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Moving From Poly (ADP-Ribose) Polymerase
Inhibition to Targeting DNA Repair and DNA
Damage Response in Cancer Therapy
Charlie Gourley, MD, PhD1; Judith Balmaña, MD, PhD2,3; Jonathan A. Ledermann, MD4; Violeta Serra, PhD3; Rebecca Dent, MD5;

Sibylle Loibl, MD, PhD6; Eric Pujade-Lauraine, PhD, MD7; and Simon J. Boulton, PhD8,9

ABSTRACT

The DNA damage response (DDR) pathway coordinates the identification, signaling, and repair of DNA damage
caused by endogenous or exogenous factors and regulates cell-cycle progression with DNA repair to minimize
DNA damage being permanently passed through cell division. Severe DNA damage that cannot be repairedmay
trigger apoptosis; as such, the DDR pathway is of crucial importance as a cancer target. Poly (ADP-ribose)
polymerase (PARP) is the best-known element of the DDR, and several PARP inhibitors have been licensed.
However, there are approximately 450 proteins involved in DDR, and a number of these other targets are being
investigated in the laboratory and clinic. We review the most recent evidence for the clinical effect of PARP
inhibition in breast and ovarian cancer and explore expansion into the first-line setting and into other tumor
types. We critique the evidence for patient selection techniques and summarize what is known about
mechanisms of PARP inhibitor resistance. We then discuss what is known about the preclinical rationale for
targeting other members of the DDR pathway and the associated tumor cell genetics that may confer sensitivity
to these agents. Examples include DNA damage sensors (MLH1), damage signaling molecules (ataxia-
telangiectasia mutated; ataxia-telangiectasia mutated–related and Rad3-related; CHK1/2; DNA-dependent
protein kinase, catalytic subunit; WEE1; CDC7), or effector proteins for repair (POLQ [also referred to as POLu],
RAD51, poly [ADP-ribose] glycohydrolase). Early-phase clinical trials targeting some of these molecules, either
as a single agent or in combination, are discussed. Finally, we outline the challenges that must be addressed to
maximize the therapeutic opportunity that targeting DDR provides.

J Clin Oncol 37. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Genomic instability is a hallmark of cancer.1 Oncogene-
induced replication stress (DNA damage occurring
during DNA replication) is a major cause of genomic
instability in cancer cells. This can lead to additional
mutagenesis, bypassing cell-cycle checkpoints that
have evolved to protect DNA fidelity. Thismay directly or
indirectly result in slowed or stalled replisome pro-
gression and subsequent uncoupling of DNA synthesis
from the helicase that unwinds the DNA.

In addition to replication stress, DNA damage can be
induced by endogenous (eg, spontaneous or enzy-
matic reactions, chemical modifications, replication
errors) or exogenous (eg, ultraviolet radiation, ionizing
radiation, genotoxic chemicals) factors. The DNA
damage response (DDR) constitutes a network of
proteins that sense, signal, and/or repair DNA damage.
The DDR coordinates cell-cycle progression with
DNA repair to minimize DNA damage being per-
manently passed to daughter cells.2 Key proteins that
signal DNA damage to cell-cycle checkpoints and
DNA repair pathways include ataxia-telangiectasia
mutated (ATM), ATM- and Rad3-related (ATR),
and DNA-dependent protein kinase, catalytic subunit

(DNA-PKcs) kinases (Fig 1).3-7 The triggered response
pathways may involve any of the repair mechanisms,
including (1) base excision repair for single-strand
breaks (SSBs), (2) nucleotide excision repair for re-
pair of bulky adducts, (3) mismatch repair for mis-
paired bases, (4) homologous recombination repair
(HRR) for double-strand breaks (DSBs) and intra-
strand/interstrand crosslinks, (5) nonhomologous end
joining (NHEJ) for DSB repair via direct religation of the
ends, or (6) microhomology-mediated end joining
(MMEJ) for repairing DSBs (Fig 1).8 If the DNA damage
is too severe or the lesion is irreparable, DDR check-
points may trigger apoptosis. Abrogation or over-
whelming of response pathways can also result in
irreparable damage and cellular death. This has been
exploited in the development of poly (ADP-ribose)
polymerase (PARP) inhibitors for tumors with defective
HRR. With greater understanding of the biology of DNA
damage and repair, novel DDR-targetingmolecules that
exploit replication stress via DDR inhibition are being
developed as new anticancer therapies.9-11 The po-
tential targets are numerous; there are approximately
450 genes coding for proteins involved in the DDR.
We review the current role of PARP inhibition in the
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treatment of cancer and discuss the importance of DDR in
cancer cells, as well as potential strategies for increasing the
efficacy of DDR-targeted therapies, including new DDR
targets and drugs.

THE CURRENT ROLE OF PARP INHIBITION IN THE
TREATMENT OF CANCER

Since the discovery of PARP1/2, a family of 17 proteins with
structural similarity to the PARP1 catalytic domain has
been identified.12 Several PARPs are involved in repairing
SSBs through base excision repair and DSBs through HRR,
NHEJ, and alt-NHEJ (also known as MMEJ; Appendix Fig
A1, online only). Molecules that inhibit PARP function act
not only by inhibiting enzymatic activity, but also by trap-
ping PARP1 on DNA (Appendix Fig A1). On the basis of
in vitro data, it is believed that the potency of the various
PARP inhibitors is associated with their PARP-trapping
efficiency, resulting in stalled replication forks and sub-
sequent DSB formation.13 In the clinic, there are no data
that compare the efficacy of any PARP inhibitor versus
another or rechallenging with a PARP inhibitor after pro-
gressing while receiving a prior PARP inhibitor. Four dif-
ferent PARP inhibitors have been approved to date for use
in the treatment of ovarian and breast cancer in Europe and
the United States, with similar but not completely identi-
cal labels (Appendix Table A1, online only). They are

administered as a single agent during maintenance therapy
after response to platinum-based chemotherapy or as
monotherapy.

Clinical Activity in Ovarian Cancer

Up to 50% of high-grade serous ovarian cancers have
genetic or epigenetic defects in HRR (which results in
homologous recombination deficiency [HRD]).14 The most
commonly affected genes are BRCA1 and BRCA2, with
contributions from other homologous recombination genes,
such as RAD51C, RAD51D, ATM, BARD1, PALB2, and
BRIP1, responsible for approximately 10% of patients with
HRD.15 There is a strong association between HRD and
ovarian cancer platinum sensitivity,15 which likely explains
why platinum sensitivity has been successfully used as
a clinical tool for patient selection for PARP inhibitor
therapy.16

Currently, three PARP inhibitors (olaparib, niraparib, and
rucaparib) have been approved for ovarian cancer in the
maintenance setting after platinum-sensitive relapse
in patients with germline BRCA (gBRCA) mutations
(Table 1).17-20 In the pivotal phase III trials (SOLO-2, NOVA,
ARIEL-3), median progression-free survival (PFS) was
significantly longer for the patients receiving maintenance
PARP inhibitor therapy than for those receiving placebo
(PARP inhibitor PFS ranged from 16.6 to 21.0 months v 5.4

DNA damage Signaling pathways Effectors DNA repair

Pharmacologically targeted:

PARP1/2 Olaparib (AstraZeneca)
Rucaparib (Clovis)
Niraparib (Tesaro)
Talazoparib (Pfizer)

ATR AZD-6738 (AstraZeneca)
M-4344 (Merck)

DNA-PK Asi DNA (Onxeo)
CC-125 (Celgene)
LY-3023414 (Eli Lilly)
M-3814 (Merck)

WEE1 AZD-1775 (AstraZeneca)
CHK1/2 CBP-501 (CanBas)

Prexasertib (Eli Lilly)
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FIG 1. DNA damage response (DDR) signaling pathways and repair mechanisms. DNA damagemay be caused by a number of exogenous and endogenous
sources. The DDR comprises a network of proteins that are either DNA damage sensors or signaling molecules, or effector proteins that execute repair. Once
DNA damage is detected, repair mechanisms can include base excision repair (BER) for single-strand breaks, nucleotide excision repair (NER) for repair of
bulky adducts, mismatch repair (MMR) for mispaired bases, homologous recombination repair (HRR), nonhomologous end joining (NHEJ), and
microhomology-mediated end joining (MMEJ) for double-strand break (DSB) repair. Cells with excessive or unrepairable DNA may enter cell-cycle arrest
and/or trigger apoptosis. There are several hundred proteins implicated in the DDR; factors shown in the schematic are the subset of DDR proteins that are
being targeted pharmacologically, including poly (ADP-ribose) polymerase (PARP)1/2 by PARP inhibitors. ATM, ataxia-telangiectasia mutated; ATR, ATM-
and Rad3-related; DNA-PK, DNA-dependent protein kinase; UV, ultraviolet. (*) Inhibitors in preclinical development.
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TABLE 1. Key Efficacy Data That Supported the Approval of PARP Inhibitors in Ovarian Cancer
Clinical Endpoint/Patient Subgroup Median, months (95% CI)

Maintenance Setting

Olaparib (Study 19): Platinum Sensitive, Recurrent, High-Grade Serous17,21

PFS v placebo–all patients 8.4 (7.4 to 11.5) v 4.8 (4.0 to 5.5);
HR, 0.35 (95% CI, 0.25 to 0.49); P , .001

PFS v placebo–BRCA mutation 11.2 (8.3 to NC) v 4.3 (3.0 to 5.4);
HR, 0.18 (95% CI, 0.10 to 0.31); P , .001

PFS v placebo–BRCA WT 7.4 (5.5 to 10.3) v 5.5 (3.7 to 5.6);
HR, 0.54 (95% CI, 0.34 to 0.85); P = .0075

OS v placebo–all patients 29.8 (26.9 to 35.7) v 27.8 (24.9 to 33.7);
HR, 0.73 (95% CI, 0.55 to 0.96); P = .025

OS v placebo–BRCA mutation 34.9 (29.2 to 54.6) v 30.2 (23.1 to 40.7);
HR, 0.62 (95% CI, 0.41 to 0.94); P = .025

OS v placebo–BRCA WT 24.5 (19.8 to 35.0) v 26.6 (23.1 to 32.5);
HR, 0.83 (95% CI, 0.55 to 1.24); P = .37

Olaparib (SOLO-2): Platinum Sensitive, Relapsed, gBRCA1/2 Mutations18

PFS v placebo 19.1 (16.3 to 25.7) v 5.5 (5.2 to 5.8);
HR, 0.30 (95% CI, 0.22 to 0.41); P , .001

TFST or death 27.9 (22.6 to NC) v 7.1 (6.3 to 8.3);
HR, 0.28 (95% CI, 0.21 to 0.38); P , .001

TTSP or death NR (24.1 to NC) v 18.4 (15.4 to 22.8);
HR, 0.50 (95% CI, 0.34 to 0.72); P , .001

TSST or death NR (NC) v 18.2 (15.0 to 20.5);
HR, 0.37 (95% CI, 0.26 to 0.53); P , .001

Niraparib (NOVA): Platinum Sensitive, Recurrent19

PFS v placebo–gBRCA 21.0 v 5.5;
HR, 0.27 (95% CI, 0.17 to 0.41); P , .001

PFS v placebo–non-gBRCA 9.3 v 3.9;
HR, 0.45 (95% CI, 0.34 to 0.61); P , .001

PFS v placebo–HRD plus non-gBRCA 12.9 v 3.8;
HR, 0.38 (95% CI, 0.24 to 0.59); P , .001

TFST v placebo–gBRCA 21.0 (17.5 to NR) v 8.4 (6.6 to 10.6);
HR, 0.31 (95% CI, 0.21 to 0.48); P , .001

TFST v placebo–non-gBRCA 11.8 (9.7 to 13.1) v 7.2 (5.7 to 8.5);
HR, 0.55 (95% CI, 0.41 to 0.72); P , .001

PFS2 v placebo–gBRCA 25.8 (20.3 to NR) v 19.5 (13.3 to NR);
HR, 0.48 (95% CI, 0.28 to 0.82); P = .006

PFS2 v placebo–non-gBRCA 18.6 (16.2 to 21.7) v 15.6 (13.2 to 20.9);
HR, 0.69 (95% CI, 0.49 to 0.96); P = .03

Rucaparib (ARIEL-3): Platinum Sensitive, High Grade, Recurrent, After Two or More Lines of Previous Therapy20

PFS v control–g/s BRCA mutation 16.6 (13.4 to 22.9) v 5.4 (3.4 to 6.7);
HR, 0.23 (95% CI, 0.16 to 0.34); P , .001

PFS v control–HRD deficient 13.6 (10.9 to 16.2) v 5.4 (5.1 to 5.6);
HR, 0.32, (95% CI, 0.24–0.42); P , .001

PFS v control–LOH high 9.7 (7.9 to 13.1) v 5.4 (4.1 to 5.7);
HR, 0.44, (95% CI, 0.29 to 0.66); P , .001

PFS v control–LOH low 6.7 (5.4 to 9.1) v 5.4 (5.3 to 7.4);
HR, 0.58 (95% CI, 0.40 to 0.85); P = .0049

(continued on following page)
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to 5.5 months for placebo).18-20 The SOLO-2 study18 was
restricted to patients with germline or somatic BRCA mu-
tations, but NOVA19 and ARIEL-320 (as well as Study 1921 in
the phase II setting) also recruited patients without BRCA
mutations. Although the PFS benefit was greater in the
context of germline or somatic BRCA mutations (hazard
ratio [HR], 0.18 to 0.27 in the various studies), patients with
BRCA wild-type tumors also consistently derived a signifi-
cant benefit from PARP inhibition (HR, 0.38 to 0.58 in
various molecular subgroups; Table 1). In the monotherapy
setting, the efficacy in phase II was broadly comparable
with other treatment options available in heavily pretreated,
relapsed patients (Table 1).18,20,22,24 Rucaparib has been
approved by the Food and Drug Administration (FDA) for
the treatment of patients with a somatic or germline
BRCA1/2 mutation who have received two or more prior
chemotherapeutic agents, whereas olaparib has been
approved for patients with a germline BRCA1/2 mutation
who have received three or more prior chemotherapeutic
agents.

In the first-line setting, the SOLO-1 trial randomly assigned
391 patients with BRCA-mutated, newly diagnosed, stage
III or IV high-grade serous or endometrioid ovarian cancer
in a 2:1 ratio to olaparib or placebo after a complete or
partial response to cytoreductive surgery and platinum-
based chemotherapy.25 Olaparib maintenance therapy
resulted in a 3-year improvement in median PFS over
placebo (HR, 0.30; 95% CI, 0.23 to 0.41; P , .001). After
a minimum of 36 months of follow-up, the median PFS had
not yet been reached in the olaparib arm (compared with
13.8 months in the placebo arm).

The main adverse events (AEs) associated with all three
approved PARP inhibitors in ovarian cancer were nau-
sea, fatigue, vomiting, and anemia.18-20 Discontinuation
rates ranged between 10% and 15%.18-20 The incidence
of myelodysplastic syndrome/acute myeloid leukemia,
a potentially serious hematologic toxicity, was 1% to

2% in the PARP inhibitor and placebo arms of the pivotal
trials.18-20

Clinical Activity in Breast Cancer

Olaparib was the first PARP inhibitor to demonstrate sig-
nificant treatment benefit over standard treatment (in-
vestigator’s choice of one of three standard chemotherapy
regimens) in patients with germlineBRCA-mutated, human
epidermal growth factor receptor 2 (HER2)-negative met-
astatic breast cancer and has subsequently been approved
for use in the United States (Appendix Table A1). This was
on the basis of the phase III OlympiAD trial, which reported
a median PFS for olaparib (300 mg twice a day) of
7.0 months compared with 4.2 months for standard of care
(HR, 0.58; 95% CI, 0.43 to 0.80; P, .001).26 Overall, there
were fewer grade 3 and above AEs in the olaparib arm
compared with the standard-therapy group (36.6% v
50.5%).

More recently, talazoparib was also approved by the FDA
for the treatment of patients with gBRCAmutations, HER2-
negative locally advanced, or metastatic breast cancer. In
the phase III, randomized, open-label EMBRACA trial,
talazoparib demonstrated benefit versus chemotherapy,
with a median PFS of 8.6 months versus 5.6 months with
physician’s choice of therapy (HR, 0.54; 95% CI, 0.41 to
0.71; P , .001).27 Grade 3 to 4 hematologic AEs occurred
in 55% of talazoparib and 38% of standard-therapy pa-
tients; nonhematologic grade 3 events were 32% and 38%,
respectively.27

The use of PARP inhibition is also being explored in patients
with early-stage breast cancer and germline BRCA mu-
tations, including in the neoadjuvant and adjuvant
settings.28-31 The randomized OlympiA phase III study will
examine adjuvant use of olaparib in patients with high-risk
HER2-negative breast cancer with gBRCA mutations and
should reveal whether PARP inhibition can improve out-
comes in breast cancer if given in an earlier setting.31

TABLE 1. Key Efficacy Data That Supported the Approval of PARP Inhibitors in Ovarian Cancer (continued)

Monotherapy Setting

Olaparib (Study 42): gBRCA1/2 Mutations, Three or More Lines of Previous Therapy22

PFS–all patients 6.7 (5.5 to 7.6)

PFS–platinum sensitive 9.4 (6.7 to 11.4)

PFS–platinum resistant 5.5 (4.2 to 6.7)

Rucaparib (ARIEL-2 and Study 10): s/gBRCA1/2 Mutations, High Grade, Three or More Lines of Previous Therapy23

PFS–platinum sensitive 11.1 (7.3 to 12.8)

PFS–platinum resistant 5.3 (1.7 to NR)

NOTE. Data are months (95% CI) unless otherwise indicated.
Abbreviations: OS, overall survival; g/s, germline or somatic mutations; HRD, homologous recombination deficiency; LOH, loss of

heterozygosity; NC, noncalculable; NR, not reached; OS, overall survival; PARP, poly (ADP-ribose) polymerase; PFS, progression-free survival;
PFS2, progression-free survival 2; TFST, time to first subsequent therapy; TSST, time to second subsequent therapy; TTSP, time to second
progression; WT, wild type.
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THE FUTURE ROLE OF PARP INHIBITION IN
CLINICAL PRACTICE

The therapeutic reach of PARP inhibitors is expanding to
other cancer types, many of which are associated with
BRCA mutations. Trials are ongoing in pancreatic, endo-
metrial, prostate, urothelial, colorectal, small-cell and
non–small-cell lung, and gastroesophageal cancers, as well
as glioblastoma (Table 2). In 2016, olaparib received FDA
breakthrough designation for the treatment of metastatic
castration-resistant prostate cancer (mCRPC) with BRCA1/2
and ATM mutations, followed by rucaparib in 2018. In the
phase II TOPARP-A trial, olaparib showed an overall re-
sponse rate (ORR) of 33% (16 of 49 patients) in patients
with mCRPC who no longer responded to standard treat-
ments, with 12 patients receiving olaparib for more than
6 months.32 An analysis of tumor samples from TOPARP-A
patients using next-generation sequencing to analyze DNA
repair genes found 16 patients with somatic homozygous
deletions of both BRCA1 and FANCA, somatic frameshift
mutations in PALB2, heterozygous PALB2 deletions, and
biallelic aberrations in HDAC2; of these 16 patients, 14
responded to olaparib.32 Recently, the phase II TRITON2
study in patients with mCRPC associated with an identified
HRR gene alteration reported an ORR of 44% for rucaparib
in patients with a BRCA mutation, and two of eight patients
with either BRIP1 or FANCA mutations also responded,
leading to an ORR of 25% in these patients.33 Thus, for
many of these indications, identifying suitable patients with
impaired DDR systems seems key to improving treatment
outcomes.

Selecting the Right Patients for PARP

Inhibition Treatment

Patients whose tumors harbor BRCAmutations are likely to
respond to PARP inhibition, and identifying these patients
is now well established in hospitals. Genomic scars and
mutational signatures associated with an HRD phenotype
have been identified and can define a wider population that
may benefit from DDR-targeting agents.34-37 Molecular
signature of HRD and accompanying computational ana-
lyses are yet to have a direct translation into clinical use.
Companion diagnostics, such as the MyChoice HRD assay
(Myriad, Salt Lake City, UT)38 and the FoundationFocus
CDxBRCA loss of heterozygosity test (FoundationMedicine,
Cambridge, MA),39 have some value in enriching for pa-
tients likely to respond to PARP inhibitors, but as yet are
unable to identify patients who will not benefit.19,20 In
ovarian cancer, platinum sensitivity has been shown to
function as a surrogate marker for HRD.15 However, it is
also known that platinum and PARP inhibitor re-
sponsiveness is not always overlapping, suggesting
differences in the underlying DNA repair mechanism.
Inherited mutations in BRIP1, BARD1, CHEK2, RAD51C,
and ATM genes have all been postulated to confer an in-
creased risk of tumor development, but the extent to
which these HRR genes contribute to HRD remains

unclear.20,40-42 Another patient selection assay for PARP
inhibitors identifies non-BRCA1/2 HRR proteins, such as
nuclear RAD51 focus formation by immunofluorescence.
RAD51 is essential for HRR, and RAD51 scores have been
associated with HRD and therapeutic response to che-
motherapy and PARP inhibitors.43-45 Recently, this type of
assay has been established in paraffin-embedded tissue
blocks without the need for exogenous DNA damage,
allowing its transfer to the clinic to predict the current
status of HRD before therapeutic decision making. In
terms of patient selection, understanding innate tumor
genomics before treatment and combining this knowledge
with information from functional analysis assessing sensi-
tivity to PARP inhibition may be applied to generate patient-
personalized treatment plans.

Understanding Resistance

Several mechanisms of acquired PARP inhibitor resistance
have been described in preclinical settings. However, to
date, only restoration of HRR and expression of hypomor-
phic forms of BRCA1 have been shown to be clinically
relevant.46,47 The re-expression of BRCA variants may occur
via secondary reversion mutations that restore the open
reading frame and, consequently, the function of BRCA1,
BRCA2, PALB2, or RAD51C (also responsible for resistance
to platinum).46-49 Notably, documented patients withBRCA1
reversion mutations exhibit an MMEJ signature, suggesting
that POLQ (required for MMEJ) is a driver of resistance.50

Hence, POLQ inhibitors, which are in preclinical develop-
ment, may suppress acquired PARP inhibitor resistance,
while conferring synthetic lethality (SL) in HRR- and NHEJ-
deficient cancers. Epigenetic changes in HRR genes have
also been shown to contribute to PARP inhibitor sensitivity
and resistance, with methylation of genes such as BRCA1
and RAD51C conferring PARP inhibitor sensitivity and their
subsequent demethylation being associated with protein re-
expression and development of resistance.45,51,52

It is likely that in other cancers, different mechanisms of
resistancemay emerge, likely depending on the germline or
other mutational profile or other factors, such as origin of
the disease or prior treatment. These mutations may in-
clude loss of PARP1 expression, compromised regulation
of end-resection via loss of 53BP1, MAD2L2/Rev7, or the
Shieldin complex, and activation of trans-lesion DNA
synthesis through loss of CHD4, allowing less efficient HRR
to proceed.47,53,54 A clustered regularly interspersed pal-
indromic repeats–Cas9 mutagenesis screen identified
several clusters of mutations in PARP1 that cause PARP
inhibitor resistance.55 Recently, the stabilization of stalled
replication forks has also emerged as a novel PARP in-
hibitor resistance mechanism.56 Loss of the MLL3/4
complex protein, PTIP, protected BRCA2-deficient cells
from DNA damage by inhibiting the recruitment of the
MRE11 nuclease and subsequent DNA degradation of
stalled replication forks, which prevented PARP inhibitor-
induced lethality.56 In this sense, Yazinski et al57 have further
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TABLE 2. PARP Inhibitors in Clinical Development in Tumor Types Other Than Ovarian Cancer
Compound Trial ID Trial Title Phase

Niraparib NCT01905592 A Phase III Trial of Niraparib Versus Physician’s Choice in HER2 Negative, Germline BRCA
Mutation-Positive Breast Cancer Patients (BRAVO)

III

NCT03601923 Niraparib in Patients With Pancreatic Cancer II

NCT03553004 Niraparib in Metastatic Pancreatic Cancer After Previous Chemotherapy (NIRA-PANC): A
Phase 2 Trial (NIRA-PANC)

II

NCT03016338 Study of Niraparib in Recurrent Endometrial Cancer II

NCT03431350 A Study of Niraparib Combination Therapies for the Treatment of Metastatic Castration-
Resistant Prostate Cancer (QUEST)

I/II

Olaparib NCT02184195 Olaparib in gBRCAMutated Pancreatic CancerWhose Disease HasNot Progressed on First
Line Platinum-Based Chemotherapy (POLO)

III

NCT01924533 Efficacy and Safety Study of Olaparib in Combination With Paclitaxel to Treat Advanced
Gastric Cancer

III

NCT02810743 Substantially Improving the Cure Rate of High-Risk BRCA1-Like Breast Cancer (SUBITO) III

NCT03286842 To Study Clinical Effectiveness and Safety of Olaparib Monotherapy in Metastatic Breast
Cancer Patients

III

NCT02987543 Study of Olaparib (Lynparza�) Versus Enzalutamide or Abiraterone Acetate in Men With
Metastatic Castration-Resistant Prostate Cancer (PROfound Study)

III

Rucaparib NCT02975934 A Study of Rucaparib Versus Physician’s Choice of Therapy in Patients With Metastatic
Castration-Resistant Prostate Cancer and Homologous Recombination Gene Deficiency
(TRITON3)

III

NCT02042378 A Study of Rucaparib in Patients With Pancreatic Cancer and a Known Deleterious BRCA
Mutation

II

NCT02678182 Planning Treatment of Oesophago-Gastric Cancer: A Maintenance Therapy Trial
(PLATFORM)

II

NCT03533946 Rucaparib in Nonmetastatic Prostate With BRCAness (ROAR) II

NCT03397394 Rucaparib in Patients With Locally Advanced or Metastatic Urothelial Carcinoma (ATLAS) II

NCT03413995 Trial of Rucaparib in Patients With Metastatic Hormone-Sensitive Prostate Cancer
Harboring Germline DNA Repair Gene Mutations (TRIUMPH)

II

NCT02855944 A Study of Rucaparib Versus Chemotherapy BRCA Mutant Ovarian, Fallopian Tube, or
Primary Peritoneal Cancer Patients (ARIEL4)

III

Talazoparib NCT02282345 Neoadjuvant Talazoparib for Patients With a BRCA Deleterious Mutation II

NCT02401347 Talazoparib Beyond BRCA (TBB) Trial II

NCT03148795 A Study of Talazoparib in Patients With DNA Repair Defects and Metastatic Castration-
Resistant Prostate Cancer

II

Veliparib NCT02163694 A Randomized, Placebo-Controlled Trial of Carboplatin and Paclitaxel With or Without the
PARP Inhibitor Veliparib (ABT-888) in HER2 Negative Metastatic or Locally Advanced
Unresectable BRCA-Associated Breast Cancer

III

NCT01149083 Veliparib With or Without Carboplatin in Treating Patients With Stage III or Stage IV Breast
Cancer

II

NCT01657799 Comparison of Veliparib and Whole Brain Radiation Therapy (WBRT) Versus Placebo and
WBRT in Subjects With Brain Metastases From Non-Small Cell Lung Cancer (NSCLC)

II

NCT02890355 FOLFIRI or Modified FOLFIRI and Veliparib as Second Line Therapy in Treating Patients
With Metastatic Pancreatic Cancer

II

NCT03044795 Response to PARP Inhibitor Predicted by the RAD51 Assay (REPAIR) II

NCT02106546 Randomized, Double-Blind, Multicenter, Study Comparing Veliparib Plus Carboplatin and
Paclitaxel Versus Placebo Plus Carboplatin and Paclitaxel in Previously Untreated
Advanced or Metastatic Squamous Non-Small Cell Lung Cancer

III

NCT01506609 The Study Evaluating Efficacy and Tolerability of Veliparib in Combination With
Temozolomide or in Combination With Carboplatin and Paclitaxel Versus Placebo in
Subjects With BRCA1 and BRCA2 Mutation and Metastatic Breast Cancer

II

NCT02470585 Veliparib With Carboplatin and Paclitaxel and as Continuation Maintenance Therapy in
Subjects With Newly Diagnosed Stage III or IV, High-Grade Serous, Epithelial Ovarian,
Fallopian Tube, or Primary Peritoneal Cancer

III

NCT02032277 A Study Evaluating Safety and Efficacy of the Addition of ABT-888 Plus Carboplatin Versus
the Addition of Carboplatin to Standard Chemotherapy Versus Standard Chemotherapy
in Subjects With Early-Stage Triple-Negative Breast Cancer

III
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demonstrated that PARP-inhibitor–resistant, BRCA1-
deficient cells become dependent on ATR for survival.
Another proposed mechanism of resistance is the upre-
gulation of PgP transporter for drug efflux genes resulting in
reduced availability of PARP inhibitor.58 The PARP inhibitor
AZD2461, designed as a next-generation olaparib with poor
PgP affinity, may prove to overcome this mechanism of
resistance.59

MOVING FROM PARP TO DDR INHIBITION IN THE CLINIC

Exploiting Synthetic Lethality

The concept of SL was first described in fruit flies, when two
single genetic, loss-of-function events had no effect on via-
bility alone, but when combined resulted in lethality.60 The
sensitivity of BRCA-deficient cancers to PARP inhibition61,62

is not true SL, because loss-of-function mutations in both
BRCA andPARP1 genes do not result in lethality.55 Instead, it
is the trapping of PARP onDNA after its inhibition that confers
lethality to HRD. Nevertheless, the potential of SL as an
anticancer strategy still holds true, and screens for novel SL
interactions have identified numerous opportunities within
theDDR (Fig 2).63-66 For example, POLQ required forMMEJ is
upregulated and acts as a backup in cells lacking HRR.
Consequently, POLQ inhibition in cancer cells lacking HRR
(eg, in BRCA-mutated cells) results in SL via a mechanism
distinct from PARP inhibition.50,67 Loss of RNASEH2B in
metastatic prostate cancer and chronic lymphocytic leuke-
mia increases PARP-trapping DNA lesions, offering another
therapeutic target on the basis of SL.68

Future DDR Treatment Strategies

The clinical validation of tumor killing induced by PARP
inhibitors in BRCA-deficient cancers highlights the importance
of investigating other DDR deficiencies to help overcome

resistance to current therapies. DDR integrates the regu-
lation of cell-cycle progression and DNA repair, allowing
time for repair and preventing permanent DNA damage.54

DDR inhibitors are being developed against two classes of
molecules involved in DNA damage signaling and DNA
repair (Fig 3). ATM, ATR, DNA-PKcs, CHK1, CHK2, and
WEE1 are protein kinases that respond to different types of
DNA damage and/or regulate specific cell-cycle transitions.
ATM and DNA-PKs are recruited to DSBs and execute
checkpoint signaling and DNA repair, respectively. ATR is
activated by replication stress, where it facilitates fork
stabilization and restart. CHK1 and CHK2 are effector
kinases that function downstream of ATR and ATM,
respectively. WEE1 is a classic checkpoint kinase that
negatively regulates entry into mitosis. RAD51 and POLQ
are directly involved in the DSB repair processes of ho-
mologous recombination and MMEJ, respectively. Poly
(ADP-ribose) glycohydrolase (PARG) is an enzyme that
catabolizes poly (ADP)ribose chains generated by the
PARP family of enzymes. Compounds targeting some
of these molecules are already in clinical development
in settings of either HRD cancers or in combination with
chemotherapies and targeted agents (Table 3). As
monotherapy, the efficacy of DDR inhibitors will depend
on selected genetic backgrounds for DDR dependency,
such as ATR inhibition in ATM-deficient tumors, WEE1
inhibition in cyclin E or MYC-amplified tumors, or POLQ
inhibitors in HRD or NHEJD tumors. Abrogation of the
G2/M checkpoint by CHK1/2 and WEE1 inhibitors is
currently being tested in clinical trials in combination
with chemotherapy. As expected, efficacy as part
of combination therapy will depend on identifying the
timing and dosing regimen with the combination
partner, limiting toxicities and maintaining a beneficial
therapeutic index.

Cell alive

Repair

PARP1BRCA1/2

HRR

Repair

PARP1BRCA1/2

Cell alive

HRR

Cell death

No repair

PARP1BRCA1/2

PARP
inhibitorHRR

PARP1BRCA1/2

HRR

Cell alive

Repair

BRCA1/2

HRR

BRCA1/2 homologous
recombination repair
pathway

PARP1
PARP1 base
excision repair
pathway

Mutated
pathway

FIG 2. Induction of cell death in BRCA-deficient cancer cells. Trapping of poly (ADP-ribose) polymerase (PARP) on DNA after its inhibition confers
lethality to homologous recombination repair (HRR)-deficient cells. This concept has been exploited in the clinic and can be applied to other molecules
in the DNA damage response (DDR) pathway.
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ATM inhibition sensitizes cells to ionizing radiation and to
DSB-inducing agents.69 The ATM inhibitor AZD0156 is
being tested in a multiarm phase I trial as monotherapy and
in combination with cytotoxic chemotherapies or PARP
inhibitors (ClinicalTrials.gov identifier: NCT02588105). For
ATR, a synthetically lethal interaction has been established
with CHK1 inhibition, making ATR an attractive DDR tar-
get.70 Multiple phase I studies are ongoing to investigate
ATR inhibitors in the clinical setting for advanced cancers.
CHK1 and CHK2 kinase inhibitors, which function down-
stream of ATM and ATR, seem to act synergistically with
agents that generate replication stress.71

Inhibition of WEE1 potentiates the cytotoxic effects of nu-
merous DNA-damaging drugs as a single agent.72 In a phase
I trial, AZD1775 in combination with chemotherapy showed
superior response rates in TP53 mutated (21%) compared
with patients with TP53wild-type disease (12%).73 Data from
the phase II trial of AZD1775 in combination with carboplatin
showed an ORR of 43% and a median PFS and OS of
5.3 months and 12.6 months, respectively, in patients with
relapsed/refractory TP53-mutated ovarian cancer who had
previously received first-line platinum plus paclitaxel-based
therapy.74 A separate randomized phase II trial of AZD1775
plus paclitaxel and carboplatin in patients with TP53-
mutated ovarian cancer reported a significant increase in
PFS by independent central review with AZD1775 plus
paclitaxel-carboplatin versus paclitaxel alone, with a median
PFS of 34.1 versus 31.9 weeks, respectively (HR, 0.63; 95%

CI, 0.38 to 1.06).75 Several clinical trials of AZD1775 are
ongoing; these may better define the subpopulation of pa-
tients responding to AZD1775 monotherapy and combi-
nation regimens.

Effective repair by NHEJ relies on the activity of DNA-PKcs
throughout all phases of the cell cycle. DNA-PK inhibition
sensitizes cells to DSB-inducing agents, such as radio-
therapy and topoisomerase II inhibitors.76 A number of
novel DNA-PK inhibitors have recently entered clinical
development, as monotherapy, in combination with ra-
diotherapy or liposomal doxorubicin, or using a dual in-
hibitor of DNA-PK and mammalian target of rapamycin.77

POLQ is required for MMEJ (alt-NHEJ), which is upregu-
lated in many cancers promoting error-prone repair and
potentially cancer evolution. POLQ-dependent MMEJ re-
pair is particularly important in HRR-deficient cancers (eg,
BRCA1/2-mutated tumors). Preclinical studies have shown
that POLQ deficiency is synthetically lethal with BRCA,
ATM, Ku, 53BP1, and FA pathway mutations, and that
inhibitors may be effective as single agents, in combination
with PARP inhibitors or platinum compounds.78 POLQ
deficiency also radiosensitizes tumors78 and potentially
offers an improved therapeutic index compared with DNA-
PKcs or ATM inhibitors, because it is not expressed in
normal cells.79 POLQ small-molecule inhibitors are cur-
rently in preclinical development (Artios Pharma, Cam-
bridge, UK; Repare Therapeutics, Boston, MA).

TABLE 3. Compounds Targeting DDR in Clinical Development (other than PARP1/2 inhibitors)

DDR Target Compound Name Company Name
Highest Development

Stage (phase) Indication

CHK1/2 CBP-501 CanBas II Non–small-cell lung cancer

Prexasertib Eli Lilly II SCLC, ovarian cancer, triple-negative breast cancer,
metastatic castrate-resistant prostate cancer

GDC-0575 Genentech I Solid tumors

SRA-737 Sierra Oncology I Solid tumors

WEE1 AZD-1775 AstraZeneca II SCLC, squamous cell lung cancer, ovarian cancer,
triple-negative breast cancer, advanced acute
myeloid leukemia or myelodysplastic syndrome,
gastric cancer, head and neck cancer, pancreatic
cancer

ATR AZD-6738 AstraZeneca I Various solid malignancies

M-4344 Merck KGaA I Various solid malignancies

M6620 (VX-970) Merck KGaA II Various solid malignances

DNA-PK CC-115 Celgene II Glioblastoma

LY-3023414 Eli Lilly II SCLC, endometrial cancer, prostate cancer, pancreatic
cancer, lymphoma

AsiDNA Onxeo SA I Various solid malignancies

M-3814 Merck KGaA I Various solid malignancies

ATM AstraZeneca AZD-0156 I Various solid malignancies

Abbreviations: ATM, ataxia-telangiectasia mutated; ATR, ATM- and Rad3-related; DDR, DNA damage response; DNA-PK, DNA-dependent protein kinase;
PARP, poly (ADP-ribose) polymerase; SCLC, small-cell lung cancer.
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PARG catalyzes the hydrolysis of poly (ADP-ribose) and
therefore reverses the effects of PARP, removing PAR chains.
Inhibition of PARG, in a similar fashion to PARP inhibition,
leads to DNA damage that depends on HRR for repair.80

PARG inhibitors are in development (Ideaya BioSciences,
San Francisco, CA), offering an additional clinical opportunity
of SL with XRCC1 mutations that compromise SSB repair.81

Inhibitors of RAD51 are also being developed (Cyteir
Therapeutics, Lexington, MA) to exploit the SL of the
activation-induced cytidine deaminase (AID)-RAD51 axis.82

RAD51 inhibition has been shown in preclinical studies to
potently activate AID-induced cytotoxicity and to selectively
induce cell death in AID-expressing cancer cells.83

The increasing understanding of the DDR network is
leading to many novel therapeutic opportunities. As
a cautionary aspect, the knowledge of the therapeutic
window and biomarkers of all mentioned inhibitors, in-
cluding PARP inhibitors, remains limited.

Opportunities for Combination Therapy With

DDR-Targeting Compounds

The multiple biologic functions of DDR-related molecules
underscore the rationale for combination treatment with
other therapies, including PARP inhibitors. The primary
challenge is the development of overlapping toxicities
versus the therapeutic index. In terms of combination
therapy, an interesting concept to explore is sequential
treatment with DDR inhibitors rather than a standard,
parallel combination approach—first induce vulnerability
and then prompt selective killing of the targeted tumor cells.

Combination therapy with other DDR-targeting agents
possibly provides the most rational option. Several trials are
already under way, including a phase II study of olaparib
plus AZD6738 (ATR inhibitor; ClinicalTrials.gov identifier:
NCT02264678), a phase Ib study of olaparib plus
AZD1775 (WEE1 inhibitor; ClinicalTrials.gov identifier:
NCT02511795), and a phase II study assessing either ATR
or WEE1 in combination with olaparib versus olaparib
monotherapy in triple-negative breast cancer (TNBC;
VIOLETTE; ClinicalTrials.gov identifier: NCT03330847).
Other approaches include combinations with angiogenesis
inhibitors, although the rationale for synergy of such
combinations is poorly understood. In a phase II study of
cediranib, an inhibitor of vascular endothelial growth
factor receptor tyrosine kinases, combined with olaparib
versus olaparib alone in recurrent platinum-sensitive
ovarian cancer, improved PFS in the combination arm,
with a significant differential benefit in patients with BRCA
wild-type disease relative to those with known deleterious
BRCA1/2 mutations.84 Additional trials are ongoing in pa-
tients with relapsed platinum-sensitive ovarian cancer:
niraparib plus bevacizumab (a monoclonal antibody
against human vascular endothelial growth factor) in the
phase I/II AVANOVA trial (ClinicalTrials.gov identifier:
NCT02354131); olaparib plus cediranib in the mainte-
nance setting in the phase III ICON9 (ClinicalTrials.
gov identifier: NCT03278717) and NRG-GY004/005
(ClinicalTrials.gov identifier: NCT02446600) trials; and in
the first-line setting (olaparib plus bevacizumab in the
phase III PAOLA-1 study; ClinicalTrials.gov identifier:
NCT02477644).
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FIG 3. The cell-cycle and potential DNA damage repair (DDR) targets for use in cancer therapy. The three key cell-cycle checkpoints, G1/S-phase, S-phase,
and G2/M, and associated proteins are being targeted by small-molecule inhibitors in clinical trials (top right list). Cancer cells have increased susceptibility to
S-phase–induced DNA damage that in turn may lead to either replication catastrophe or apoptosis (unsustained levels of S-phase DNA damage) or mitotic
catastrophe (double-strand breaks carried into mitosis). ATM, ataxia-telangiectasia mutated; ATR, ATM- and Rad3-related; DNA-PK, DNA-dependent
protein kinase.
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Combining DDR inhibitors with immunotherapy offers
another rational and timely combination approach. PARP
inhibitors have been shown to upregulate programmed
death-ligand 1 (PD-L1) expression and enhance tumor-
associated immunosuppression.85 Furthermore, gBRCA1-
mutated tumors show increased levels of lymphocyte in-
filtrates and neo-antigen expression.86 In the phase I/II
MEDIOLA trial (ClinicalTrials.gov identifier: NCT02734004),
in the patient cohort with relapsed, platinum-sensitive,
BRCA-mutated ovarian cancer, the combination of olaparib
with durvalumab (a monoclonal antibody directed against
PD-L1) showed good tolerability, with an ORR of more than
70% (including six complete responses).87 The recently
launched DORA study (ClinicalTrials.gov identifier:
NCT03167619) is a randomized phase II study of olaparib
alone versus olaparib plus durvalumab as a maintenance
strategy after response to four cycles of first- or second-line
platinum therapy in metastatic TNBC.88 Another trial
(TOPACIO/KEYNOTE-162; ClinicalTrials.gov identifier:
NCT02657889) of niraparib combined with pem-
brolizumab (a monoclonal antibody that blocks the pro-
grammed death-1 receptor) in patients with advanced
TNBC or recurrent ovarian cancer reported an ORR of 25%
in all evaluable patients and 45% in patients with tBRCA
mutations.89 In the first-line setting, phase III trials com-
bining PARP inhibitor maintenance with immune check-
point inhibitors include FIRST (niraparib plus TSR042 [an
anti–programmed death-1 antibody]; ClinicalTrials.gov
identifier: NCT03602859); DUO-O (olaparib plus durvalu-
mab; ClinicalTrials.gov identifier: NCT03737643); ATHENA
(rucaparib plus nivolumab; ClinicalTrials.gov identifier:
NCT03522246); JAVELIN ovarian 100 PARP (talazoparib
plus avelumab [an anti PD-L1 antibody]; ClinicalTrials.gov
identifier: NCT03642132); and the MK-7339-001/ENGOT-
ov43 trial (olaparib plus pembrolizumab; ClinicalTrials.gov
identifier: NCT03740165).

OVERCOMING CHALLENGES IN DDR INHIBITION

The molecular heterogeneity among ovarian cancers as-
sociated with BRCA mutations is well established. In

addition, higher mutational load and better response to
platinum were reported in high-grade serous ovarian
cancers with BRCA2 mutations compared with BRCA1
mutations.90 Data from The Cancer Genome Atlas Re-
search Network has shown that ovarian cancers with
BRCA1 promoter hypermethylation do not display the same
platinum sensitivity as BRCA1/2-mutated ovarian can-
cers.14 Understanding the differences between the
mechanisms of action for different PARP inhibitors and the
influence of specific BRCAmutations on their effectiveness
will also be important to support the future development of
DDR inhibitors.

Resistance mechanisms extend beyond PARP inhibitors
and will remain a challenge for the development of novel
DDR-inhibitor therapies. DDR deficiencies are common
across multiple cancers, and targeting them has already
been shown to be effective in the clinic, with a subset of
patients experiencing long-term benefit after treatment with
DDR inhibitors in clinical trials. Rational combinations will
also be found for the treatment of patients with non–HRR-
deficient disease, ultimately tailoring DDR-targeting agents
for specific patient populations and for specific innate and
acquired mechanisms of resistance.

Key questions for the near future include defining the
genetic and epigenetic level of HRD, how to incorporate
predictive biomarkers of HRD and PARP inhibitor sensi-
tivity, such as functional assays or mutational HRD sig-
natures, into clinically relevant platforms, and how the
molecular heterogeneity within tumors affect treatment
regimens and resistance mechanisms. Can these be
captured in clinically relevant assays?

Finally, the optimal treatment sequence of DDR inhibitors
with chemotherapy or other agents is still being determined.
However, the recent positive results from the SOLO-1 trial,
showing that in the first-line setting, maintenance therapy
with olaparib after platinum-based chemotherapy provided
a substantial PFS benefit compared with placebo, suggests
that moving PARP inhibitors/DDR agents earlier in the
treatment course may be appropriate for certain patients.
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APPENDIX
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FIG A1. PARP function in DNA repair and mechanism of pharmacological PARP inhibition. (A) At the molecular level, DNA damage (break) is detected by
PARP1 via its DNA binding domain, triggering its activation (formation of homodimer) and cleavage of nicotinamide adenine dinucleotide (NAD1)
generating nicotinamide and ADP-ribose. Successive addition of ADP- ribose units leads to the formation of long and branched chains of poly (ADP-ribose)
(PAR), covalently attached to acceptor proteins, including histones and other DNA repair proteins, resulting in PAR polymers adjacent to the DNA breaks.
These highly negatively charged polymers form a scaffold that recruits critical proteins for DNA repair. (B) PARP inhibitors act not only by inhibiting the
enzymatic activity but also by trapping PARP on DNA; the latter presenting a physical obstacle to the replication machinery. To resolve the PARP-DNA
interaction Homologous Recombination Repair (HRR) is necessary. Therefore, in HRR-deficient cancer cells trapped PARP results in replication fork
collapse and ultimately cell death. DDR, DNA damage response; DSB, double-strand break; PARP, poly (ADP-ribose) polymerase.
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TABLE A1. PARP Inhibitor Approvals and Their Ovarian and Breast Cancer
Indications
Product Approval Indication

Olaparib EMA (Dec 2014): as monotherapy for maintenance treatment of
patients with platinum-sensitive, relapsed, BRCA-mutated
(germline and/or somatic), high-grade serous ovarian cancer
who are in response (complete or partial) to platinum-based
chemotherapy.

FDA (Dec 2014): treatment of patients with germline BRCA1/2
mutated (as detected by an FDA-approved test) advanced
ovarian cancer who have been treated with three or more prior
lines of chemotherapy (capsule formulation).

FDA (Aug 2017): maintenance treatment of adult patients with
recurrent epithelial ovarian, fallopian tube, or primary peritoneal
cancer who are in a complete or partial response to
platinum-based chemotherapy (tablet formulation).

FDA (Jan 2018): adult patients with deleterious or suspected
deleterious germline BRCA-mutated advanced ovarian cancer
who have been treated with three or more prior lines of
chemotherapy.

Rucaparib FDA (Dec 2016): treatment of patients with deleterious BRCA
mutation (germline and/or somatic) associated with advanced
ovarian cancer who have been treated with two or more
chemotherapies (patient selection using an FDA-approved
companion diagnostic for rucaparib).

FDA (Apr 2018): maintenance treatment of recurrent epithelial
ovarian, fallopian tube, or primary peritoneal cancer for patients
who are in a complete or partial response to platinum-based
chemotherapy.

EMA (May 2018): treatment of adult patients with
platinum-sensitive, relapsed or progressive, BRCA-mutated
(germline and/or somatic), high-grade epithelial ovarian,
fallopian tube, or primary peritoneal cancer who have been
treated with two or more prior lines of platinum-based
chemotherapy and who are unable to tolerate additional
platinum-based chemotherapy.

Niraparib FDA (Mar 2017): maintenance treatment of patients with
recurrent epithelial ovarian, fallopian tube, or primary peritoneal
cancer, whose tumors have a complete or partial response to
platinum-based chemotherapy.

EMA (Nov 2017): maintenance treatment of adult patients with
platinum-sensitive relapsed high-grade serous epithelial
ovarian, fallopian tube, or primary peritoneal cancer who are in
response (complete or partial) to platinum-based
chemotherapy.

Talazoparib FDA (Oct 2018): treatment of adult patients with deleterious or
suspected deleterious germline BRCA-mutated,
HER2-negative, locally advanced, or metastatic breast cancer
(patient selection using an FDA-approved companion
diagnostic for talazoparib).

Abbreviations: EMA, European Medicines Agency; FDA, Food and Drug
Administration; HER2, human epidermal growth factor receptor 2; PARP, poly
(ADP-ribose) polymerase.
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