our recent experience in organizing the leaf segmen-
tation (Section 3.3.3) and leaf counting (Section 3.3.5) contests
(see Section 4) using a subset of the annotated data presented
here showed that the number of available images and criteria
used allowed computer vision scientists to work successfully on
these problems (see e.g. (Scharr et al., 2015; Pape and Klukas,
2014, 2015; Giuffrida et al., 2015)).

Our annotations were initialized by computationally post-
processing the expert-delineated leaf masks as discussed in Sec-
tion 3.2. Afterwards, everything was verified (and if necessary
corrected) by experts to ensure high quality and integrity. Note
that for each task we outline the size (as in current number of
annotated images) of the corresponding dataset.

Hereafter, to ease presentation we will denote as leaf mask
the pixel-level leaf masks (including the visible part of a leaf
blade and the corresponding petiole) and as plant mask the
pixel-level binary mask obtained by the union of all individ-
ual leaf labels within a plant. To reduce storage all images are
lossless compressed PNG files.

3.3.1. Plant detection and localization
Task: As Figure 3 shows, plants can be arranged in a grid,

either fixed in position in specialized trays or not and can even
be touching each other, the latter leading to a non trivial de-
tection problem. Thus, a first vision task encountered is plant
detection and localization of individual plants, in the form of

bounding boxes. Excitingly, this problem is also encountered
even outside the context of phenotyping, e.g., in precision agri-
culture for detecting crops (van Henten et al., 2009) albeit in a
more complicated setting. Here learning-based object detection
approaches are ideally suited to help.

Dataset: We derived bounding boxes for each plant as the
smallest bounding box enclosing the plant mask, processing
each plant individually in a tray image. An additional 5% of the
box size was considered to include a larger aspect of the scene.
The dataset consists of 76 tray images, as 22 from Ara2012,
27 from Ara2013 (Canon), and 27 from Ara2013 (Rpi). For
each tray image, a comma-separated value (CSV) file is avail-
able, reporting for each plant the corner pixel coordinates of its
bounding box.

Evaluation criteria: Following upon the ubiquitous PAS-
CAL VOC challenge Everingham et al. (2010), we suggest
the bounding box overlap ratio criterion ao = area(Bp ∩

Bgt)/ area(Bp∪Bgt), between predicted Bp and ground truth Bgt

bounding boxes.

3.3.2. Plant segmentation
Task: Plant biomass is an important plant breeding trait be-

cause it reflects overall plant performance. In images of rosette
plants usually it is measured as projected leaf area (PLA), i.e.
effectively the number of plant pixels. Finding PLA translates
to the segmentation of plant from background. In simple cases
this can be solved by color thresholding and other unsupervised
segmentation approaches (Walter et al., 2007; De Vylder et al.,
2012), but when scene complexity is high (non-smooth back-
ground, non-uniform lighting, plant overlap, presence of moss
on soil) sophisticated learning-based algorithms are necessary
(Perina et al., 2010; Minervini et al., 2014).

Dataset: The dataset consists of 15 tray images from
Ara2012, 27 from Ara2013 (Canon), and 27 from Ara2013
(Rpi). For each image a corresponding black (background) and
white (foreground) mask encoded as an indexed image provides
pixel-level information on the location of plant objects.

Evaluation criteria: Several segmentation criteria exist and
we suggest Dice coefficient, precision, and recall, since they
have been used throughout image analysis and are common in
plant imaging as well (Minervini et al., 2014). Among those,
the Dice Similarity Coefficient, DSC (%) = 2|Pgt ∩ Par |/(|Pgt |+

|Par |), measures the degree of overlap among ground truth Pgt

and algorithmic result Par binary segmentation masks, where | · |
denotes set cardinality. We also suggest the Modified Hausdorff
Distance (MHD) (Dubuisson and Jain, 1994):

MHD = max

 1
|Pgt |

∑
a∈Pgt

min
b∈Par
‖a − b‖,

1
|Par |

∑
b∈Par

min
a∈Pgt
‖a − b‖

 ,
where ‖ · ‖ denotes Euclidean distance. The MHD has large
discriminatory power, is robust to noise and is easy to interpret
(it can be expressed in units of length, e.g., millimeter).

3.3.3. Leaf segmentation
Task: In rosette plants when leaves are highly overlapping,

PLA may not be an accurate estimator of plant biomass any-
more and individual leaf segmentation is necessary. When in-
dividual leaves are segmented, distributions of leaf size can
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highlight the rate of growth of new leaves with respect to old
ones. However, leaf segmentation, a multi-instance segmenta-
tion problem (He and Gould, 2014), is particularly challenging
since most leaves within the same plant may share appearance
and shape, but can also appear severely overlapping. To com-
plicate matters even more, plant morphology changes radically
between mutants, in response to treatment, and as plants grow.
Self-occlusion, shadows, leaf hairs, leaf color variations, and
others add complexity. Image quality is a factor as well, so
low resolution and out-of-focus (as it could occur in portions
of Ara2012 and Ara2013 datasets) affect leaf segmentation ac-
curacy. On the other hand, high resolution as in Tobacco, does
introduce computational challenges.

Dataset: We used leaf masks but without temporal label con-
sistency. 120 from Ara2012, 165 from Ara2013 (Canon), and
62 from Tobacco, images of single plants appearing centered
are used. For each plant, annotations are provided in the form
of indexed images (a color palette is embedded for visualiza-
tion) the same dimensions of the originals. We use one label
per leaf, starting from ‘1’ up to the maximum number of leaves,
with ‘0’ denoting background.

Evaluation criteria: Several segmentation criteria are avail-
able for comparing between ground truth and algorithmic out-
comes (Mezaris et al., 2003; Unnikrishnan et al., 2007). We
suggest SymmetricBestDice, the symmetric average Dice score
among all objects (leaves), where for each input label the
ground truth label yielding maximum Dice is used for averag-
ing. Best Dice (BD) is defined as:

BD(La, Lb) =
1
M

M∑
i=1

max
1≤ j≤N

2|La
i ∩ Lb

j |

|La
i | + |L

b
j |
,

where | · | denotes leaf area (number of pixels), and La
i for

1 ≤ i ≤ M and Lb
j for 1 ≤ j ≤ N are sets of leaf object seg-

ments belonging to leaf segmentations La and Lb, respectively.
SymmetricBestDice (SBD) is then:

SBD(Lar, Lgt) = min
{

BD(Lar, Lgt), BD(Lgt, Lar)
}
, (1)

where Lgt is the ground truth and Lar the algorithmic result.

3.3.4. Leaf detection
Task: In an image analysis pipeline, image-based leaf detec-

tion could serve to initialize other processes (segmentation or
tracking). Due to size differences, shape and appearance simi-
larities, and heavy occlusions, leaf detection is a complex task,
and can benefit from approaches in computer vision of detect-
ing overlapping objects in medicine, transportation, and surveil-
lance (Arteta et al., 2013; Wohlhart et al., 2013).

Dataset: On the basis of leaf masks, we extracted for each
individual leaf the smallest rectangular bounding box (possibly
rotated with respect to the image coordinate system) enclosing
the mask of that leaf. (In our definition such box would con-
tain both leaf petiole and blade wherever visible and applica-
ble.) The dataset consists of individual plant images, 120 from
Ara2012, 165 from Ara2013 (Canon), and 62 from Tobacco,
and for each image, a CSV file storing per row the leaf index
and the coordinates of each bounding box, with as many rows

as number of leaves. Note that our annotation does include the
petiole (‘leaf stalk’) in Arabidopsis.

Evaluation criteria: Number of accurate detections and their
accuracy evaluated with overlap measures (cf. Section 3.3.1).

3.3.5. Leaf counting
Task: From a phenotyping perspective the number of leaves

is directly related to yield potential, drought tolerance, and
flowering time (Granier et al., 2006; Méndez-Vigo et al.,
2010). From a computer vision perspective, it can also be
used to constrain leaf detection or leaf segmentation algorithms
(Nieuwenhuis et al., 2013). To this date, user interaction is re-
quired and leaf count comes as a by-product of leaf segmen-
tation. Learning-based counting techniques could help here
(Lempitsky and Zisserman, 2010; Fiaschi et al., 2013). We
should note that counting leaves has additional challenges w.r.t.
cell/car/people counting since in these classical counting appli-
cations all objects share similar shape and size but may have
different appearance (e.g., car and people have different colors)
may not occlude each other (e.g., cells usually touch but do not
overlap). Instead in leaf counting, leaves may heavily overlap,
and have different shape and size (mature vs. younger leaves).

Dataset: On the basis of leaf masks we extracted for each
leaf the distance transform weighted-center of mass and also
the center of mass. When these disagree significantly (above
a threshold), and if any of the centers lie outside the binary
shape, it indicates a highly asymmetric leaf (e.g., due to heavy
occlusion or orientation vertical to the imaging axis) and the
annotator was prompted to select a center. Leaf centers in our
definition are located in the middle of the visible part of leaf
blades. The dataset consists of individual plant images and ac-
companying binary images containing the centroids for each
leaf as a single pixel. (This requires larger storage but we find
it more appealing than storing centers in CSV files.) Overall
120 from Ara2012, 165 from Ara2013 (Canon), and 62 from
Tobacco, raw and equally numbered annotation images are pro-
vided. A CSV file listing image names and number of leaves is
also provided, for convenience of approaches that solve directly
the regression problem.

Evaluation criteria: Here, we suggest: a) the difference be-
tween number of leaves in algorithm’s result and ground truth
DiffFGLabels = #Lar − #Lgt, and b) AbsDiffFGLabels, the ab-
solute value of DiffFGLabels. Note that these criteria do not
take into account good localization and while count maybe cor-
rect it may not correspond to actual leaves. Alternatively, count
via detection measures can be adopted (see Section 3.3.4).

3.3.6. Leaf tracking
Task: Finding growth curves of individual leaves helps us

understand how a plant (or a cultivar) is growing or the effects
of treatments and stresses: for example, Clauw et al. (2015)
found that drought differentially affects leaves. This growth
curve usually follows an exponential relationship with time
(Richards, 1959; Walter and Schurr, 1999), and frequent imag-
ing can capture small differences. This implies the precise seg-
mentation and temporal tracking of each leaf (Yin et al., 2014).

Dataset: Building upon the leaf masks, the dataset con-
sists of sequentially numbered PNG files of raw individual im-
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ages and annotations. We provide 4 stacks of 13 images each
from Ara2012 and 8 stacks of 17 images each from Ara2013
(Canon). Leaf-level segmentations are provided with leaves
having the same label index throughout the sequence to ensure
temporal consistency. Also, we release for each image a cor-
responding CSV file, where bounding box definitions are pro-
vided as previously described. Note that this dataset can also
be used for leaf or plant segmentation with additional temporal
information for example for joint segmentation and tracking.

Evaluation criteria: We recommend the protocol of Nawaz
and Cavallaro (2013), which builds on overlap criteria, and the
code available from the authors. When leaves are vertical in the
imaging axis (due to severe nastic movements), overlap crite-
ria may be unable to assign proper correspondences. This may
cause lack of label consistency of a leaf across time in an algo-
rithmic result, but it can be easily seen in individual leaf growth
curves. Quantitatively, they can be detected by multiple local
hypothesis testing to identify structural breaks on the growth
parameters (Dellen et al., 2015).

3.3.7. Boundary estimation
Task: Some approaches to multi-instance (or multi-label)

segmentation rely on accurate boundary detection, which is
used for example to initialize template-based models (He and
Gould, 2014; Yin et al., 2014). When image contrast and res-
olution are adequate, for example in Tobacco, classical edge
detection works sufficiently. However, when images are par-
tially out-of-focus and of lower resolution (due to a larger field
of view) as is the case of the Arabidopsis data, learning-based
methods to boundary estimation (i.e. a learned edge detector
as in Martin et al. (2004)) have been shown to perform better
(Pape and Klukas, 2015).

Dataset: Using leaf masks, we isolated each leaf label and
found its perimeter, to produce an indexed labeled image where
‘0’ is background, ‘1’ denotes a boundary between plant and
background, and ‘2’ denotes a boundary between overlapping
leaves (which can be more than 1-pixel thick.). This separation
may facilitate the training of specialized boundary detectors.
The dataset consists of pairs of plant images and these indexed
images with boundary annotations, as 120 from Ara2012, 165
from Ara2013 (Canon), and 62 from Tobacco.

Evaluation criteria: Typical criteria such as precision and
recall are suggested and those not penalizing small local mis-
alignment, which are suited for evaluating performance of
boundaries between leaves, e.g., the MHD (Section 3.3.2) and
its learning-based simplification in Minervini et al. (2013).

3.3.8. Classification and regression
Task: While phenotyping typically occurs in forward hypoth-

esis testing scenarios, recently reverse hypothesis and associ-
ation studies have received attention and fine-grained catego-
rization is particularly useful. In this case phenotyping traits
are recorded and are correlated with genotyping information to
identify relationships among them (data mining) (O’Malley and
Ecker, 2010). This is particularly useful in the case of treat-
ments, cross hybridizations, and other processes that may af-
fect directly or indirectly (e.g., via silencing and other epige-
netic functions) the genetic code of plants (To and Kim, 2014).

Therefore, given a plant image, it is of great interest to charac-
terize the plant, i.e. plant age or development stage, find other
cultivars possessing similar traits, what possible treatment it has
undergone. This may be done at plant level or may be even
possible at leaf level. When these characteristics are distinct
this is considered as a recognition and classification problem.
However, if we are interested in percentile similarities, likeli-
hood and regression frameworks can be employed. A similar
problem in the context of precision agriculture is weed vs. crop
classification, whereupon the interest is to separate a valid crop
from a weed in images, usually acquired by automated robotic
mechanisms (Haug et al., 2014). Here we consider and provide
datasets for three cases: mutant recognition (classification), age
regression, and treatment recognition (classification).

Dataset: For mutant and treatment recognition we release
individual plant images and a text list denoting per each row
image name, genotype, treatment type. For treatment type clas-
sification 62 data from Tobacco are currently available. For
mutant classification 165 from Ara2013 (Canon) and 165 from
Ara2013 (Rpi) are currently available. We assume the only in-
put to be image data with mutant and treatment type to be pre-
dicted values. For age regression, we release individual plant
images and a text list denoting per each row image name, mu-
tant type, treatment type, and the age in hours of the plant since
germination. For this task 165 images from Ara2013 (Canon),
165 from Ara2013 (Rpi), and 62 from Tobacco are currently
available. Notice that the age regression task when mutant or
treatment information is not available or treatment is not fixed is
extremely difficult since each mutant has different growth rates
in response to treatment, so in some sense the algorithm must
be able to infer by appearance the unknown mutant type. For
simplicity, we assume that inputs to this learning problem are:
images and mutant/treatment type information to predict age.

Evaluation criteria: Due to the diversity of problems consid-
ered in this category, for classification problems precision and
recall criteria are recommended, and for regression problems
mean absolute error and mean squared error between predicted
and ground-truth measures are encouraged.

4. Examples of use cases

This section offers examples of how parts of the datasets out-
lined in the previous section have been used in developing and
evaluating computer vision algorithms.

For plant segmentation from complicated background using
parts of the Ara2012 dataset, Minervini et al. (2014) used a new
multi-channel active contour based on Chan and Vese (2001)
with probabilistic priors on plant appearance. The images used
included examples of heavy growth of moss in the pot, water in
the tray, discoloring of plants due to temporary drought, and pot
movement. On average, DSC ≈ 97% (cf. Section 3.3.2) was ob-
served for segmentation accuracy when using color and texture
features and a Gaussian mixture model to describe plant appear-
ance. In the same work, rosettes were tracked over time using
overlap criteria and nearest neighbor rules. Nearest neighbor
rules and a k-means clustering on the Euclidean coordinates of
plant pixels were also used to resolve overlapping plants. Ex-
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(a) (b) (c) (d)

Fig. 8: Two examples of plant and leaf segmentation. (a) Original images, (b)
ground truth leaf masks, (c) leaf segmentations obtained by (Pape and Klukas,
2014), and (d) plant segmentations obtained by (Minervini et al., 2014).

amples are shown in Figure 8d, where DSC values of 98% and
97% are reported for top and bottom images, respectively.

A specially formatted part of the data presented here was
released to support the Leaf Segmentation Challenge (http://
www.plant-phenotyping.org/CVPPP2014-challenge),
of the Computer Vision Problems in Plant Phenotyping
(CVPPP) workshops 2014 and 2015. CVPPP 2014 was held
in conjunction with the European Conference on Computer
Vision (ECCV), in Zürich, Switzerland, in September 2014;
CVPPP 2015 in conjunction with the British Machine Vi-
sion Conference (BMVC), in Swansea, UK, in September
2015. Plant images were considered separately, ignoring
temporal correspondence. Images contained instances with
well separated leaves and simple background, but also more
difficult examples with many leaf occlusions, complex leaf
shapes, varying backgrounds, or plant objects not well in focus.
Individual plant images and ground truth segmentations were
used consisting of Ara2012, Ara2013 (Canon), and Tobacco
datasets. The datasets were split into training and testing sets
for the challenge. Respectively: for training, 128, 31, and
27 images and corresponding annotations were released; for
testing, 33, 9, and 56 images were released (ground truth
was available only to the organizers). Within this challenge,
solutions were evaluated on the basis of plant segmentation,
individual leaf segmentation, and leaf counting with the criteria
outlined in Sections 3.3.3 and 3.3.5. Table 2 summarizes
overall performance among participants that completed the
challenge and the leading approaches of Pape and Klukas
(2014, 2015). Although plant segmentation accuracy (DSC
of plant mask) was somewhat acceptable, when considering
leaf segmentation (SymmetricBestDice, Eq. (1)) and leaf count
criteria poor performance was observed across the algorithms
in LSC 2014, indicating the challenging nature of the problem.
Some of these issues are evident also in the examples of
Figure 8c: compared to the ground truth, the approach of
Pape and Klukas (2014) tends to over-segment (when moss
is present, e.g., the top image), separate petioles, and merge
leaves. Both images present AbsDiffFGLabels = 2, so count
is off but for different reasons. In order to distinguish between
foreground-background segmentation errors and leaf-wise
segmentation errors, ground truth foreground-background

masks were provided for LSC 2015. While the average
SymmetricBestDice improved to 71.3%, this performance is
still quite low, which indicates that for leaf-wise segmentation
reliable and highly accurate tools are still not available.

A comparative study of improved versions of the algorithms
devised and tested in the context of the LSC 2014 can be found
in Scharr et al. (2015). Within an in-depth analysis and discus-
sion of the results are offered.

We also explored learning directly leaf count density based
on leaf center annotations, following the approach by Lempit-
sky and Zisserman (2010). We used a subset of 84 images
from the Ara2012 dataset, with images depicting leaf occlu-
sions, some being out of focus, and some showing moss in the
pot. The overall number of leaves per plant varied from 12 to
19. Based on leaf center annotations (Section 3.3.5), the goal
was to learn via appropriate losses, density functions, the in-
tegration of which provides object counts. We extracted from
the green color channel dense SIFT descriptors (Lowe, 2004)
in 20 of the 84 images, with 7 SIFT bins and fixed orientations.
Subsequently, we quantized the SIFT space using k-means clus-
tering to create a codebook of size 1500. Using this codebook,
we learned a linear transformation of the feature representation
on the codebook approximating the density function at each
pixel on 64 training images (Lempitsky and Zisserman, 2010).
Testing on 33 images of Ara2012 of the LSC dataset, obtained
an average AbsDiffFGLabels = 2.36(2.9) (cf. Section 3.3.5).
Among those, in 67% of images we observed either no count-
ing error or the count was off by 1 or 2 leaves at most. In
comparison, referring to findings of Pape and Klukas (2014)
on the same testing data, counting via segmentation performed
with AbsDiffFGLabels = 2.2(1.3). For the example of Figure 8,
by learning, the count was off only by 1 leaf for both test im-
ages. While these results are preliminary they demonstrate the
promise of learning-based leaf count estimation.

These early findings illustrate the complexity of the problems
at hand. In fact, the leaf counting problem motivated a new
challenge, the leaf counting challenge (LCC) for the 2015 edi-
tion of CVPPP. The leading methods are presented in (Giuffrida
et al., 2015; Pape and Klukas, 2015). The approaches, while
they do rely on global regression, they are different as to the fea-
tures used. Pape and Klukas (2015) extract features out of the
foreground mask (e.g., perimeter, area, etc.), which after feature
selection are used in a regression framework to learn leaf count
per image. Several regression functions are evaluated such as

Table 2: Average performance among all participants compared to the leading
approaches on the Leaf Segmentation Challenge (LSC) of CVPPP 2014 and
CVPPP 2015. In parentheses standard deviations among participants for the
first column, and among the three different datasets for the second column.
∗Note that ground truth foreground-background masks were made available in
LSC 2015.

Overall Leader Leader
LSC 2014 LSC 2014 LSC 2015

SymmetricBestDice [%] 48.7 (12.8) 62.6 (19.0) 71.3 (15.1)
DSC [%] 83.1 (10.9) 95.3 (10.1) –∗

AbsDiffFGLabels 6.3 (4.36) 2.4 (2.1) 1.1 (1.2)
DiffFGLabels 1.3 (4.4) -1.9 (2.7) -0.3 (1.6)
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Table 3: Performance of the leading approaches on the Leaf Counting Chal-
lenge (LCC) of CVPPP 2015. In parentheses standard deviations among the
three different datasets.

LCC 2015 (Giuffrida et al., 2015) (Pape and Klukas, 2015)

AbsDiffFGLabels 1.43 (1.51) 1.1 (1.2)
DiffFGLabels -0.51 (2.02) -0.3 (1.6)

support vector regression, random forest regression, and oth-
ers. Different features were used for each dataset. On the other
hand, the solution proposed by Giuffrida et al. (2015) learns fea-
tures directly from the data in an unsupervised fashion to build
a codebook. From the images, image patches are extracted and
projected on the codebook. Responses are max pooled, leading
to a global per image descriptor. Leaf count is estimated from
this descriptor using support vector regression. Summary re-
sults are shown in Table 3. We see that results clearly improved
with respect to the best LSC 2014 results (Table 2).

5. Discussion and Conclusions

This paper describes the first ever collection of image
datasets of growing Arabidopsis and tobacco plants in a plant
phenotyping context, together with annotations for a series of
computer vision and learning tasks at different levels of granu-
larity. Plant phenotyping is central to the understanding of plant
function and is a tool that can enable us to meet agricultural de-
mands of the future. Computer vision and machine learning are
ideally suited to help, and this collection of datasets is intended
to promote the exploration of plant phenotyping problems.

As a benefit to the scientific community, we will be con-
tinuously releasing in the public domain specially formatted
datasets and annotations, accompanied by appropriate functions
implementing evaluation criteria. We will be accepting con-
tributions and corrections from the scientific community in an
effort to keep these data curated. This paper will serve as the
reference document on the structure and importance of these
datasets. In order to facilitate future annotation by us and the
broad community, following ideas from other domains (Gior-
dano et al., 2015), we have already developed annotation tools
(Minervini et al., 2015a). Implementing in the future such tools
in web-based environments would permit the crowd-sourcing
of annotations (Kavasidis et al., 2014; Goff et al., 2011). We
will be also investigating additional evaluation criteria as we
obtain feedback from the community.

We do hope that our publicly available datasets and future
augmented versions will be adopted by the broad computer
vision community as well (as with the PASCAL (Evering-
ham et al., 2010), or the biologically focused Broad Bioimage
Benchmark Collection (Ljosa et al., 2012)). Our datasets can
be used to learn suitable image statistics (Heiler and Schnörr,
2005), adapt and test counting algorithms with (Fiaschi et al.,
2013) and without temporal information (Arteta et al., 2013;
Lempitsky and Zisserman, 2010), segmentation algorithms
(Chan and Vese, 2001), multi-label segmentation (Nieuwenhuis
et al., 2013; He and Gould, 2014) or detection (Barinova et al.,
2012) approaches, and others. Additional depth information

as can be computed from a pair of images with different focus
(Favaro and Soatto, 2007) of the Arabidopsis dataset or stereo
images (Biskup et al., 2007) of the Tobacco dataset, to be re-
leased in the future, may further facilitate segmentation (Dellen
et al., 2011). Using the presented datasets, image-based plant
phenotyping will evolve in parallel to (and benefit from) ad-
vances in computer vision, by tracking the performance of ap-
proaches referencing these data. More importantly, it will also
introduce this societally important application to a wider audi-
ence.

Acknowledgments

Tobacco research has received funding from EU’s 7th Frame-
work Programme (FP7/2007-2013) under grant no. 247947
(GARNICS). Part of this work was performed within the
German-Plant-Phenotyping Network, which is funded by the
German Federal Ministry of Education and Research (project
identification no. 031A053). Arabidopsis research was partially
supported by a Marie Curie Action: “Reintegration Grant”
(grant no. 256534) of the EU’s 7th Framework Programme.

The authors would like to thank Prof. Pierdomenico Perata
and his group from Scuola Superiore Sant’Anna, Pisa, Italy, for
providing plant samples and instructions on growth conditions
of Arabidopsis. Finally, they also thank several annotators who
have contributed to this project: Fabiana Zollo, Ines Dedovic,
Mario Valerio Giuffrida, and Vasileios Sevetlidis.

References

Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A., 2013. Learning to detect
partially overlapping instances, in: CVPR, IEEE. pp. 3230–3237.

Augustin, M., Haxhimusa, Y., Busch, W., Kropatsch, W.G., 2015. Image-based
phenotyping of the mature Arabidopsis shoot system, in: Computer Vision
- ECCV 2014 Workshops. Springer, pp. 231–246.

Barinova, O., Lempitsky, V.S., Kohli, P., 2012. On detection of multiple object
instances using hough transforms. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34, 1773–1784.
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