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Abstract 

There are numerous benefits to elucidating how our environment affects our 

health: from a greater understanding of adaptation to disease prevention. 

Evidence shows that stressors we are exposed to during our lifetime might 

cause disease in our descendants. Transgenerational epigenetic inheritance 

involves the transmission of ‘information’ over multiple generations via the 

gametes independent of the DNA base sequence. Despite extensive 

research, the epigenetic mechanisms remain unclear. Analysis of model 

organisms exposed to environmental insults (e.g., diet manipulation, stress, 

toxin exposure) or carrying mutations in the epigenetic regulatory machinery 

indicates that inheritance of altered DNA methylation, histone modifications, 

or non-coding RNAs are key mechanisms. Tracking inherited epigenetic 

information and its effects for multiple generations is a significant challenge to 

overcome. 

  



Highlights 

 Epigenetic information can be altered by environmental stressors. 

 The mechanisms of epigenetic inheritance are complex and unclear. 

 DNA and histone modifications, and non-coding RNAs are mechanistic 

candidates. 

 Heritable epigenetic marks at transposable and repeat elements may 

be key.    

 This phenomenon has broad implications from evolution to disease 

prevention. 

 

 

Abbreviations 

F0, parental generation; F1, first filial generation; F2, second filial 

generation; F3, third filial generation; IAP, intracisternal A particles; DMR, 

differentially methylated regions; miRNA, microRNA; ncRNA, non-coding 

RNA; piRNA, piwi-interacting RNA; RNAi, RNA interference; TEI, 

transgenerational epigenetic inheritance  



Introduction 

In recent years, the concept that epigenetic factors are inherited has rapidly 

developed. As more studies show that environmental stressors (e.g., poor 

diet, toxins, or psychological stress [1-4]) influence the epigenome, it is 

becoming clear that the environment experienced during our lifetime may 

impact the health of our descendants. How commonplace epigenetic 

inheritance is and the underlying mechanisms remain uncertain, though 

substantial research over the last few years have improved our understanding 

of this phenomenon.  

We define transgenerational epigenetic inheritance (TEI) as the 

transmission of non-DNA base sequence information between generations via 

the germline [5,6]. Epigenetic changes in the first generation (F0) occurring 

after exposure to an environmental insult increases risk for specific 

phenotypes in subsequent generations (F1, F2, F3, etc.) even when they are 

not exposed to the insult themselves. To be transgenerationally inherited, the 

phenotype must persist beyond the F2 generation when inherited via the 

paternal lineage and F3 generation via the maternal lineage [5,6] (Figure 1). 

Both sperm and oocytes [7-9] transmit epigenetic information to the next 

generation, but paternal inheritance is typically studied for experimental 

tractability and lack of confounding influences (e.g., the uterine environment). 

A multigenerational search for inherited epigenetic factors, such as DNA and 

histone methylation, and non-coding (nc) RNAs, has ensued.  

TEI in human populations is becoming evident [10], though it is difficult 

to study due to long generation times, genetic diversity and variable 

environmental conditions wherein we live. Plant and animal models of TEI, in 



which genetic and environmental conditions are meticulously controlled, are 

key for mechanistic exploration and for overcoming the challenges associated 

with tracking epigenetic information over multiple generations. A greater 

understanding of TEI will have important implications for disease risk 

prediction and prevention. 

 

DNA Methylation: an important mechanistic candidate 

Methylation of single DNA residues is well studied in the context of TEI. In 

mammals, 5-methylcytosine (5mC) is the predominant form of methylated 

DNA. In organisms (e.g., bacteria, fungi, Caenorhabditis elegans and 

Drosophila melanogaster) that lack or have low levels of 5mC, other forms of 

methylated DNA, such as the recently identified N6-methyladenine (6mA), are 

widespread [11]. 5mC is generally associated with gene repression [12] 

whereas 6mA is thought to promote activity [13]. The reality may be far more 

complex; linking methylation status to a specific gene expression profile and 

phenotype is challenging. For DNA methylation to be a heritable epigenetic 

mark, it should be mitotically and meiotically stable [5,6] and escape 

epigenetic reprogramming that normally occurs in primordial germ cells and 

post-fertilization embryos [14-16] (Figure 2). This epigenetic ‘erasure’ 

generates a totipotent state required to form the next generation [16]. 

Remarkably, 5mC within specific genomic regions including repeat sequences 

(e.g., intracisternal A particles [IAPs]) and rare regulatory elements (e.g., 

promoters next to IAPs) is resistant to reprogramming [14,15] (Figure 2). 

Presumably, this occurs to maintain genomic stability during widespread 

erasure [17]. Abnormal DNA methylation patterns caused by environmental 



stressors would have to generate resistance to reprogramming to appear and 

cause phenotypes in subsequent generations.  

Owing to their resistance to reprogramming, the methylation status of 

repetitive elements is a mechanistic candidate of TEI [6,15]. A classic mouse 

model of TEI involving an IAP element is the agouti viable yellow (Avy) 

epiallele [18]. Hypomethylation of a cryptic promoter in the IAP element 

upstream of the agouti gene drives its expression leading to a yellow coat 

colour, obesity and diabetes [19]. This hypomethylated status is inherited over 

several generations through the maternal line [18] and can be manipulated by 

environmental factors [20,21]. For example, providing a methyl-rich diet to Avy 

females decreases the frequency of yellow coats in their offspring [20,21]. It is 

unclear whether DNA methylation at the IAP element is normalised [21] or if 

an indirect effect is responsible [20].  

Beyond the Avy model, it has been difficult to identify differentially 

methylated regions (DMRs) in the genome that are stable over multiple 

generations and that correlate with a phenotype. This is even when unbiased 

approaches to assess the germline methylome are implemented. One 

successful example is in a pre-diabetic mouse model characterized by insulin 

resistance and impaired fasting glucose [22]. F0 males transmit a similar pre-

diabetic phenotype to the F1 and F2 generations [22]. Whole 5mC methylome 

analysis of sperm from F0 males revealed altered DNA methylation patterns 

compared to controls [22]. However, only a few of these abnormal patterns 

persisted in pancreatic islets of the male F1 and F2 offspring [22]. Conversely, 

unbiased methylome analysis of sperm from mice (F1) exposed to severe 

undernutrition while in utero, revealed altered DNA methylation that coincided 



with reduced birth weight and a robust metabolic phenotype [2,23]. Over 100 

DMRs concentrated in CpG islands and intergenic regions were identified [2]. 

However, the subset of DMRs that were assessed in F2 somatic tissues were 

not maintained, even though neighbouring genes showed altered expression 

and the metabolic phenotype was observed [2]. This suggests a parallel 

epigenetic mechanism may be involved. Future methylome-wide analysis of 

the F2 generation and beyond will more thoroughly determine whether DMRs 

are inherited.  

Reproducibility of TEI data is another challenge. An example of this is 

the rodent vinclozolin model [24]. Males (F1) exposed in utero to the 

endocrine disruptor vinclozolin transmit several adult onset diseases up to the 

F4 generation [4]. Analysis of promoter regions revealed widespread 

alteration of 5mC in mature sperm of the F3 generation following ancestral 

vinclozolin exposure [25]. However, others showed that altered DNA 

methylation patterns in purified prospermatogonia of the F1 offspring were not 

apparent in the F2 generation [26]. The discrepancy between studies may 

come down to technical differences, including the sperm population assessed 

and method of methylation analysis used, or it may reflect the natural 

epigenetic variability that exists between individuals [27]. 

 

Dysregulation of methylation machinery may initiate TEI 

The machinery vital for the establishment and maintenance of DNA 

methylation may be an important initiator of TEI. In Arabidopsis thaliana, a 

mutation in the DNA METHYLTRANSFERASE 1 (MET1) gene leads to 

heritable hypomethylation at a repetitive region near the transcriptional start 



site of the FLOWERING WAGENINGEN (FWA) gene [28]. This 

hypomethylation leads to ectopic FWA expression causing a late flowering 

phenotype for several wildtype generations [29]. Similarly, mutations in the 

mouse homolog of MET1, DNA methyltransferase 1 (Dnmt1), cause an 

analogous effect. Wildtype offspring derived from males mutant for Dnmt1 

showed a greater frequency than expected of DNA hypomethylation at the 

agouti locus and a yellow coat [30]. Importantly, whether DNA 

methyltransferases contribute to the mechanism of TEI beyond these 

epialleles requires further exploration.  

Alternatively, in Drosophila, the DNA 6mA demethylase (DMAD) 

suppresses transposon expression in the ovary by ensuring low 6mA levels at 

these sites [13]. Although it is unclear whether dysregulation of DMAD and 

6mA at transposable elements causes a transgenerational effect, it may play 

a yet-to-be determined mechanism in the Drosophila TEI model whereby 

females are fed a high calorie diet results in obesity in the F2 generation [31].  

Remarkably, limiting the substrate for DNA methyltransferases leads to 

transgenerational effects on development [3]. A mutation in the mouse 

methionine synthase reductase (Mtrr) gene, which is necessary for the 

transmission of one-carbon methyl groups [32], results in epigenetic instability 

and the inheritance of congenital abnormalities at least up to four wildtype 

generations [3]. Even though these transgenerational effects occur through 

the maternal lineage, embryo transfer experiments demonstrated that the 

consequences were via the germline and independent of the uterine 

environment [3]. Specific germline-inherited epimutations have not yet been 



identified in the Mtrr model nor is it clear whether the regulation of DNA 

methylation machinery is affected.  

 

Is there a role for histone modifications in TEI? 

The inheritance of histone modifications is not as well studied when 

considering TEI mechanisms. Most histones in mouse (99%) and human 

(85%) sperm are removed and replaced by protamines to enable compact 

packaging of DNA during sperm maturation [33]. Recently, protamine 

modifications were identified [34], yet whether or not the ‘protamine code’ 

passes on epigenetic information between generations is uncertain. Histone 

retention in sperm tends to be at the promoters of housekeeping and 

developmentally-regulated genes [35] while histones are retained throughout 

the genome in the oocyte [36]. Whether abnormal histone modifications in 

either germ cell influence the phenotype of the offspring is under investigation. 

 Recent evidence suggests that histone modifications and their 

regulatory enzymes convey epigenetic memory across generations. In C. 

elegans, histone 3 lysine 27 trimethylation (H3K27me3) regulated by the 

polycomb repressive complex 2 (PRC2) transmits memory of X-chromosome 

repression transgenerationally [37]. In another example, even though 

deficiencies in the H3K4me3 regulatory complex in C. elegans lead to 

increased longevity that persists transgenerationally, global H3K4me3 levels 

appear normal in the offspring [38]. Likewise, ectopic expression of KDM1a, a 

human H3K4 demethylase, during mouse spermatogenesis causes 

developmental abnormalities for three wildtype generations [39]. Regardless, 

wildtype sperm of the F1 generation displayed normal epigenome-wide 



H3K4me2 profiles as well as normal DNA methylation patterns [39]. 

Therefore, while disruption of the histone methylation machinery may initiate 

transgenerational inheritance of a phenotype, a second epigenetic factor may 

be involved.  

Interconnection of epigenetic mechanisms are exemplified in worms 

with a mutation in a KDM1a ortholog (spr-5). The spr-5 mutants have a 

progressive transgenerational decline in fertility and an accumulation of 

H3K4me2 [40]. Correspondingly, 6mA levels also increase transgenerationally 

in these mutants [41] indicating another epigenetic mechanism is present. 

When a 6mA DNA methyltransferase was knocked down in spr-5 mutant 

worms, the transgenerational loss of fertility phenotype was partially 

suppressed [41]. Cross-talk between these two epigenetic pathways is 

evident [41], but further experiments to determine the nature of these 

interactions are required.  

 

Non-coding RNAs: linking soma to germline 

A mechanistic role of ncRNAs is currently at the forefront of TEI research. 

Small ncRNAs act as sequence guides directing DNA or histone methylation, 

and by post-transcriptionally regulating mRNA [42]. RNA inheritance is best 

studied in C. elegans [43]. Starvation-induced expression of small RNAs or 

exogenous RNA interference (RNAi) results in heritable gene silencing that 

persists for several generations [44,45]. Although the mechanism is complex, 

it is hypothesized that piwi-interacting RNA (piRNA), which typically silences 

transposons in the germline, and exogenous RNAi may converge into a 



common pathway requiring secondary small RNAs and chromatin regulatory 

complexes to ultimately bring about stable TEI [45].  

RNA inheritance also occurs in mammals. ncRNAs from mouse sperm 

exposed to an environmental stressor are sufficient to cause phenotypes 

[1,9,46]. For example, traumatic stress in mice (F1) due to maternal 

separation in early postnatal life is associated with behavioural phenotypes in 

the F2 male offspring [1]. Deep sequencing of F1 sperm revealed 

upregulation of several microRNAs (miRNAs), which when microinjected into 

fertilized oocytes led to similar behavioural phenotypes in the resulting 

offspring [1]. This technique demonstrates a causal relationship between 

germline RNA and phenotype. Similarly, mice fed either a high fat [9] or low 

protein diet [8] have increased levels of fragmented tRNA species in sperm 

and offspring with metabolic disease [8,9]. Fragmented tRNAs can repress 

genes associated with the endogenous retroelement, MERVL, and might 

influence feto-placental development [8]. Synthetic versions of high fat diet-

induced fragmented tRNAs in sperm were insufficient to cause metabolic 

disease [9]. This might be because the synthetic tRNAs lacked necessary 

modifications. Indeed, RNA methylation mediated by the methyltransferase 

Dnmt2 is required for the transmission of phenotype in the Kit paramutant 

model [47]. These studies indicate that ncRNA may be a mechanism for TEI, 

although whether this method of inheritance is sustained in subsequent 

generations is yet-to-be determined. Remarkably, sperm tRNA fragments may 

originate in the epididymis and transported extracellularly into sperm by 

exosomes [8]. Thus, exosomes derived from the male genital tract may 



communicate the environmental conditions experienced by the paternal 

generation to his mature sperm [8,48,49].  

 

Challenges  

Identifying the heritable epigenetic information transmitted across multiple 

generations is difficult even in models with definitive phenotypic inheritance. 

The following reasons contribute to this challenge.  

Firstly, only selected epigenetic loci are assessed in some studies 

attempting to show TEI. As a result, the full scope of epigenetic changes in 

each generation is not appreciated. In fact, a spectrum of epigenetic 

information (i.e., DNA methylation, histone modifications, and RNA 

expression) may act in concert to initiate and perpetuate the inheritance of 

phenotypes [39,41]. Ideally, we need to perform unbiased, large-scale studies 

incorporating epigenome-, genome-, and transcriptome-wide approaches over 

several generations in key models of TEI. This type of comprehensive 

analysis is costly, and likely will require collaboration between groups.  

Secondly, an environmental insult may stochastically affect the 

epigenome in each germ cell, as evidenced by phenotypic variability within a 

single model [3], in addition to naturally-occurring epivariation between 

individuals [27]. Consequently, resolving specific epimutations is difficult when 

germ cells are pooled for analysis. The emergence of single cell methylome 

and transcriptome technologies will permit us to better understand germ cell 

heterogeneity [50].  

Thirdly, different ‘epimutations’ may be established in each generation 

caused by epigenetic instability in the previous generation (Figure 3). In this 



case, the search for stable epimutations transmitted over multiple generations 

may be fruitless. Support for this hypothesis comes from the observation that 

phenotypes frequently persist over more generations than identified 

epigenetic changes [1,2].  

Fourthly, epigenetic instability might promote genetic instability. Indeed, 

genetic background (e.g., inbred versus outbred mice) can alter the 

susceptibility of an individual to transgenerational epigenetic effects [25]. 

Alternatively, the activation of transposable elements in the germline by DNA 

hypomethylation might lead to heritable genetic mutations [51]. Furthermore, 

analysis of the F3 generation following vinclozolin exposure in rats revealed 

changes in DNA methylation patterns associated with a significant increase in 

repeat element copy number variations [52]. It is also possible that epigenetic 

and genetic mechanisms might interact in TEI through telomere regulation. 

Telomeres are heterochromatic tandem repeats rich in repressive histone 

marks [53] that normally protect chromosome ends from degradation [54]. 

Telomere shortening is associated with aging-related diseases [54] and can 

occur in response to diet manipulation. For example, feeding female rats a 

low protein diet results in an intergenerational reduction in telomere length 

associated with premature reproductive aging in the F2 female offspring [55], 

though the F3 generation was not assessed to confirm a transgenerational 

effect. Exploring the epigenetic status and stability of telomeres in 

transgenerational models may open up a new line of questioning.    

Lastly, attributing phenotype to particular epigenetic changes can be 

problematic. Utilizing epigenetic strategies, such as TALE-TET1-fusions [56] 

and CRISPR-Cas9 based acetyltransferases [57], will enable us to target and 



alter epigenetic marks in vivo to determine the specific effects on gene 

expression and phenotype. These technologies are in their infancy and are 

currently limited by off-target effects. However, they provide many exciting 

possibilities for site-directed epimutagenesis.  

 

Conclusions 

Lamark’s once discredited hypothesis that phenotypes acquired during a 

lifetime are passed on to offspring has been injected with new vitality, fuelling 

fresh perspectives on rapid adaption to a changing environment [58]. Human 

populations are likely affected by TEI as demonstrated by the Dutch Hunger 

Winter and Överkalix famine studies [10,59,60]. Fundamentally, a greater 

mechanistic understanding of TEI will impact our approach to disease 

prevention and prediction, the effects of which will hopefully have a lasting 

impact.  
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Figure Legends 
 

Figure 1. Comparing transgenerational epigenetic inheritance (TEI) between 

the paternal and maternal lineages.  



Epigenetic alterations and phenotypes induced by environmental insults in the 

F0 generation may be inherited via the germline over several generations (F1, 

F2, F3, etc.). In the paternal lineage: TEI occurs if direct exposure of an F0 

male and his germ cells to an environmental insult causes a phenotype (star) 

and/or alters epigenetic patterns beyond the F1 generation. The F2 offspring 

is the first generation that was not directly exposed to the insult. In the 

maternal lineage: if environmental exposure occurs while a female is 

pregnant, the mother, the foetus (F1 generation) and its primordial germ cells 

(F2 generation) are all directly exposed. Thus, the persistence of 

phenotypes/epigenetic changes in the F3 generation and beyond is 

considered TEI [5,6]. Intergenerational inheritance is the term given to 

phenotypes/epigenetic effects that persist to only the F1 offspring via the 

paternal lineage and the F2 offspring via the maternal lineage. F0, parental 

generation; F1, first filial generation; F2, second filial generation; F3, third filial 

generation. 

 

Figure 2. In mammals, inherited epigenetic information must escape multiple 

epigenetic reprogramming events in germ cells and the early embryo. 

Reprogramming involves dynamic changes in the epigenetic patterns within 

the DNA of the germ cells and pre-implantation embryo between each 

generation to re-establish pluripotency. This excludes some repetitive 

elements (e.g., IAPs) and rare non-repeat loci, which remain highly 

methylated [15]. The graph (bottom right) indicates DNA methylation 

dynamics of germ cells [6]. In cases of transgenerational inheritance, 

abnormal epigenetic marks caused by an environmental insult must escape 



multiple rounds of these reprogramming events. How these marks are stably 

transmitted between generations is the focus of much research. H3K27me3, 

histone 3 lysine 27 trimethylation; H3K4me3, histone 3 lysine 4 trimethylation; 

H3K9me2, histone 3 lysine 9 dimethylation; ncRNAs, non-coding RNAs; IAP, 

intracisternal A particle; E, embryonic day; F0, parental generation; F1, first 

filial generation; F2, second filial generation; F3, third filial generation; F4, 

fourth filial generation. 

 

Figure 3. Hypothesis: New epimutations may be generated in each 

generation.  

Some models of TEI reveal that phenotypes caused by an environmental 

insult persist over more generations than identified epigenetic abnormalities. 

This might be because epimutations inherited through the germline lead to 

more extensive epigenetic instability in the F1 offspring. This may result in an 

abnormal physiological or molecular milieu that causes new epimutations in 

the germ cells (i.e., F2 generation). For transgenerational inheritance to occur, 

epigenetically instability would be recreated in each subsequent generation. 

This hypothesis suggests that a different epigenetic profile would be expected 

in each individual of each generation rather than finding single stable 

epimutations that are consistently inherited. Red arrow, germline epigenetic 

inheritance; Red star, germ cell with one or more epimutation. F0, parental 

generation; F1, first filial generation; F2, second filial generation; F3, third filial 

generation; F4, fourth filial generation.  

 

References 



1. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska 
E, Mansuy IM: Implication of sperm RNAs in transgenerational 
inheritance of the effects of early trauma in mice. Nat Neurosci 2014, 
17:667-669. 

** By microinjecting sperm RNA into fertilized oocytes, this is one of the first studies 
to demonstrate a direct causal link between miRNAs in sperm and phenotype in the 
next generation. 
 
2. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, 

Hore TA, Reik W, Erkek S, et al.: In utero undernourishment perturbs the 
adult sperm methylome and intergenerational metabolism. Science 2014, 
345:785-793. 

**Important for using unbiased methods, this study shows over 100 loci with altered 
DNA methylation in sperm of mice that were undernourished in utero. However, 
these epimutations did not persist to the F2 generation even though metabolic 
disease and gene misexpression were observed.  
 
3. Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda 

MC, Snyder FF, Gravel RA, Cross JC, et al.: Mutation in folate metabolism 
causes epigenetic instability and transgenerational effects on 
development. Cell 2013, 155:81-93. 

 
4. Anway MD, Leathers C, Skinner MK: Endocrine disruptor vinclozolin induced 

epigenetic transgenerational adult-onset disease. Endocrinology 2006, 
147:5515-5523. 

 
5. Daxinger L, Whitelaw E: Understanding transgenerational epigenetic 

inheritance via the gametes in mammals. Nat Rev Genet 2012, 13:153-
162. 

 
6. Heard E, Martienssen RA: Transgenerational epigenetic inheritance: myths 

and mechanisms. Cell 2014, 157:95-109. 
 
7. Huypens P, Sass S, Wu M, Dyckhoff D, Tschop M, Theis F, Marschall S, de 

Angelis MH, Beckers J: Epigenetic germline inheritance of diet-induced 
obesity and insulin resistance. Nat Genet 2016, 10.1038/ng.3527. 

 
8. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, 

Kucukural A, Serra RW, Sun F, et al.: Biogenesis and function of tRNA 
fragments during sperm maturation and fertilization in mammals. 
Science 2015, 10.1126/science.aad6780. 

* The authors suggest that sperm obtain tRNA fragments by fusion with exosomes 
extruded by epididymal cells, thus linking somatic and germ cells. These tRNA 
fragments may act by repressing endogenous retroelements in the subsequent 
embryo.  
 
9. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang 

Y, et al.: Sperm tsRNAs contribute to intergenerational inheritance of an 
acquired metabolic disorder. Science 2015, 10.1126/science.aad7977. 

** The authors identify the significance of sperm small tRNAs in transmitting 
metabolic disease to the next generation. Furthermore, synthetic tRNAs are unable 
to mediate this process suggesting that RNA modification is important in TEI models.   
 



10. Pembrey M, Saffery R, Bygren LO: Human transgenerational responses to 
early-life experience: potential impact on development, health and 
biomedical research. J Med Genet 2014, 51:563-572. 

 
11. Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D: N6-methyladenine 

functions as a potential epigenetic mark in eukaryotes. Bioessays 2015, 
37:1155-1162. 

 
12. Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes 

Dev 2011, 25:1010-1022. 
 
13. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, 

Liu J, et al.: N6-methyladenine DNA modification in Drosophila. Cell 2015, 
161:893-906. 

 
14. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato 

S, Hata K, Andrews SR, Kelsey G: Dynamic CpG island methylation 
landscape in oocytes and preimplantation embryos. Nat Genet 2011, 
43:811-814. 

 
15. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA: 

Germline DNA demethylation dynamics and imprint erasure through 5-
hydroxymethylcytosine. Science 2013, 339:448-452. 

 
16. Reik W, Surani MA: Germline and Pluripotent Stem Cells. Cold Spring Harb 

Perspect Biol 2015, 7. 
 
17. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W: Resistance 

of IAPs to methylation reprogramming may provide a mechanism for 
epigenetic inheritance in the mouse. Genesis 2003, 35:88-93. 

 
18. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E: Epigenetic inheritance 

at the agouti locus in the mouse. Nature Genetics 1999, 23:314-318. 
 
19. Miltenberger RJ, Mynatt RL, Wilkinson JE, Woychik RP: The role of the agouti 

gene in the yellow obese syndrome. J Nutr 1997, 127:1902S-1907S. 
 
20. Cropley JE, Suter CM, Beckman KB, Martin DI: CpG methylation of a silent 

controlling element in the murine Avy allele is incomplete and 
unresponsive to methyl donor supplementation. PLoS One 2010, 
5:e9055. 

 
21. Dolinoy DC, Huang D, Jirtle RL: Maternal nutrient supplementation 

counteracts bisphenol A-induced DNA hypomethylation in early 
development. Proc Natl Acad Sci U S A 2007, 104:13056-13061. 

 
22. Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY: Paternally 

induced transgenerational inheritance of susceptibility to diabetes in 
mammals. Proc Natl Acad Sci U S A 2014, 111:1873-1878. 

 
23. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin 

T, Faucette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A, et al.: 
Intergenerational Transmission of Glucose Intolerance and Obesity by 
In Utero Undernutrition in Mice. Diabetes 2009, 58:460-468. 

 



24. Nadeau JH: The nature of evidence for and against epigenetic inheritance. 
Genome Biology 2015, 16:137. 

 
25. Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, 

Skinner MK: Epigenetic transgenerational inheritance of vinclozolin 
induced mouse adult onset disease and associated sperm epigenome 
biomarkers. Reprod Toxicol 2012, 34:694-707. 

 
26. Iqbal K, Tran DA, Li AX, Warden C, Bai AY, Singh P, Wu X, Pfeifer GP, Szabo 

PE: Deleterious effects of endocrine disruptors are corrected in the 
mammalian germline by epigenome reprogramming. Genome Biol 2015, 
16:59. 

 
27. Shea JM, Serra RW, Carone BR, Shulha HP, Kucukural A, Ziller MJ, Vallaster 

MP, Gu H, Tapper AR, Gardner PD, et al.: Genetic and Epigenetic 
Variation, but Not Diet, Shape the Sperm Methylome. Dev Cell 2015, 
35:750-758. 

 
28. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle 

NC, Verbsky ML, Richards EJ: Arabidopsis MET1 cytosine 
methyltransferase mutants. Genetics 2003, 163:1109-1122. 

 
29. Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef 

M, Peeters AJM: The Late Flowering Phenotype of fwa Mutants Is Caused 
by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. 
Molecular Cell 2000, 6:791-802. 

 
30. Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S, Stopka T, 

Skoultchi A, Matthews J, Scott HS, et al.: Modifiers of epigenetic 
reprogramming show paternal effects in the mouse. Nature genetics 
2007, 39:614-622. 

 
31. Buescher JL, Musselman LP, Wilson CA, Lang T, Keleher M, Baranski TJ, 

Duncan JG: Evidence for transgenerational metabolic programming in 
Drosophila. Dis Model Mech 2013, 6:1123-1132. 

 
32. Elmore CL, Wu X, Leclerc D, Watson ED, Bottiglieri T, Krupenko NI, Krupenko 

SA, Cross JC, Rozen R, Gravel RA, et al.: Metabolic derangement of 
methionine and folate metabolism in mice deficient in methionine 
synthase reductase. Mol Genet Metab 2007, 91:85-97. 

 
33. Casas E, Vavouri T: Sperm epigenomics: challenges and opportunities. 

Front Genet 2014, 5:330. 
 
34. Brunner AM, Nanni P, Mansuy IM: Epigenetic marking of sperm by post-

translational modification of histones and protamines. Epigenetics 
Chromatin 2014, 7:2. 

 
35. Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, van der 

Vlag J, Stadler MB, Peters AH: Molecular determinants of nucleosome 
retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol 
Biol 2013, 20:868-875. 

 



36. Gu L, Wang Q, Sun QY: Histone modifications during mammalian oocyte 
maturation: dynamics, regulation and functions. Cell Cycle 2010, 9:1942-
1950. 

 
37. Gaydos LJ, Wang W, Strome S: Gene repression. H3K27me and PRC2 

transmit a memory of repression across generations and during 
development. Science 2014, 345:1515-1518. 

 
38. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, 

Shi Y, Brunet A: Transgenerational epigenetic inheritance of longevity in 
Caenorhabditis elegans. Nature 2011, 479:365-371. 

 
39. Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, 

Xia J, Suderman M, Hallett M, et al.: Disruption of histone methylation in 
developing sperm impairs offspring health transgenerationally. Science 
2015, 10.1126/science.aab2006. 

* This is the first study to show TEI downstream of altered histone methylation in 
mice. It also examines the broader epigenome including DNA and histone 
methylation, and the transcriptome.  
 
40. Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, 

Aristizabal-Corrales D, Chen S, Badeaux AI, Jin Q, et al.: A histone 
methylation network regulates transgenerational epigenetic memory in 
C. elegans. Cell Rep 2014, 7:113-126. 

 
41. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, 

Aravind L, He C, Shi Y: DNA Methylation on N6-Adenine in C. elegans. 
Cell 2015, 161:868-878. 

** This study indicates crosstalk between 6mA, the newly identified methylated DNA 
base, and histone modifications in a transgenerational C. elegans model displaying 
progressive decline in fertility  
 
42. Yan W: Potential roles of noncoding RNAs in environmental epigenetic 

transgenerational inheritance. Mol Cell Endocrinol 2014, 398:24-30. 
 
43. Feng X, Guang S: Small RNAs, RNAi and the inheritance of gene silencing in 

Caenorhabditis elegans. J Genet Genomics 2013, 40:153-160. 
 
44. Rechavi O, Houri-Ze'evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, Hobert O: 

Starvation-induced transgenerational inheritance of small RNAs in C. 
elegans. Cell 2014, 158:277-287. 

 
45. Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, Doebley 

AL, Goldstein LD, Lehrbach NJ, Le Pen J, et al.: piRNAs can trigger a 
multigenerational epigenetic memory in the germline of C. elegans. Cell 
2012, 150:88-99. 

 
46. Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan 

M: RNA-mediated paternal heredity of diet-induced obesity and 
metabolic disorders. Sci Rep 2015, 5:18193. 

 
47. Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, 

Rassoulzadegan M: RNA-mediated epigenetic heredity requires the 
cytosine methyltransferase Dnmt2. PLoS Genet 2013, 9:e1003498. 

 



48. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, 
Westerberg K, Gottardo R, Tewari M, et al.: Exosomes in human semen 
carry a distinctive repertoire of small non-coding RNAs with potential 
regulatory functions. Nucleic Acids Res 2014, 42:7290-7304. 

 
49. Cossetti C, Lugini L, Astrologo L, Saggio I, Fais S, Spadafora C: Soma-to-

germline transmission of RNA in mice xenografted with human tumour 
cells: possible transport by exosomes. PLoS One 2014, 9:e101629. 

 
50. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews 

SR, Stegle O, Reik W, Kelsey G: Single-cell genome-wide bisulfite 
sequencing for assessing epigenetic heterogeneity. Nat Methods 2014, 
11:817-820. 

 
51. Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S, Lee C, Dietmann 

S, Allen GE, Sengupta R, et al.: PRMT5 protects genomic integrity during 
global DNA demethylation in primordial germ cells and preimplantation 
embryos. Mol Cell 2014, 56:564-579. 

 
52. Skinner MK, Guerrero-Bosagna C, Haque MM: Environmentally induced 

epigenetic transgenerational inheritance of sperm epimutations 
promote genetic mutations. Epigenetics 2015, 10:762-771. 

* This paper highlights the effect of epigenetic instability on genetic stability in the 
vinclozolin model of TEI. The authors demonstrate an increase of copy number 
variants associated with altered DNA methylation in the F3 generation.  
 
53. Dan J, Yang J, Liu Y, Xiao A, Liu L: Roles for Histone Acetylation in 

Regulation of Telomere Elongation and Two-cell State in Mouse ES 
Cells. J Cell Physiol 2015, 230:2337-2344. 

 
54. Calado RT, Dumitriu B: Telomere dynamics in mice and humans. Seminars in 

hematology 2013, 50:165-174. 
 
55. Aiken CE, Tarry-Adkins JL, Ozanne SE: Transgenerational Developmental 

Programming of Ovarian Reserve. Sci Rep 2015, 5:16175. 
 
56. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho 

QH, Sander JD, Reyon D, Bernstein BE, et al.: Targeted DNA 
demethylation and activation of endogenous genes using 
programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013, 31:1137-
1142. 

 
57. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, 

Gersbach CA: Epigenome editing by a CRISPR-Cas9-based 
acetyltransferase activates genes from promoters and enhancers. Nat 
Biotechnol 2015, 33:510-517. 

 
58. Whitelaw E: Disputing Lamarckian epigenetic inheritance in mammals. 

Genome Biol 2015, 16:60. 
 
59. Bygren LO, Tinghog P, Carstensen J, Edvinsson S, Kaati G, Pembrey ME, 

Sjostrom M: Change in paternal grandmothers' early food supply 
influenced cardiovascular mortality of the female grandchildren. BMC 
Genet 2014, 15:12. 

 



60. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, 
Gluckman PD, Hanson MA, Roseboom TJ: Transgenerational effects of 
prenatal exposure to the 1944-45 Dutch famine. Bjog 2013, 120:548-553. 

 


