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Abstract

A substantial amount of empirical research has estimated the association between brain volume 

and intelligence. The most recent meta-analysis (Pietschnig et al., 2015) reported a correlation of 

.24 between brain volume and intelligence – notably lower than previous meta-analytic 

estimates. This headline meta-analytic result was based on a mixture of samples (healthy and 

clinical) and sample correlations not corrected for range restriction. Additionally, the role of IQ 

assessment quality was not considered. Finally, evidential value of the literature was not 

formally evaluated. Based on the results of our meta-analysis of the Pietschnig et al.’s sample 

data, the corrected correlation between brain volume and intelligence in healthy adult samples 

was r = .30 (k = 32; N = 2305). Furthermore, the quality of intelligence measurement was found 

to moderate the effect between brain volume and intelligence (b = .08, p = .017). Investigations 

that used ‘fair’, ‘good’, and ‘excellent’ measures of intelligence yielded corrected brain volume 

and intelligence correlations of .21 (k = 9; N = 677), .32 (k = 10; N = 1063), and .39 (k = 13; N = 

565), respectively. Finally, the results of a p-curve analysis indicated that the published 

statistically significant results in the area were likely the outcome of a genuine effect, rather than 

the outcome of p-hacking (p < .001). The results were interpreted to suggest that the association 

between in vivo brain volume and intelligence is arguably best characterised as r ≈ .40. 

Researchers are encouraged to consider intelligence measurement quality in future meta-analyses 

(q-meta-regression), based on the guidelines provided in this investigation.

Keywords:  meta-analysis, meta-regression, brain volume, intelligence, p-curve
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Brain Volume and Intelligence: p-Curve and q-Meta-Regression Analyses

The topic of brain size and its possible association with intelligence, both within and 

between species, has been the subject of a substantial amount of research and debate 

(Mackintosh, 2011). Recently, Pietschnig, Penke, Wicherts, Zeiler, and Voracek (2015) reported 

a meta-analytic correlation between human brain volume and intelligence of r = .24, based on 

120 sample correlations (N = 6778). A limitation associated with the Pietschnig et al (2015) 

investigation is that it did not provide an estimate of the association between brain volume and 

intelligence corrected for range restriction. Additionally, Pietschnig et al. (2015) did not explore 

the possibility that quality of intelligence measurement may moderate the magnitude of the 

association between brain volume and intelligence. Finally, Pietschnig et al. (2015) did not 

formally evaluate the evidential value of the reported research via a p-curve analysis.

Consequently, the purpose of this investigation was to extend the Pietschnig et al. (2015) 

meta-analysis in three ways. First, to estimate the correlation between in vivo human brain 

volume and intelligence based on correlations associated with relatively few artefacts, i.e., 

correlations derived from healthy adult samples and corrected for range restriction. Secondly, to 

develop a guide to help classify the quality of general intelligence measurement, in order to test 

the hypothesis that there is a positive association between intelligence test measurement quality 

and the magnitude of effect sizes reported across empirical investigations (q-meta-regression). 

Finally, to conduct a p-curve analysis to evaluate the reported brain volume and intelligence 

statistically significant correlations for evidential value.

Brain Volume and Intelligence: Quantitative Reviews

The association between in vivo brain volume and intelligence has been reviewed 

quantitatively several times over the years. More than a decade ago, Gignac, Vernon, and 
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Wickett (2003) estimated the correlation between brain volume and IQ based on 14 samples (N = 

858), all of which were derived from peer reviewed publications. Gignac et al. (2003) reported 

an N-weighted mean correlation of .37 between brain volume and intelligence. In six of the 14 

investigations included in the meta-analysis, the IQ score standard deviations were available. 

Consequently, Gignac et al. (2003) also reported an N-weighted mean corrected correlation of 

.43 between brain volume and IQ.1

McDaniel (2005) revisited the in vivo brain volume and intelligence association by 

conducting a more comprehensive meta-analysis than that of Gignac et al. (2003). McDaniel’s 

(2005) inclusion criteria were the following: clinically healthy samples; total brain volume 

measurement; and well-established measures of intelligence (Wechsler scales; Raven’s; but not 

the National Adult Reading Test, for example). Based on the samples which met those criteria (k 

= 37; N = 1530), McDaniel (2005) reported a correlation of r = .29 between brain volume and 

global intelligence. As the standard deviations for 16 of the 37 samples were available in the 

publications, McDaniel (2005) also reported a corrected correlation of r = .33. Thus, the 

corrected correlation reported by McDaniel (2005) was smaller than the corrected correlation 

reported by Gignac et al. (2003; r = .43). 

It is noteworthy that McDaniel (2005) found that the mean correlation between brain 

volume and intelligence was larger for adults than for children. For example, the brain volume 

and intelligence corrected correlation for adult males was estimated at r = .38, whereas the same 

1 For an introduction to the problem of range restriction and the estimation of correlations in the 

population, consult Wiberg & Sundström (2009). More advanced treatments can be found in 

Sackett and Yang (2000) and Hunter, Schmidt, and Le (2006). 
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correlation for male children was estimated at r = .22. McDaniel (2005) did not speculate as to 

why the effects may have been larger for adults in comparison to children. It is suggested here 

that both incomplete neurophysiological maturation and individual differences in the rate of 

maturation explain some of the increase in the magnitude of the brain volume and intelligence 

correlation from childhood to adulthood. For example, there are individual differences in the 

neurophysiological maturation of the frontal lobes across childhood and adolescents (Nagy, 

Westerberg, & Klingberg, 2004; Segalowitz & Davies, 2004). Furthermore, several of the 

neurophysiological characteristics of maturation may be substantially independent of brain 

volume (e.g., pruning, intra-cortical myelination; Paus, 2005). Thus, until such 

neurophysiological characteristics are largely stabilised once maturation is complete (i.e., 

adulthood), the correlation between brain volume and intelligence may be expected to be 

attenuated. Stated alternatively, the correlation between brain volume and intelligence in children 

may not be a fully accurate reflection of the effect.

McDaniel (2005) noted the difficulties associated with conducting a comprehensive 

meta-analysis, as many empirical investigations did not include standard deviation or internal 

consistency reliability estimates associated with the test scores. In fact, only 16 of the 37 brain 

volume and intelligence correlations were corrected for range restriction in the McDaniel (2005) 

meta-analysis, as the standard deviations were not available in 21 of the publications. Thus, the 

key brain volume and intelligence correlation (r = .33) reported by McDaniel (2005) was likely 

an underestimate, to some degree.

More recently, Pietschnig et al. (2015) conducted a meta-analysis on the brain volume 

and intelligence empirical literature. In contrast to Gignac et al. (2003) and McDaniel (2005), 

Pietschnig et al. (2015) obtained a substantial number of personal communications relevant to 
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the association between brain volume and intelligence across a variety of studies and samples. 

Based on 120 sample correlations derived from a mix of healthy and clinical samples (N = 6778), 

Pietschnig et al. (2015) reported a meta-analytic correlation of r = .24 between brain volume and 

global measures of intelligence (e.g., FSIQ). Thus, Pietschnig et al. (2015) reported an effect 

notably smaller than the meta-analytic estimates reported by McDaniel (2015; r = .33) and 

Gignac et al. (2003; r = .43). Pietschnig et al. (2015) suggested that the correlations reported in 

previous meta-analyses were likely over-estimates, as the published literature was likely affected 

by selective reporting (i.e., statistically non-significant effects were not reported). In support of 

such an argument, the meta-analytic correlation between brain volume and general intelligence 

based on published results was reported by Pietschnig et al. (2015) at r = .30 (k = 53; N = 3956). 

By contrast, the corresponding meta-analytic correlation in non-published work was estimated at 

just r = .17 (k = 67; N = 2822).

It should be noted, however, that both Gignac et al. (2003) and McDaniel (2005) 

restricted their meta-analyses to healthy samples, whereas Pietschnig et al.’s headline correlation 

of .24 included both healthy and clinically mixed samples. Arguably, intelligence test scores 

obtained from individuals suffering from various clinical conditions should not be considered 

optimally valid indicators of intellectual functioning. For this reason, it is commonly 

recommended that individuals “…should not be assessed [for intelligence] unless they appear 

suitably healthy and well rested.” (Reschly, Myers, & Hartel, 2002). From a statistical 

perspective, a correlation between intelligence and a criterion would be expected to be 

suppressed in clinical samples, because it is unreasonable to assume that all of the examinees 

suffer from the exact same condition to the same degree. Such individual differences in the 
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clinical condition would be expected to affect the rank ordering in measurement of intelligence, 

in comparison to “true” intelligence, which is a threat to validity, in this context.

 Additionally, it is important to note that Pietschnig et al. (2015) did not correct any of 

the correlations (published or non-published) for range restriction. By contrast, both Gignac et al. 

(2013) and McDaniel (2005) did take range restriction into consideration, at least to the degree 

that the standard deviations were available for some of the studies. Pietschnig et al. 

acknowledged the issue of range restriction in their meta-analysis, however, they did not apply a 

correction to their analysis, because “…a majority of the included samples’ standard deviations 

for test performance were not reported” (p. 426-427).  However, based on our review, nearly all 

of the studies associated with the healthy adult samples (k = 32) did report standard deviations 

for the intelligence test scores. The importance of correcting observed correlations for range 

restriction to obtain a more accurate estimate the effect in the population has been well 

established (Le & Schmidt, 2006). For example, based on the results of a simulation 

investigation, Duan and Dunlap (1997) found that when the population correlation was .30 and 

the selection ratio was .90 (i.e., the sample standard deviation was 10% smaller than the 

population standard deviation), the observed correlation was estimated at .255, whereas the 

correlation corrected for range restriction was estimated at .294. Thus, to extend the findings 

reported in Pietschnig et al. (2015), a primary purpose of the current investigation was to 

estimate the correlation between brain volume and intelligence in healthy adults, corrected for 

range restriction in the intelligence test scores.

Measurement Quality: q-Meta-Regression

In addition to range restriction, it is known that measurement quality (both reliability and 

validity) can attenuate the magnitude of effects estimated in a particular investigation (Furr, 
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2011). In the context of meta-analyses, there is some awareness of the effect of differential 

measurement quality on the magnitude of the effect observed between two variables. For 

example, commenting on a meta-analysis relevant to salt intake and the risk of stroke, Appel 

(2009) implicated the poor quality of dietary salt measurement in several of the empirical 

investigations as a key cause of significant heterogeneity in the results. In another meta-analysis 

relevant to the effects of parenting type on childhood depression, McLeod, Weisz, and Wood 

(2007) found that parental rejection was associated with childhood depression, but only when 

parental rejection was measured with multiple informants, in comparison to a single informant. 

Thus, McLeod et al. (2007) contended that measurement quality should be taken into 

consideration when considering the effect of one variable on another at the meta-analytic level. 

With respect to the measurement of intelligence, assessments can vary from brief, group-

administered, arbitrarily abbreviated, single-scale measures through to comprehensive batteries 

in which testing lasts over an hour. However, few, if any, meta-analyses in the area of 

intelligence have taken into consideration the possibility that the quality of intelligence 

measurement may moderate the effect between intelligence test scores and another variable. One 

likely reason meta-analyses do not consider the measurement quality of general intelligence (g) 

test scores is that there are no established guidelines for such a purpose. Consequently, a goal of 

this investigation was to test intelligence measurement quality as a moderator of the effect 

between brain volume and intelligence. First, however, an intelligence measurement quality 

classification guide needed to be developed.

In the most straightforward terms, the correlation between cognitive ability test scores 

and g would help quantify the quality of general intelligence measurement in a study. However, 

many combinations of cognitive ability tests have never been evaluated empirically for their 
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association with g. Although a precise, non-factor analytic, algorithm for the specification of 

general intelligence measurement quality does not appear to have ever been published, arguably, 

most intelligence tests (and combination of tests) can be categorised according to their quality, 

particularly with respect to representations of g. For example, the administration of the five 

minute Stroop test (Golden, 1978) could not be classified justifiably as an excellent, or even a 

good, measure of general intellectual functioning, as it is only a single cognitive ability test 

which measures a single group-level dimension of intelligence. Not coincidently, the Stroop test 

has been found to relate to g very moderately at approximately .45 (Burns, Nettelbeck, & 

McPherson, 2009). By contrast, the FSIQ scores derived from the complete WAIS-IV would be 

considered an excellent measure of g by most clinicians and researchers (Reynolds, Floyd, & 

Niileksela; Sattler & Ryan, 2009). Distinguishing between the Stroop and the full WAIS-IV as 

indicators of general intelligence is relatively uncontentious. The challenge is to specify a more 

detailed guideline that may be able to accommodate all investigations which include at least one 

measure of cognitive ability. 

As a general statement, the quality of the measurement of g may be determined, in part, 

by the number of subtests completed by the participants. Jensen (1998) recommended that a 

minimum of nine subtests is required to represent g respectably. Furthermore, the nine subtests 

should represent at least three group-level dimensions of cognitive ability (e.g., fluid intelligence, 

crystallised intelligence, processing speed). Jensen’s (1998) recommendation is commonly cited 

(e.g., Colom, Juan-Espinosa, Abad, & Garcı́a, 2000; Gignac, Shankaralingam, Walker, & 

Kilpatrick, 2016; Juan-Espinosa, Cuevas, Escorial, & García, 2006). Furthermore, there is 

empirical research which supports the notion that a stable estimate of g is unlikely to be achieved 

with fewer than 8 subtests (Major, Johnson, & Bouchard, 2011). As can be seen in Table 1, it is 
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suggested that 1, 1-2, 2-8, and 9+ tests be classified as possibly ‘poor’, ‘fair’, ‘good’, and 

‘excellent’ measures of g, in the absence of any other information.

In addition to the number of tests, the number of group-level factors of intelligence 

represented by the tests should also be considered. It is widely acknowledged that there are 

approximately 10 group-level factors of intelligence (Carroll, 2003). Commonly measured 

group-level factors of intelligence include crystallised intelligence (Gc), fluid intelligence (Gf), 

memory span (Gsm), and processing speed (Gs). Jensen (1998) recommended that a good 

measure of g be based on measures indicative of at least three group-level factors. Thus, a battery 

of nine short-term memory tests would not be considered an excellent measure of g, because all 

of the tests are related to a single group-level factor (Gsm). As can be seen in Table 1, it is 

suggested here that cognitive ability tests indicative of 1, 1-2, 2-3, and 3+ dimensions be 

classified as possibly ‘poor’, ‘fair’, ‘good’, and ‘excellent’ measures of g, in the absence of any 

other information. The overlap across the categories is a reflection of the fact that the various 

group-level factors differ in the degree to which they relate to g. For example, Gf and Gc are 

known to relate to g very strongly (Gignac, 2014; Kvist & Gustafsson, 2008), whereas Gsm 

(excluding working memory tasks) and Gs have been found to be weaker indicators of g 

(Reynolds & Keith, 2007). Thus, some consideration should be placed on the g saturation of the 

group-level factors to which the selected tests belong.

In addition to the number of tests and the amount of test diversity, the amount of time 

required to complete the testing should also be considered an indicator of general intelligence 

measurement quality. For example, a hypothetical study may administer nine tests of cognitive 

ability, however, due to time constraints, the investigator may choose to administer only short-

forms of all of the subtests (say, even items), resulting in a testing time of only 30 minutes. 
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Arguably, such an administration would not be considered as impressive as the same battery of 

tests which included the entire set of items and 60 minutes of testing time. As can be seen in 

Table 1, it is suggested that 3-9 minutes, 10-19 minutes, 20-39 minutes, and 40+ minutes be 

classified as ‘poor’, ‘fair’, ‘good’, and ‘excellent’ measures of g.

To summarize, the three key general intelligence measurement quality characteristics 

described above include: (1) number of tests: (2) diversity, i.e., number of group-level 

dimensions measured; and (3) amount of testing time. Across investigations, all three key 

characteristics would be expected to be correlated positively. For example, the number of tests 

administered would be expected to be associated with greater testing times. However, the three 

key characteristics would not be expected to be correlated perfectly. Consequently, all three 

characteristics should be considered. For example, Raven’s progressive matrices takes as much 

as 35-45 minutes to complete (Arthur & Day, 1994), which would suggest that it is an excellent 

measure of g. However, it is only a single test; furthermore, it measures only a single group-level 

dimension of intelligence. Notably, across several large, representative samples, Raven’s has 

been found to be associated with g at .68 (Gignac, 2015). Thus, Raven’s would be classified as a 

fair measure of g, based on the guidelines provided in Table 1.

An additional row of information has been included in Table 1 (correlation with g): the 

expected association between the test scores and g. It can be seen that relatively poor measures 

of g are proposed to share ≤ 24% of their variance with g (r ≤ .45). Fair measures are proposed to 

share between 25% and 50% of their variance g (r = .50 to .71). Good measures of g are 

proposed to share between 51% and 89% of their variance with g (r = .51 to .94). Finally, 

excellent measures of g are expected to be associated with g such that the total scores share 90% 

or more of their variance with g (r  .95). 
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Technically, the only information required to categorise intelligence test scores as 

indicators of g is this association with g. In practice, however, the three key characteristics 

described above are necessary because the various combinations of tests included in 

investigations have never been tested specifically for their association with g. Thus, the first 

three key characteristics listed in Table 1 are to be used as a necessary substitute, when the 

association with g has not been established empirically.

Once the intelligence test scores associated with the investigations included in a meta-

analysis have been coded according to the guidelines reported in Table 1, intelligence test score 

quality can be examined as a possible moderator of the effect between an independent variable 

and intelligence. Such a moderator analysis can be conducted within the context of a 

conventional meta-regression (Huizenga, Visser, & Dolan, 2011). However, to help increase the 

awareness of the importance of measurement quality in the context of a meta-analysis, we 

suggest that a meta-regression applied in such a context be known as a q-meta-regression (q = 

quality).

p-Curve Analysis

It is known that the social sciences suffer from severe publication bias, which often 

distorts the literature (Franco, Malhotra, & Simonovits, 2014). For the validity of meta-analyses, 

then, it is critical to determine if bias affects the reviewed literature. The results of Pietschnig et 

al.’s (2015) meta-analysis suggested that the brain volume and intelligence literature may have 

been influenced by selective reporting of significant effects, as the reported brain volume and 

intelligence correlations were, on average, larger than the non-reported correlations (r = .30 

versus r = .17). Such differences do not, however support a formal diagnosis of bias in the 

literature, or, more generally of p-hacking (analysing data a number of different (ad hoc) ways 
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until a statistically significant effect is observed). Simonsohn, Nelson, and Simmons (2014a) 

introduced the p-curve analysis as a method capable of formally evaluating the likelihood that 

published literature relevant to a particular hypothesis may be the result of p-hacking. The logic 

of the p-curve analysis is based principally upon the notion that p-hacking can be expected to 

yield a disproportionately large number of p-values just below the coveted alpha .05 threshold 

(i.e., .026 to .049). By contrast, when a true statistically significant effect has been reported in 

the literature, one should observe a significantly disproportionate number of p-values less than 

.025 (Simonsohn, Nelson, & Simmons, 2014b). Because the analysis is based on a hypothesis 

about the distribution of published significant results, it does not require access to unpublished 

analyses.

Several p-curve analyses have been published recently which have called into question 

the evidential value of high-profile findings. For example, Vadillo, Gold, and Osman (2016) 

failed to observe the expected right-tailed distribution of statistically significant p-values in 

published data on the glucose model of ego depletion. In another investigation, the 33 

statistically significant results supportive of the claimed effect of power-posing showed a flat 

distribution of p-values, thus supporting the alternative hypothesis that there is not power-posing 

effect (Simmons and Simonsohn, 2016). Finally, Melby-Lervåg, Redick, and Hulme (2016) 

found that the statistically significant effects reported in the literature relevant to the 

generalisability of effects due to working memory training (with active control groups) were 

consistent with a left-skewed distribution, i.e., not supportive of a true effect in the population.

No published meta-analysis of the association of brain volume with IQ has attempted a p-

curve analysis. Consequently, an additional purpose of this investigation was to test the 
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possibility that statistically significant results reported in the healthy adult brain volume and 

intelligence published literature may have been influenced by p-hacking.

Summary

Although the Pietschnig et al. (2015) meta-analysis should be considered a 

comprehensive and competently executed meta-analysis, the reported results were limited in a 

number of ways. Consequently, the purpose of this investigation was to estimate the association 

between brain volume and intelligence, based on correlations associated with relatively few 

artefacts, i.e., derived from healthy adult samples and correlations corrected for range restriction. 

Additionally, we tested the hypothesis that the quality of measurement of intelligence, as a 

representation of g, moderated the association between brain volume and intelligence via a q-

meta-regression. Finally, we conducted a p-curve analysis to determine whether the statistically 

significant results in the area support evidential value.

Method

Search Procedure

In order to comparability, the studies considered for inclusion in the current meta-

analysis were derived from the Pietschnig et al. (2015) meta-analysis relevant to brain volume 

and intelligence. Specifically, the study references, study characteristics, and correlational results 

were drawn from the supplementary material excel file published with Pietschnig et al. (2015). 

Although a more extensive search could have been undertaken, we were particularly interested in 

comparing the results obtained from this investigation with those reported by Pietschnig et al. 

(2015). Consequently, we restricted our search for studies to those reported in Pietschnig et al. 

(2015).



BRAIN VOLUME & IQ 14

Inclusion and Exclusion Criteria

Pietschnig et al. (2015) listed a total of 120 sample correlations between brain volume 

and overall intelligence derived from a total of 75 investigations. However, in order to estimate a 

meta-analytic derived correlation with the least number of artefacts, we excluded sample 

correlations based on children and/or adolescents, as well as sample correlations based on a 

mixture of children and adults. We also excluded samples which included participants suffering 

from a clinical disorder or a learning disability. Finally, we excluded a sample that had only 3 

participants.2 In some cases, Pietschnig et al. (2015) included only the correlation between brain 

volume and intelligence for the sexes separated into two groups. As this investigation was not 

particularly interested in an evaluation of sex differences, we made an effort to identify the 

correlation between brain volume and intelligence for the whole sample within the research 

paper’s included in the Pietschnig et al. meta-analysis. In some cases, the overall correlation was 

not obtainable, thus, some of the correlations included in the current meta-analysis were based on 

gender separated samples. Based on the application of the inclusion/exclusion criteria applied in 

this investigation, a total of 32 correlations were selected for the meta-analysis.

As mentioned in the introduction, a key purpose of the current meta-analysis was to 

estimate the brain volume and intelligence correlation that was not attenuated due to range 

restriction in intelligence test scores. The Pietschnig et al. (2005) meta-analysis did not include 

the standard deviations associated with the cognitive ability test scores, consequently, we 

searched for the standard deviations within all of the relevant empirical research papers. In cases 

2 Pietschnig et al (2015) included personal communication results of .00 (N = 3) associated with 

Leonard et al. (1999).
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where the standard deviation was not reported in the empirical research paper, the author(s) of 

the paper were contacted via email by the first author to obtain the information via personal 

communication.

The range restriction formula applied in this investigation requires both the sample 

standard deviation and the population standard deviation (Case II; Thorndike, 1949). For most of 

the investigations, the population standard deviation was easy to identify (e.g., Wechsler scales, 

SD = 15; Raven’s, SD = 15; Culture Fair Intelligence Test, SD = 16). However, for two of the 

published studies that used the Standard Progressive Matrices, the raw score standard deviations 

were reported. Unfortunately, the Raven’s technical manual (Raven, Raven, & Court, 1998a) 

does not report any normative sample standard deviations for the raw scores. However, the 

summary guide for Australian users reported a raw score standard deviation of 7.5 for Australian 

17-year-olds who completed the SPM (Australian Council for Educational Research, 1991). 

Thus, the value of 7.5 was used in this investigation as the SPM population level standard 

deviation for the purposes of correcting the observed correlations which used the SPM. One 

study (i.e., Thoma et al., 2005) included in the current meta-analysis reported a raw score 

standard deviation for the Advanced Progressive Matrices. Raven, Raven, and Court (1998b) 

reported a normative sample standard deviation of 6.56 for the Advanced Progressive Matrices. 

Consequently, the value of 6.56 was used to correct the brain volume and intelligence 

correlation. Burgaleta et al. (2012) reported a correlation between brain volume and intelligence 

assessed using a combination of tests, several of which were based on only a subset (half) of the 

items of the full test (i.e., difficult to find norms). Fortunately, the PMA Inductive Reasoning 

subtest was used in its entirety in Burgaleta et al. (2012), and the standard deviation was reported 

at 4.54. To estimate the degree of range restriction in the data, the PMA Inductive Reasoning 
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standard deviation reported for the Seattle Longitudinal Study (i.e., SD = 7.4; Schaie, 2013) was 

utilised to correct the correlation between brain volume and intelligence reported in Burgaleta et 

al. (2012). Finally, Royle et al. (2012) reported only the raw score standard deviations for the six 

WAIS-III subtests administered to measure intelligence. The standardized standard deviations 

(expected SD = 3.0) were obtained via personal communication (T. Booth, personal 

communication, October 26, 2016).

Data Analysis

To establish a baseline to test our hypotheses, a “bare bones” meta-analysis was 

conducted on the uncorrected correlations (Hunter & Schmidt, 2004). The meta-analysis was 

performed via the ‘metafor’ package developed for R and the “HS” (Hunter Schmidt) estimation 

method for random effects (Viechtbauer, 2010). As Pearson correlations are known to be slightly 

biased negatively, the bare bones meta-analysis was conducted on the transformed (Olkin & Pratt 

1958) correlations via the “UCOR” function with reference to the ‘metafor’ and ‘gsl’ packages. 

Heterogeneity was tested statistically with Cochran’s Q. However, given Cochran’s Q is 

substantially affected by statistical power (von Hippel, 2015), emphasis was placed on the 

interpretation of I2, the proportion of the variance in the correlations that was due to 

heterogeneity.

Next, the observed correlations were corrected for range restriction on X (i.e., 

intelligence), based on the well-known Thornkdike (1949) case II formula, in order to conduct 

the psychometric meta-analysis (Hunter & Schmidt, 2004). Although the case II formula is 

theoretically most appropriate for scenarios where range restriction is direct, the more advanced 

approaches to indirect correction (e.g., Le & Schmidt, 2006) default to the direct range restriction 

case, when information on the reliability of the test scores is either not available or presumed to 
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be near 1.0 (Card, 2015). In this investigation, information on the reliability of brain volume and 

intelligence scores was unavailable for almost all of the investigations that met the inclusion 

criteria. Thus, reliability of test scores was not considered within the context of the current 

psychometric meta-analysis. Duan and Dunlap (1997) found that Kelly’s (1923) standard error 

formula was the most accurate when the corrected correlation was relatively small (≤ .30) and 

the selection ratio was relatively large (≥.80), which was the circumstance for most empirical 

studies included in the current investigation. Thus, Kelly’s (1923) formula was used in the 

psychometric meta-analysis to estimate the range corrected correlation standard errors.

In order to conduct the q-meta-regression, a conventional meta-regression approach was 

adopted (Huizenga, Visser, & Dolan, 2011). Specifically, the ‘rating’ variable was entered into 

the meta-analysis model. The ‘HS’ method within the metfor package for R was applied (mixed-

effects estimation). The observation of a statistically significant and positive regression 

coefficient was considered supportive of the hypothesis that measurement quality moderated the 

association between brain volume and intelligence in the hypothesized direction. Finally, a 

statistically significant moderator effect was followed-up with separate meta-analyses for each 

rating group, as recommended by Field (2013).

Finally, the p-curve analysis was performed according to the guidelines recommended by 

(Simonsohn, Simmons, & Nelson, 2015). Furthermore, the p-curve results were obtained from 

the p-curve web application 4.05 (http://www.p-curve.com/app4/).

Results

Meta-Analysis

The individual study statistical results are reported in Table 2. It can be seen that the 

majority (59.4%; k = 19) of the observed correlations between brain volume and intelligence 
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were statistically significant (p < .05). The bare bones meta-analysis of the 32 correlations (N = 

2305) was associated with a statistically significant overall effect, r = .27, p < .001 (95%CI: .23, 

.31; see Figure 1 for forest plot). Furthermore, the test of heterogeneity was not statistically 

significant, Q(31) = 36.66, p = .222, however, it was relatively underpowered with only 32 

correlations included in the analysis. The effect size measure of heterogeneity (I2) was equal to 

12.4%, which implied a relatively small amount of heterogeneity in the correlations (low ≤ 25%; 

Higgins, Thompson, Deeks, & Altman, 2003). Finally, as can be seen in Figure 2, 91% of the 

correlations (29 of 32) were within the triangular area of the funnel plot, which suggested that 

there was only a small amount of evidence to suggest bias in the reported effects (null 

expectation = 95%; Sterne et al., 2011).

Next, the psychometric meta-analysis was conducted on the correlations corrected for 

range restriction (rc; see Table 2). The 32 corrected correlations (N = 2305) were associated with 

a statistically significant effect, r = .30, p < .001 (95%CI: .23, .37; see Figure 3 for forest plot of 

corrected correlations). In contrast to the bare bones meta-analysis, the test of heterogeneity was 

statistically significant, Q(31) = 73.31, p < .001. Furthermore, the effect size measure of 

heterogeneity (I2) was equal to 55.7%, which implied a moderate amount of heterogeneity in the 

correlations (Higgins, Thompson, Deeks, & Altman, 2003). Finally, as can be seen in Figure 4, 

91% of the correlations (29 of 32) were within the triangular area of the funnel plot, which 

suggested that there was only a small amount of evidence to suggest bias in the reported effects 

(null expectation = 95%; Sterne et al., 2011).

q-Meta-Regression

The number and nature of the cognitive ability tests used in the investigations included in 

the meta-analysis are listed in Table 2 (see column labelled ‘Tests’). It will be noted that nine of 
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the intelligence measures were classified as fair (coded = 2), 10 were classified as good (coded = 

3) and were 13 classified as excellent (coded = 4). Thus, none of the investigations included in 

the meta-analysis were considered to have used a poor measure of cognitive ability. 

Although the amount of heterogeneity in the estimated observed correlations (bare bones 

meta-analysis) was relatively small (I2 = 15.4%), the q-meta-regression was performed, 

nonetheless. The intelligence measurement quality rating moderator variable was found to be a 

statistically significant contributor to the model, b = .06 (95%CI: .01, .11), z = 2.27, p = .023. 

Thus, higher scores on the intelligence measurement quality scale were associated with larger 

brain volume and intelligence correlations. Specifically, a one unit increase in intelligence 

measurement quality was associated with, on average, a .06 increase in the observed correlation 

between brain volume and intelligence. Correspondingly, the value of I2 was reduced to 0%. 

Separate meta-analyses were conducted to estimate the brain volume and intelligence 

correlations across the fair, good, and excellent intelligence measurement classifications. The 

following correlations were estimated: fair = .22 (95%CI: .13, .31); good = .27 (95%CI: .19, 

.34); and excellent = .34 (95%CI: .27, .42).

Next, the q-meta-regression was conducted on the corrected correlations. The intelligence 

measurement quality rating moderator variable was found to be a statistically significant 

contributor to the model, b = .08 (95%CI: .01, .15), z = 2.38, p = .017. Thus, higher scores on the 

intelligence measurement quality scale were associated with larger brain volume and intelligence 

correlations. Specifically, a one unit increase in intelligence measurement quality was associated 

with, on average, a .08 increase in the corrected correlation between brain volume and 

intelligence. Correspondingly, the value of I2 was reduced to 46.6%. Separate meta-analyses 

were conducted to estimate the brain volume and intelligence corrected correlations across the 
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‘fair’, ‘good’, and ‘excellent’ intelligence measurement classifications. As can be seen in Table 

3, the following corrected correlations were estimated: ‘fair’ = .21 (95%CI: .14, .28); ‘good’ = 

.32 (95%CI: .16, .46); and ‘excellent’ = .39 (95%CI: .32, .46). For thoroughness, the observed 

correlations are also reported in Table 3.

p-Curve Analysis

As can be seen in Table 2, 19 of the published correlations were statistically significant (p 

< .05). The mean level of statistical power associated with all 32 statistical tests was 69%. As can 

be seen in Figure 5, there was a distinctly right-tailed distribution of p-values, which suggested 

evidential value for the reported effects between brain volume and intelligence. Furthermore, 

based on a binomial test, the number of statistically significant p-values less than .025 was found 

to be statistically significantly greater than the number of p-values between .026 and .050 (p = 

.032). Finally, the full p-curve and half p-curve tests (i.e., combination test; Simonsohn, 

Simmons, & Nelson, 2015) were both statistically significant (z = -5.34, p < .001; z = -5.26, p < 

.001, respectively). Thus, all of the results suggested that there was evidential value in favour of 

a true effect between brain volume and intelligence.

Discussion

This meta-analysis indicated several findings of note regarding the association between 

brain volume and IQ. First, we confirmed a substantial downward bias on the effect due to 

sample restriction of range. Secondly, we found significant support for the influence of 

measurement quality on the effect sizes. Specifically, the quality of intelligence measurement 

was found to be a moderator of the effect between brain volume and intelligence such that 

investigations that used ‘fair’, ‘good’, and ‘excellent’ measures of intelligence yielded corrected 

brain volume and intelligence correlations of .21, .32, and .39, respectively. Finally, we 
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confirmed the significant results reported results in the published literature as likely the outcome 

of a genuine effect, as indicated in the p-curve analysis. These findings are discussed in more 

detail below.

Comparisons with Previous Meta-Analyses

The results of this meta-analysis suggest that the association between brain volume and 

intelligence is at least .30, which is arguably substantially larger than the correlation of .24 

reported by Pietschnig et al. (2015). The difference in the two estimates is due, in part, to the 

restricted inclusion criteria employed in this investigation: healthy adults only. Additionally, the 

correlations were corrected for range restriction in the present investigation, whereas no 

corrections were applied in Pietschnig et al. (2015). The r = .30 reported in this investigation is 

closely aligned with the meta-analysis reported by McDaniel (2005; r = .33), and to some degree 

Gignac et al. (2003; r = .43), both of which included only healthy samples, in addition to some 

corrections for range restriction in intelligence test scores.

As contended in the introduction, individuals suffering from psychological and/or 

neurological disorders should not be expected to yield accurate estimates of intellectual 

functioning (Reschly, Myers, & Hartel, 2002). Additionally, there may be expected to be 

individual differences in the rate of developmental change across various neurophysiological 

characteristics, some of which may be related to be cognitive functioning (Nagy, Westerberg, & 

Klingberg, 2004; Segalowitz & Davies, 2004). Unless all of those neurophysiological 

characteristics are correlated perfectly with brain volume, the correlations between brain volume 

and intelligence based on child and adolescent samples would be expected to be suppressed, if 

not fully, at least partly. Consequently, it is our position that the correlation of .30, based on 

healthy adults, is a less confounded estimate of the association between brain volume and 
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intelligence, in comparison to the correlation of .24 reported by Pietschnig et al. (2015), which 

included a mixture of healthy and clinical samples, as well as children, adolescents, and adults. 

Based on a quantitative review of a large number of meta-analyses in the field of 

differential psychology, Gignac and Szodorai (2016) found that the median corrected correlation 

reported in the literature was approximately .25. Thus, the corrected correlation of .30 between 

brain volume and intelligence reported in this meta-analysis may be considered somewhat larger 

than average (60th percentile; Gignac et al., 2016). Larger corrected meta-analytic correlations 

have been reported in the area of intelligence. For example, Roth et al. (2015) reported a 

psychometric meta-analytic correlation of .54 between intelligence and school grades. However, 

to-date, brain volume and intelligence appears to be the largest neurophysiological correlate of 

human intelligence (Ritchie et al., 2015).

Intelligence Test Quality as a Moderator

To our knowledge, this is the first meta-analysis to use intelligence measurement quality 

as a moderator in a meta-analysis. The results were consistent with our hypothesis: there was a 

positive association between the magnitude of the association between brain volume and 

intelligence and the quality of general intelligence measurement. Specifically, the mean 

corrected correlations across the fair, good, and excellent general intelligence measurement 

classifications were .21, .32, and .39, respectively. In our view, the corrected .39 correlation may 

be the most valid representation of the association between brain volume and intelligence, as it 

represents the “best of” studies, at least with respect to intelligence measurement. We were 

unable to correct for imaging quality (e.g., low versus high power scanners, low versus high 

quality movement artefact rejection, low versus high quality image segmentation, etc.). 
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However, the incorporation of measurement quality in brain volume measurement may be 

expected to further increase the estimated correlation between brain volume and intelligence.

The observation of a positive association between measurement quality and effect size is 

broadly consistent with Feinstein’s (1995) view that not all empirical investigations should be 

considered equal in the context of a meta-analysis. That is, a meta-analysis can help overcome 

the problem of sampling variability, however, the inclusion of all empirical studies, without any 

regard for the quality of measurement, may not be the most valid approach to the estimation of 

the association between two theoretically linked variables. Strong inclusionist versus exclusionist 

stances are arguably not necessary (see Kraemer, Gadner, Brooks, & Yesavage, 1998), as 

classifications of measurement quality can be generated and hypotheses of moderator effects 

tested, as conducted in this investigation. Thus, researchers in the area of intelligence are 

encouraged to employ the general intelligence measurement classification reported in Table 1 in 

future meta-analyses. 

It may be presumed that researchers who administer a small number of cognitive ability 

tests do so because of limited amount of resources (time/money). However, the results of this 

investigation suggest that researchers who administer more comprehensive cognitive ability test 

batteries require smaller sample sizes to achieve the same level of power. For example, with 

respect to the uncorrected correlations, an investigator who planned to administer a single 

cognitive ability test, such as Raven’s or the CFIT (20-minutes testing time), would require a 

sample size of 160 to achieve power of .80, based on an expected uncorrected correlation of .22. 

By contrast, an investigator who planned to administer 9 cognitive ability tests (40-minutes 

testing time) would require a sample size of 66 to achieve a power of .80, based on expected 

uncorrected correlation of .34. From this perspective, it is more efficient to administer a 
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comprehensive measure of intelligence, in comparison to a brief measure (44.0 vs. 53.3 hours of 

cognitive abilities testing). Furthermore, the insights derived from an investigation which 

included a comprehensive measure of intelligence may be considered a more valuable 

contribution to the area (e.g., better scope to decompose unique effects across g and group-level 

factors).

Limitations

Although the observed correlations included in the meta-analysis were corrected for 

range restriction, they were not corrected for measurement error. Thus, the current meta-analysis 

may not be regarded as an entirely complete psychometric meta-analysis, as a complete 

psychometric meta-analysis should correct the observed correlations for both range restriction 

and measurement error (Schmidt & Hunter, 2015). The reason the observed correlations were not 

corrected for measurement error is that only one investigation included in the meta-analysis 

reported any information about the internal consistency reliability of the intelligence test scores 

(i.e., Wickett, Vernon, & Lee, 1994).

It may be presumed that many researchers rely upon the very high internal consistency 

reliability estimates reported by test publishers in the relevant technical manuals. However, 

reliability is a property of test scores derived from a particular sample, rather than a property of a 

test (Mehrens & Lehman, 1991). Furthermore, in practice, test score reliability tends to be lower 

in empirical investigations, in comparison to the estimates derived from normative samples 

(Vacha-Haase, Kogan, & Thompson, 2000). In light of the above, it is reasonable to suggest that 

the corrected brain volume and intelligence correlations reported in this investigation are 

underestimates of the true score effect in the population. Thus, the corrected brain volume and 
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intelligence correlation of .39 reported for the excellent intelligence measures category is almost 

certainly .40 or greater at the true score level.

Although a substantial amount of the theoretical and empirical literature was taken into 

consideration in the development of the general intelligence measurement classification system 

(Table 1), it should be acknowledged that it is ultimately a subjective guide. Some may raise 

objections about one or more of the boundaries which demarcate one or more of the categories. 

Naturally, different classification systems may result in moderator effects different to those 

reported in this meta-analysis. Thus, the results of the meta-regressions reported in this 

investigation are valid to the degree that the classification system is also valid. The fact that the 

application of the intelligence measurement classification system yielded a statistically 

significant hypothesized moderator effect in the meta-regressions suggests that the classification 

system may be valid. Additional applications of the classification system in other meta-analyses 

in the area of intelligence would be valuable to further evaluate its validity (or to suggest 

modifications).3

3 We attempted to conduct additional q-meta-regressions on the remaining correlations within the 

Pietschnig et al. (2016) meta-analysis (i.e., outside the healthy adult samples). However, there 

were too few usable correlations within any particular category to evaluate a measurement 

quality moderator effect, properly. Specifically, with respect to the 31 healthy children sample 

correlations included in Pietschnig et al. (2016), 15 were based on a combination of different IQ 

tests within the same sample (e.g., some children were administered an incomplete version of the 

WISC-R and some were administered the complete WISC-III). Additionally, four of the healthy 

children studies used an ‘unknown’ measure of intelligence. Thus, in total, only 13 of the healthy 
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Finally, the valid interpretation of the moderator effect obtained in this investigation 

assumes that the empirical investigations classified across the measurement quality categories do 

not differ along another dimension that is related positively to the quality of general intelligence 

measurement classifications. For example, investigations which included a comprehensive 

measure of intelligence may have employed test administrators with a substantial amount of 

testing experience, whereas those investigations which administered a single cognitive ability 

test may have used test administrators with little to no psychometric experience. Such possible 

differences may have affected test score quality in a systematic fashion.

Conclusion

There is almost undoubtedly a true, positive association between brain volume and 

intelligence, and the likely magnitude of this effect is large. Researchers should now focus on 

why this association exists. Arguably, the best insights into the mechanisms of neurophysiology 

and intelligence will be achieved by investigations which include excellent neurophysiological 

indicators and excellent measures of intelligence.

children sample correlations were considered classifiable. For thoroughness, we note that the 

bare bones meta-analysis based on the 31 healthy child observed score correlations was r = .23 

(N = 1954; 95%CI: .16, .31).
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Table 1

Basic Guide for the Categorisation of the Quality of the Measurement of General Intelligence

Poor = 1 Fair  = 2 Good  = 3 Excellent = 4

1. Number of tests 1 1-2 2-8 9+

2. Dimensions 1 1-2 2-3 3+

3. Testing time 3 - 9 min 10 - 19 min 20 - 39 min 40+ min

4. Correlation with g  .49 .50 - .71 .72 - .94  .95

Note. The first three criteria can be evaluated objectively; the fourth criterion (correlation with g) 

may require some judgement on the part of the researcher, based on a combination of direct and 

indirect empirical evidence in the literature; in the absence of direct or indirect empirical 

evidence, exclusive reliance upon the first three criteria will be required.
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Table 2
Studies Included in the Meta-Analysis: Healthy Adults

ID Author Tests Rating N SD  r t p rc

1 Raz et al. (1993) CFIT 2 29 17.50 16 .22 1.17 .25149 .20
2 Tan et al. (1999) CFIT 2 103 18.00 16 .40 4.39 .00003 .36
3 Schoenemann et al. (2000) RSPM/RAPM 2 72 N/A N/A .22 1.89 .06332 .22
4 Garde et al. (2000) WAIS: DSy, BD 2 22 14.20 15 .22 1.01 .32522 .23
5 Garde et al. (2000) WAIS: DSy, BD 2 46 14.20 15 .07 .47 .64389 .07
6 MacLullich et al. (2002) RSPM 2 93 8.60 7.5 .39 4.04 .00011 .35
7 Shapleske et al. (2002) Unknown (likely National Adult Reading Test) 2 23 9.20 15 .13 .60 .55438 .21
8 Raz et al. (2008) CFIT 2 55 15.46 16 .18 1.33 .18850 .19
9 Hogan et al. (2010) RSPM 2 234 7.74 7.5 .11 1.69 .09320 .11
10 Willerman et al. (1991) WAIS-R: Voc, Sim, BD, PC 3 40 N/A 15 .35 2.30 .02683 .35
11 Egan et al. (1994) WAIS-R: Com, Sim, Arith, BD, OA, DS, DSy 3 40 9.30 15 .32 2.08 .04412 .48
12 Gur et al. (1999) WAIS-R: Voc, BD, CVLT, JLOT 3 80 13.21 15 .41 3.97 .00016 .45
13 Schottenbauer et al. (2007) WAIS-R: Voc, BD 3 22 8.70 15 .60 3.35 .00316 .79
14 Schottenbauer et al. (2007) WAIS-R: Voc, BD 3 35 10.50 15 .33 2.01 .05286 .45
15 Amat et al. (2008) WAIS-R: BD, OA, Inf, DS, Voc 3 27 15.00 15 -.11 -.55 .58493 -.11
16 Shenkin et al. (2009) MHT,  RSPM, COWA, LM 3 99 11.00 11 .21 2.12 .03696 .21
17 Royle et al. (2012) WAIS-III: BD, MR,LNS, DSB, SS, DSy 3 327 14.15 15 .27 5.06 .00001 .29
18 Royle et al. (2012) WAIS-III: BD, MR,LNS, DSB, SS, DSy 3 293 14.03 15 .26 4.59 .00001 .30
19 Burgaleta et al. (2012) RAPM, DAT AR,  PMA IR, DAT VR,  DAT 

NR, PMA Voc, PMA MR,  DAT SR
3 100 4.54 7.40 .17 1.71 .09084 .27

20 Andreasen et al. (1993) Complete WAIS-R 4 30 14.00 15 .44 2.59 .01497 .46
21 Andreasen et al. (1993) Complete WAIS-R 4 37 14.00 15 .40 2.58 .01417 .42
22 Wickett et al. (1994) Complete MAB 4 40 11.42 15 .40 2.66 .01055 .49
23 Paradiso et al. (1997) Complete WAIS-R 4 62 12.20 15 .38 3.18 .00232 .45
24 Wickett et al. (2000) Complete MAB 4 68 10.91 15 .35 3.04 .00344 .46
25 Rojas et al. (2004) Complete WAIS-R/WAIS-III 4 17 13.60 15 .31 1.26 .22593 .34
26 Thoma et al. (2005) RAPM, Trails A, Trails  B, Voc, BD, DS, VMR, 

COWA
4 19 6.36 6.56 .27 1.16 .26360 .28

27 Luders et al. (2007) Complete WAIS-R FSIQ 4 62 12.53 15 .28 2.26 .02751 .33
28 Nakamura et al. (2007) Complete WAIS-III FSIQ 4 44 16.10 15 .38 2.66 .01095 .36
29 Weniger et al. (2009) Complete WAIS-R 4 25 14.50 15 .15 .73 .47420 .16
30 Hermann (2002) Complete WAIS-III 4 67 13.39 15 .31 2.63 .01068 .34
31 Ashtari et al. (2011) Complete WRAT-III 4 14 17.60 15 .57 2.40 .03333 .51
32 Kievit et al. (2011) Complete WAIS-III 4 80 11.56 15 .29 2.67 .00907 .36

Note. Rating = quality of intelligence testing (2 = fair; 3 = good; 4 = excellent); CFIT = Culture Fair Intelligence Test; WAIS = Wechsler Adult Intelligence Scale; RSPM = Raven’s Standard 
Progressive Matrices; RAPM = Raven’s Advanced Progressive Matrices; DSy =  Digit Symbol; BD = Block Design; Voc = Vocabulary; Sim = Similarities; PC = Picture Completion; Com = 
Comprehension; Artih = Arithmetic; OA = Object Assembly; DS = Digit Span; CVLT = California Verbal Learning Test; JLOT = Judgement of Line Orientation Test; MHT = Moray House Test; Inf = 
Information; COWA = Controlled Word Association Test; LM = Logical Memory ; MR = Matrix Reasoning; LNS = Letter-Number Sequencing; DSB = Digit Span Backward; SS = Symbol Search; 
MAB = Multidimensional Aptitude Battery; VMR = Vandenberg Mental Rotation; the Burgaleta et al. (2012) SD corresponds to the complete PMA Inductive Reasoning subtest; the Willerman et al. 
(1991) correlation of .35 was reported by Willerman et al. as corrected (however, the SD was not reported in the article);  = population standard deviation; rc = correlation corrected for range 
restriction.
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Table 3

Key Results Associated with the q-Meta-Regression Analyses

Observed Correlations Corrected Correlations

k N M LB UB M LB UB

Fair 9 677 .22 .13 .31 .21 .14 .28

Good 10 1063 .27 .19 .34 .32 .16 .46

Excellent 13 565 .34 .27 .42 .39 .32 .46

Note. Mean correlations are N-weighted; corrected correlations corrected for range restriction; 

LB = 95% confidence lower-bound; UB = 95% confidence upper-bound.
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Figure 1. Forrest plot of unbiased observed correlation coefficients; diamond represents overall 
effect size; square size is varied according to relative study weight within analysis; numbers in 
brackets are 95% confidence intervals of point estimation.
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Figure 2. Funnel plot (observed correlations).
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Figure 3. Forrest plot of unbiased corrected correlation coefficients; diamond represents overall 
effect size; square size is varied according to relative study weight within analysis; numbers in 
brackets are 95% confidence intervals of point estimation.
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Figure 4. Funnel plot (corrected correlations).
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Figure 5. Distribution of observed p-values along with the expected distribution of p-values 

under the null hypothesis, and if the alternative hypothesis is true but the studies are relatively 

underpowered (true effect, 33% power).
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Highlights

1. Correlation between brain volume and IQ in healthy adults is r ≈ .40.

2. The importance of correcting correlations for range restriction is demonstrated.

3. A q-meta-regression is introduced: moderator analysis based IQ measurement quality.

4. Fair, good, and excellent measures of IQ yielded correlations of .21, .32, and .39.

5. p-curve analysis indicated the significant results in the area likely not due to p-hacking.
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