Supporting Information

Multifunctional Ionic Hybrid Poly(propyleneimine) Dendrimers surrounded by Carbazole Dendrons: Liquid Crystals, Optical and Electrochemical Properties.

Susana Castelar, Pilar Romero, José-Luis Serrano, Joaquín Barberá, Mercedes Marcos

a) Departamento de Química Orgánica, Facultad de Ciencias-Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

b) Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50009 Zaragoza, Spain

Table of contents

- 1. Materials and Methods
- 2. Synthetic procedures and chemical compound information
- 3. Supporting Tables

Table S1. Main IR data (cm⁻¹) for ionic hybrid dendrimers

Table S2. Most relevant ¹H-NMR data for PPI- $(NH_2)_{16}$ dendrimer, CzAm, CzBm dendrons and PPI₁₆CzAm, PPI₁₆CzBm ionic hybrid dendrimers.

Table S3. Thermal stability of dendrimers under study.

Table S4. Photophysical data for hybrid dendrimers derived from CzA1 and CzA2 dendrons.

Table S5. Photophysical data for hybrid dendrimers derived from CzB1 and CzB2 dendrons.

Table S6. Molar absorptivity parameters for ionic derivatives CzA1 dendrimers and calculated numbers of carbazoles.

Table S7. Molar absorptivity parameters for ionic CzB1 dendrimer derivatives and calculated numbers of carbazoles.

Table S8. Quantum yields for the PPI_nCzB1 family.

Table S9. Cyclic voltammety data for ionic hybrid dendrimers.

4. Calculations based on the X-ray data.

5. Supporting Figures

Figure S1. FT-IR spectra for $PPI_{16}CzB1$ (black), dendron CzB1 (blue) and dendrimer PPI_{16} -NH₂ (red)

Figure S2. Proton assignment for PPI1₆CzB1 and comparative spectra of the dendron CzB1 dendrimer PPI₁₆ (G=3) and its ionic hybrid dendrimers PPI₁₆CzB1, PPI₃₂CzB1, PPI₆₄CzB1. (500 MHz, CDCl₃, 25 °C). *Residual THF.

Figure S3 Expansions of ¹³C NMR spectra for dendron CzB1 and its ionic dendrimers: PPI₁₆CzB1, PPI₃₂CzB1, PPI₆₄CzB1. (125 MHz, CDCl₃, 25 °C).

Figure S4. NOESY spectrum of $PPI_{16}CzB1$ (CDCl₃, 298 K, $t_{mix} = 200$ ms).

Figure S5. ¹³C CPMAS NMR spectra of CzB1 dendron and its ionic hybrid dendrimer PPI₆₄CzB1

Figure S6. a) DSC scan at 10 °C/min for ionic hybrid dendrimer PPI1₁₆CzA1, b) DSC scan at 10 °C/min for ionic hybrid dendrimer PPI₁₆CzB1

Figure S7. Normalized UV-vis absorption spectra in CH_2Cl_2 solution of a) dendrons, b) dendrimer PPI_nCzA1, c) dendrimer PPI_nCzB1

Figure S8. Cyclic voltammograns of the first five cycles of: a) PPI₈CzA1, b) PPI₈CzB1, c) PPI₈CzA2, d) PPI₈CzB2 ionic hybrid dendrimers.

EXPERIMENTAL SECTION

1. Materials and Methods

The poly(propyleneimine) dendrimer (PPI-(NH_2)_n) generations 1-5 were commercially available from SyMO-Chem BV (Eindhoven, The Netherlands), The rest of the reagents were purchased from Sigma-Aldrich Chemical Company and were used as received. Anhydrous THF used for dendrimer preparation was purchased from Scharlau Chemie s.a. and was dried using a solvent purification system.

The infrared spectra of all the compounds were obtained on a Nicolet Avatar 360 FTIR spectrophotometer in the 400-4000 cm⁻¹ spectral range using KBr pellets and NaCl cells. ¹H-NMR spectroscopy was performed on a Bruker AVANCE 400 spectrometer and on a Bruker AVANCE 300 spectrometer. ¹³C-NMR spectroscopy was performed on a Bruker AVANCE 400 spectrometer operating at 100 MHz and on a Bruker AVANCE 300 spectrometer operating at 100 MHz and on a Bruker AVANCE 300 spectrometer operating at 200 MHz and on a Bruker AVANCE 300 spectrometer operating at 200 MHz and on a Bruker AVANCE 300 spectrometer operating at 200 MHz and on a Bruker AVANCE 300 spectrometer operating at 200 MHz. Elemental analyses were performed using a Perkin-Elmer 240C microanalyzer.

Mesogenic behavior and transition temperatures were determined using an Olympus DP12 polarizing optical microscope equipped with a Linkam TMS91 hot stage and a CS196 central processor.

Differential scanning calorimetry (DSC) experiments were performed on DSC TA Instruments Q-20 and Q-2000 systems. Samples were sealed in aluminum pans and a scanning rate of 10°C•min⁻¹ under a nitrogen atmosphere was used. The calorimeters were calibrated with indium (156.6°C; 28.4 J•g⁻¹) as the standard. Three thermal cycles were carried out. The mesophase transition temperatures were read at the maximum of the corresponding peaks. Thermogravimetric analysis (TGA) was performed using a TA instruments TGA Q5000 at a rate of 10°C•min⁻¹ under an argon atmosphere.

The XRD experiments were performed on a pinhole camera (Anton-Paar) operating with a point-focused Ni-filtered Cu-K α beam. Lindemann glass capillaries with 0.9 mm diameter were used to contain the sample and, when necessary, a variable-temperature attachment was used to heat the sample. The patterns were collected on flat photographic film perpendicular to the X-ray beam. Bragg's law was used to obtain the spacing.

UV-vis absorption spectra were measured with a UV4-200 spectrophotometer from ATI-Unicam using 10-5-10-6 M solutions in CHCl₃ (HPLC Grade). Fluorescence spectra were measured with a Perkin-Elmer LS50B fluorescence spectrometer using solutions in CHCl₃ of ca. 0.01 absorbance (about 10-8-10-9 M) under excitation at the absorption maximum. Films were prepared by casting of a solution of ~1 mg/mL in CHCl₃ on a quartz plate.

Cyclic voltammetry measurements were performed on a μ -Autolab ECO-Chemiepotentiostat, using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon, in CH₂Cl₂, with Bu₄NPF₆ as supporting electrolyte (0.1 mol L⁻¹); the scan can rate was 100 mV s⁻¹.

2. Synthetic procedures and chemical compound information

2.1 Synthesis and characterization of the compounds

Synthetic route to dendrons CzAm and CzBm

3. General procedure for the synthesis of the ionic hybrid dendrimers

Scheme S2. Synthetic route for ionic hybrid dendrimers derived from PPI dendrimers (G=1-5) and bis-(MPA) bifunctionalized dendrons (D=1,2). PPI is represented in pink. In the carboxylic acid dendrons the carbazole-containing moiety is represented in blue and the mesogenic unit in green.

The ionic hybrid dendrimers were prepared by addition of the PPI dendrimer of appropriate generation (G=1-5) dissolved in dry THF to a solution of the corresponding carboxylic acid dendrons in THF, with the appropriate stoichiometry to functionalize all amine groups of the periphery. The mixture was ultrasonicated for 5 min and the solvent was slowly evaporated at RT and the product dried in vacuum at 40 °C until the weight remained constant.

<u>PPI₄CzA1:</u>

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.14-8.12 (m, AA'BB', 8H), 8.09-8.08 (m, 8H), 7.53-7.42 (m, 8H), 7.40-7.39 (m, 8H), 7.26-7.18 (m, 8H), 7.08-7.07 (m, AA'BB', 8H), 6.97-6.96 (m, AA'BB', 8H), 6.88-6.86 (m, AA'BB', 8H), 5.82 (s, 4H), 4.27 (t, *J* = 7.2 Hz, 8H), 4.20-4.10 (m, 16H), 4.05 (t, *J* = 6.5 Hz, 8H), 3.91-3.89 (m, 8H), 3.10-3.04 (m, 8H), 2.92-2.90 (m, 4H), 2.48-2.46 (m, 8H), 2.38-2.36 (m, 16H), 1.88-1.80 (m, 48H), 1.56-1.50 (m, 16H), 1.42-1.34 (m, 8H), 1.14 (s, 12H), 1.02 (t, *J* = 7.4 Hz, 12H).

¹³C-NMR (125 MHz, CDCl₃, δ): 178.98, 173.39, 165.34, 163.46, 156.64, 156.52, 144.46, 140.34, 132.19, 125.63, 122.75, 122.50, 121.59, 120.30, 118.76, 115.01, 114.24, 108.66, 67.97, 67.73, 66.96, 66.28, 46.78, 42.85, 40.82, 39.01, 33.85, 31.13, 29.79, 28.63, 24.46, 21.57, 19.18, 18.50, 13.81.

IR (Nujol) (cm⁻¹): 3368 (N-H), 2925 (C-H), 1728 (C=O), 1580 (COO⁻_{asym}), 1400 (COO⁻_{sym}).

<u>PPI₈CzA1:</u>

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.12-8.06 (m, AA'BB', 16H), 8.05-8.03 (m, 16H), 7.43-7.38 (m, 16H), 7.36-7.34 (m, 16H), 7.20-7.13 (m, 16H), 7.07-7.00 (m, AA'BB', 16H), 6.96-6.90 (m, AA'BB', 16H), 6.83-6.81 (m, AA'BB', 16H), 5.89 (s, 8H), 4.21 (t, *J* = 7.1 Hz, 16H), 4.15-4.10 (m, 32H), 4.01 (t, *J* = 6.5 Hz, 16H), 3.84-3.82 (m, 16H), 3.04-2.99 (m, 16H), 2.86 (s, 16H), 2.37 (s, 20H), 2.33 (s, 16H), 1.82-1.75 (m, 64H), 1.76-1.52 (m, 16H), 1.57-1.42 (m, 32H), 1.36-1.28 (m, 16H), 1.10 (s, 24H), 0.98 (t, *J* = 7.4 Hz, 24H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.97, 173.41, 165.31, 163.45, 156.51, 144.45, 140.32, 132.18, 125.62, 122.74, 122.50, 121.59, 120.29, 118.75, 114.98, 114.24, 108.65, 67.97, 67.71, 66.39, 52.67, 49.61, 46.73, 42.81, 40.82, 38.61, 33.85, 31.13, 29.82, 28.64, 26.85, 24.44, 21.58, 19.18, 18.69, 13.82.

IR (Nujol) (cm⁻¹): 3400 (N-H), 2927 (C-H), 1727 (C=O), 1580 (COO⁻_{asym}), 1401 (COO-_{sym}).

<u>PPI₁₆CzA1:</u>

¹**H-NMR** (400 MHz, CDCl₃, δ):8.08-8.06 (m, *AA*'*BB*', 32*H*), 8.02-8.00 (m, 32H), 7.39-7.36 (m, 32H), 7.33-7.31 (m, 32H), 7.16-7.12 (m, 32H), 7.01-6.99 (m, AA'BB', 32H), 6.91-6.89 (m, AA'BB', 32H), 6.79-6.76 (m, AA'BB', 32H), 6.06 (s, 16H), 4.22-4.07 (m, 96H), 3.98 (t, *J* = 6.5 Hz, 32H), 3.76 (s, 32H), 3.05-2.95 (m, 32H), 2.89-2.79 (m, 32H), 2.48-2.34 (m, 44H), 2.32-2.21 (m, 32H), 1.78-1.73 (m, 128H), 1.68-1.61 (m, 32H), 1.51-1.42 (m, 64H), 1.31-1.22 (m, 32H), 1.08 (s, 48H), 0.97 (t, *J* = 7.4 Hz, 48H). ¹³C-NMR (100 MHz, CDCl₃, δ): 179.91, 173.21, 165.23, 163.45, 156.52, 144.44, 140.31, 132.18, 125.61, 122.75, 122.50, 121.56, 120.30, 118.75, 114.99, 114.23, 108.64, 67.97, 67.70, 66.12, 52.51, 46.53, 42.81, 40.82, 38.60, 33.65, 31.12, 29.62, 28.63, 26.95, 24.34, 21.56, 19.18, 18.59, 13.82.

IR (Nujol) (cm⁻¹): 3384 (N-H), 2937 (C-H), 1729 (C=O), 1578 (COO⁻_{asym}), 1401 (COO-_{sym}).

<u>PPI₃₂CzA1:</u>

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.06-8.04 (m, AA'BB', 64H), 8.00-7.98 (m, 64H), 7.37-7.33 (m, 64H), 7.30-7.28 (m, 64H), 7.14-7.10 (m, 64H), 6.99-6.96 (m, AA'BB', 64H), 6.89-6.87 (m, AA'BB', 64H), 6.76-6.73 (m, AA'BB', 64H), 6.03 (s, 32H), 4.22-4.08 (m, 192H), 3.95 (t, *J* = 6.5 Hz, 64H), 3.76 (s, 64H), 3.02-2.92 (m, 64H), 2.90-2.81 (m, 64H), 2.47-2.32 (m, 100H), 2.25-2.29 (m, 64H), 1.77-1.71 (m, 256H), 1.67-1.60 (m, 64H), 1.51-1.36 (m, 128H), 1.26-1.23 (m, 64H), 1.09 (s, 96H), 0.96 (t, *J* = 7.4 Hz, 96H).

¹³C-NMR (100 MHz, CDCl₃, δ): 178.95, 173.46, 165.29, 163.44, 156.74, 156.46, 144.38, 140.25, 132.14, 125.61, 122.66, 122.47, 121.51, 120.25, 118.72, 114.91, 114.19, 108.65, 67.92, 67.64, 46.64, 42.73, 40.73, 33.81, 31.08, 30.28, 29.69, 28.59, 28.55, 24.87, 24.34, 21.52, 19.15, 18.62, 13.80.

IR (Nujol) (cm⁻¹): 3386 (N-H), 2937 (C-H), 1729 (C=O), 1578 (COO⁻_{asym}), 1401 (COO-_{sym}).

<u>PPI₆₄CzA1:</u>

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.04-8.02 (m, AA'BB', 128H), 7.98-7.96 (m, 128H), 7.33-7.31 (m, 128H), 7.28-7.26 (m, 128H), 7.11-7.09 (m, 128H), 6.96-6.94 (m, AA'BB', 128H), 6.86-6.84 (m, AA'BB', 128H), 6.73-6.71 (m, AA'BB', 128H), 5.96 (s, 64H), 4.19-4.05 (m, 384H), 3.93 (t, *J* = 5.9 Hz, 128H), 3.69 (s, 128H), 3.02-2.88 (m, 128H), 2.88-2.74 (m, 128H), 2.45-2.13 (m, 364H), 2.25 (s, 128H), 1.77-1.66 (m, 512H), 1.66-1.55 (m, 252H), 1.52-1.33 (m, 256H), 1.27-1.17 (m, 128H), 1.10 (s, 192H), 0.95 (t, *J* = 7.4 Hz, 192H).

¹³C-NMR (100 MHz, CDCl₃, δ): 178.52, 173.39, 165.30, 163.44, 156.67, 156.49, 144.43, 140.29, 132.16, 125.63, 122.70, 122.49, 121.55, 120.27, 118.75, 114.96, 114.22, 108.66, 67.95, 67.69, 67.05, 66.35, 49.26, 46.61, 42.76, 40.76, 33.82, 31.11, 29.69, 28.61, 25.56, 24.88, 24.36, 21.55, 19.16, 18.56, 13.80.

IR (Nujol) (cm⁻¹): 3386 (N-H), 2935 (C-H), 1729 (C=O), 1578 (COO⁻_{asym}), 1401 (COO⁻_{sym}).

PPI₄CzB1:

¹**H-NMR** (300 MHz, CDCl₃, δ): 8.07-8.05 (m, 8H), 7.45-7.41 (m, 8H), 7.39 - 7.36 (m, 8H), 7.22-7.17 (m, 8H), 5.68 (s, 4H), 5.31 (d, *J* = 4.2 Hz, 4H), 4.58-4.49 (m, 4H), 4.28-4.23 (m, 8H), 4.18-4.12 (m, 16H), 3.01 (s, 8H), 2.92-2.82 (m, 8H), 2.62-2.50 (m, 16H), 2.27 (m, 20H), 2.08-1.21 (m, 140H), 1.11 (s, 12H), 0.97 (s, 12H), 0.96-0.83 (m, 36H), 0.65 (s, 12H).

¹³C-NMR (75 MHz, CDCl₃, δ): 178.62, 172.67, 172.32, 171.78, 156.70, 140.32, 139.52, 129.53, 125.63, 122.75, 122.65, 120.28, 118.75, 115.40, 108.64, 77.20, 74.38, 67.07, 66.76, 56.60, 56.12, 49.95, 46.72, 42.85, 42.26, 40.79, 39.67, 39.50, 38.03, 36.90, 36.51, 36.18, 35.77, 31.83, 31.78, 29.72, 29.35, 29.12, 28.64, 28.20, 28.00, 27.69, 24.44, 24.24, 23.85, 22.80, 22.55, 20.98, 19.26, 18.70, 18.36, 11.82.

IR (Nujol) (cm⁻¹): 3400 (N-H), 2938 (C-H), 1729 (C=O), 1577 (COO⁻_{asym}), 1408 (COO⁻_{sym}).

PPI₈CzB1:

¹**H-NMR** (300 MHz, CDCl₃, δ): 8.07-8.04 (m, 16H), 7.45-7.40 (m, 16H), 7.38-7.36 (m, 16H), 7.21-7.16 (m, 16H), 5.73 (s, 8H), 5.30 (d, *J* = 2.8 Hz, 8H), 4.60-4.53 (m, 8H), 4.28-4.22 (m, 16H), 4.15 (d, *J* = 16.1 Hz, 32H), 3.01 (s, 16H), 2.56 (s, 40H), 2.26 (m, 28H), 2.02-0.99 (m, 268H), 1.11 (s, 24H), 0.96 (s, 24H), 0.92-0.83 (m, 72H), 0.65 (s, 24H).

¹³C-NMR (75 MHz, CDCl₃, δ): 178.61, 172.33, 171.76, 156.73, 140.32, 139.52, 130.04, 125.64, 122.75, 122.65, 120.29, 118.77, 115.40, 108.65, 77.20, 74.37, 66.89, 56.60, 56.13, 49.94, 46.71, 42.85, 42.26, 40.78, 39.68, 39.51, 38.04, 36.90, 36.51, 36.18, 35.78, 31.78,

29.74, 29.37, 28.64, 28.20, 28.01, 27.70, 24.44, 24.24, 23.87, 22.81, 22.56, 20.98, 19.26, 18.71, 18.47, 11.83.

IR (Nujol) (cm⁻¹): 3373 (N-H), 2937 (C-H), 1728 (C=O), 1573 (COO⁻_{asym}), 1406 (COO⁻_{sym}).

<u>**PPI**16</u>**CzB1**:

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.04-8.02 (m, 32H), 7.41-7.39 (m, 32H), 7.36-7.34 (m, 32H), 7.18-7.16 (m, 32H), 6.04 (s, 16H), 5.27 (s, 16H), 4.58-4.48 (s, 16H), 4.22-4.20 (m, 32H), 4.22-4.11 (m, 64H), 3.08-2.94 (m, 32H), 2.94-2.86 (m, 32H), 2.62-2.54 (m, 64H), 2.47-2.33 (m, 44H), 2.32-2.22 (m, 32H), 1.96-0.99 (m, 544H), 1.08 (s, 48H), 0.93 (s, 48H), 0.90-0.86 (m, 144H), 0.63 (s, 48H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.46, 172.36, 171.73, 156.81, 140.30, 139.46, 125.61, 122.74, 122.63, 120.28, 118.74, 108.64, 74.31, 67.96, 67.24, 66.86, 56.55, 56.13, 52.47, 52.07, 51.38, 49.89, 46.83, 42.84, 42.24, 40.84, 39.64, 39.51, 38.85, 38.01, 36.86, 36.48, 36.19, 35.79, 31.75, 30.31, 29.80, 29.32, 29.13, 28.65, 28.21, 28.01, 27.69, 27.07, 25.60, 24.47, 24.24, 23.91, 22.82, 22.57, 20.96, 19.24, 18.78, 18.72, 11.81.

IR (Nujol) (cm⁻¹): 3384 (N-H), 2938 (C-H), 1726 (C=O), 1576 (COO⁻_{asym}), 1405 (COO⁻_{sym}).

<u>**PPI**</u>₃₂**CzB1**:

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.02-8.01 (m, 64H), 7.40-7.37 (m, 64H), 7.34-7.32 (m, 64H), 7.17-7.14 (m, 64H), 6.01 (s, 32H), 5.24 (s, 32H), 4.57-4.47 (s, 32H), 4.19-4.17 (m, 64H), 4.23-4.11 (m, 128H), 3.07-2.93 (m, 64H), 2.93-2.82 (m, 64H), 2.63-2.48 (m, 128H),

2.45-2.30 (m, 100H), 2.22-2.21 (m, 64H), 1.95-0.96 (m, 1024H), 1.08 (s, 96H), 0.90 (s, 96H), 0.88-0.86 (m, 288H), 0.62 (s, 96H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.34, 172.37, 171.72, 156.81, 140.31, 139.45, 125.60, 122.73, 122.62, 120.28, 118.75, 108.63, 74.32, 67.96, 67.24, 66.84, 56.55, 56.12, 52.50, 52.07, 51.50, 49.89, 46.82, 42.82, 42.24, 40.84, 39.64, 39.51, 38.83, 38.01, 36.86, 36.47, 36.18, 35.78, 31.75, 30.31, 29.80, 29.32, 29.13, 28.64, 28.21, 28.02, 27.69, 27.07, 25.60, 24.47, 24.24, 23.91, 22.82, 22.57, 20.96, 19.24, 18.75, 18.72, 11.81.

IR (Nujol) (cm⁻¹): 3385 (N-H), 2938 (C-H), 1729 (C=O), 1576 (COO⁻_{asym}), 1404 (COO-_{sym}).

<u>PPI₆₄CzB1:</u>

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.01-7.99 (m, 128H), 7.38-7.35 (m, 128H), 7.32-7.30 (m, 128H), 7.15-7.12 (m, 128H), 6.00 (s, 64H), 5.22 (s, 64H), 4.55-4.46 (s, 64H), 4.20-4.18 (m, 64H), 4.23-4.03 (m, 256H), 3.07-2.91 (m, 128H), 2.91-2.79 (m, 128H), 2.60-2.49 (m, 256H), 2.45-2.29 (m, 364H), 2.24-2.17 (m, 128H), 1.93-0.96 (m, 2048H), 1.08 (s, 192H), 0.89 (s, 192H), 0.88-0.86 (m, 576H), 0.61 (s, 192H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.29, 172.34, 171.66, 156.78, 140.28, 139.40, 125.62, 122.72, 120.26, 118.74, 108.65, 74.28, 67.96, 67.11, 66.76, 56.49, 56.14, 52.06, 51.78, 49.82, 46.81, 42.79, 42.21, 40.86, 39.61, 39.52, 38.02, 36.82, 36.42, 36.20, 35.80, 31.70, 30.31, 29.71, 29.32, 29.12, 28.61, 28.21, 28.02, 27.67, 25.60, 24.43, 24.22, 23.96, 22.84, 22.58, 20.94, 19.21, 18.72, 11.81.

IR (Nujol) (cm⁻¹): 3385 (N-H), 2938 (C-H), 1729 (C=O), 1573 (COO⁻_{asym}), 1404 (COO-_{sym}).

PPI₄CzA2:

¹**H-NMR** (500 MHz, CDCl₃, δ) 8.11-8.10 (m, AA'BB', 16H), 8.07-8.06 (m, 16H), 7.45-7.41 (m, 16H),7.39-7.37 (m, 16H), 7.21-7.18 (m, 16H), 7.07-7.05 (m, AA'BB', 16H), 6.95-6.93 (m, AA'BB', 16H), 6.87-6.85 (m, AA'BB', 16H), 5.43 (m, 8H), 4.26 (t, *J* = 7.2 Hz, 16H), 4.35-4.09 (m,48H), 4.03 (t, *J* = 6.5 Hz, 16H), 3.92-3.86 (m, 16H), 3.20-2.95 (m, 8H), 3.07-3.04 (m, 16H), 2.40-2.25 (m, 12H), 2.37-2.35 (m, 16H), 1.95–1.70 (m, 76H), 1.54-1.46 (m, 32H), 1.39-1.34 (m, 16H), 1.20 (s, 36H), 0.99 (t, *J* = 7.4 Hz, 24H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.58, 172.96, 165.48, 163.50, 156.48, 156.02, 144.47, 140.33, 132.22, 125.62, 122.76, 122.53, 121.52, 120.31, 118.75, 115.03, 114.24, 108.63, 67.98, 67.69, 65.96, 65.28, 52.13, 46.81, 46.32, 42.82, 40.83, 36.86, 33.68, 31.12, 29.58, 28.58, 24.37, 21.54, 19.18, 18.27, 17.68, 13.81.

IR (Nujol) (cm⁻¹): 3398 (N-H), 2938 (C-H), 1730 (C=O), 1579 (COO⁻_{asym}), 1400 (COO⁻_{sym}).

PPI₈CzA2:

¹**H-NMR** (500 MHz, CDCl₃, δ): 8.11-8.09 (m, AA'BB', 32H), 8.07-8.06 (m, 32H), 7.44-7.41 (m, 32H),7.38-7.37 (m, 32H), 7.21-7.18 (m, 32H), 7.06-7.05 (m, AA'BB', 32H), 6.95-6.93 (m, AA'BB', 32H), 6.86-6.85 (m, AA'BB', 32H), 5.41 (m, 16H), 4.26 (t, *J* = 7.2 Hz, 32H), 4.30-4.10 (m,96H), 4.03 (t, *J* = 6.5 Hz, 32H), 3.92-3.87 (m, 32H), 3.60-2.95 (m, 16H), 3.06-3.04 (m, 32H), 2.60-2.24 (m, 20H), 2.37-2.35 (m, 32H), 1.94–1.69 (m, 144H), 1.55-1.45 (m, 64H), 1.41-1.34 (m, 32H), 1.19 (s, 72H), 0.99 (t, *J* = 7.4 Hz, 48H).

¹³C-NMR (125 MHz, CDCl₃, δ): 179.30, 172.97, 165.46, 163.50, 156.48, 156.03, 144.49, 140.33, 132.22, 125.62, 122.77, 122.53, 121.53, 120.31, 118.76, 115.04, 114.25, 108.64, 67.98, 67.70, 65.97, 65.28, 50.30, 46.81, 46.32, 42.82, 40.83, 38.08, 33.68, 31.12, 29.58, 28.58, 24.37, 21.54, 19.18, 18.24, 17.67, 13.81.

IR (Nujol) (cm⁻¹): 3397 (N-H), 2936 (C-H), 1730 (C=O), 1579 (COO⁻_{asym}), 1400 (COO-_{sym}).

<u>**PPI₁₆CzA2:</u></u></u>**

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.09-8.07 (m, AA'BB', 64H), 8.04-8.02 (m, 64H), 7.42-7.38 (m, 64H),7.35-7.33 (m, 64H), 7.18-7.15 (m, 64H), 7.04-7.01 (m, AA'BB', 64H), 6.92-6.90 (m, AA'BB', 64H), 6.82-6.80 (m, AA'BB', 64H), 5.41 (m, 32H), 4.29-4.08 (m, 256H), 4.00 (t, *J* = 6.5 Hz, 64H), 3.86-3.83 (m, 64H), 3.60-2.83 (m, 32H), 3.01-2.81 (m, 64H), 2.60-2.24 (m, 44H), 2.34-2.32 (m, 64H), 1.88–1.65 (m, 288H), 1.55-1.38 (m, 128H), 1.34-1.24 (m, 64H), 1.17 (s, 144H), 0.98 (t, *J* = 7.4 Hz, 96H).

¹³C-NMR (100 MHz, CDCl₃, δ): 179.94, 172.55, 165.07, 163.44, 156.44, 156.14, 144.42, 140.28, 132.18, 125.60, 122.71, 122.49, 121.51, 120.29, 118.74, 114.96, 114.21, 108.62, 67.95, 67.63, 65.91, 65.44, 51.47, 46.35, 42.75, 40.79, 38.05, 33.63, 31.11, 29.53, 28.55, 24.32, 21.48, 19.17, 18.52, 17.28, 13.82.

IR (Nujol) (cm⁻¹): 3394 (N-H), 2933 (C-H), 1729 (C=O), 1576 (COO⁻_{asym}), 1401 (COO⁻_{sym}).

<u>PPI₃₂CzA2:</u>

¹**H-NMR** (400 MHz, CDCl₃, δ) 8.09-8.07 (m, AA'BB', 128H), 8.04-8.02 (m, 128H), 7.42-7.38 (m, 128H),7.35-7.33 (m, 128H), 7.18-7.14 (m, 128H), 7.03-7.01 (m, AA'BB', 128H), 6.92-6.90 (m, AA'BB', 128H), 6.82-6.80 (m, AA'BB', 128H), 5.43 (m, 64H), 4.33-4.08 (m,512H), 3.99 (t, *J* = 6.5 Hz, 128H), 3.86-3.83 (m, 128H), 3.06-2.53 (m, 64H), 3.00-2.98 (m, 128H), 2.60-2.24 (m, 100H), 2.34-2.32 (m, 128H), 1.80–1.65 (m, 576H), 1.54-1.37 (m, 256H), 1.36-1.24 (m, 128H), 1.17 (s, 288H), 0.97 (t, *J* = 7.4 Hz, 192H).

¹³C-NMR (100 MHz, CDCl₃, δ): 179.92, 172.55, 165.07, 163.44, 156.44, 156.14, 144.42, 140.28, 132.18, 125.60, 122.50, 122.49, 121.51, 120.29, 118.74, 114.96, 114.22, 108.63, 67.95, 67.63, 65.91, 65.44, 58.59, 51.47, 46.35, 42.75, 40.79, 38.05, 33.63, 31.11, 29.53, 28.57, 24.33, 21.48, 19.17, 18.52, 17.28, 13.82.

IR (Nujol) (cm⁻¹): 3396 (N-H), 2936 (C-H), 1730 (C=O), 1578 (COO⁻_{asym}), 1401 (COO-_{sym}).

PPI₆₄CzA2:

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.09-8.07 (m, AA'BB', 256H), 8.04-8.02 (m, 256H), 7.42-7.38 (m, 256H),7.35-7.33 (m, 256H), 7.18-7.15 (m, 256H), 7.04-7.02 (m, AA'BB', 256H), 6.93-6.90 (m, AA'BB', 256H), 6.83-6.81 (m, AA'BB', 256H), 5.40 (m, 128H), 4.30-4.10 (m,1024H), 4.00 (t, *J* = 6.5 Hz, 256H), 3.85-3.83 (m, 256H), 3.06-2.66 (m, 128H), 3.01-2.99 (m, 256H), 2.60-2.24 (m, 364H), 2.34-2.32 (m, 256H), 1.83–1.66 (m, 1276H), 1.55-1.38 (m, 512H), 1.36-1.24 (m, 256H), 1.18 (s, 576H), 0.98 (t, *J* = 7.4 Hz, 384H).

¹³**C-NMR** (100 MHz, CDCl₃, δ): 179.90, 172.53, 165.09, 163.43, 156.45, 156.14, 144.42, 140.31, 132.21, 125.62, 122.74, 122.53, 121.51, 120.31, 118.76, 114.99, 114.24, 108.64, 67.98, 67.61, 65.93, 65.45, 58.57, 51.45, 46.35, 42.75, 40.78, 38.05, 33.63, 31.13, 29.53, 28.58, 24.31, 21.49, 19.20, 18.52, 17.28, 13.84.

IR (Nujol) (cm⁻¹): 3397 (N-H), 2935 (C-H), 1730 (C=O), 1579 (COO⁻_{asym}), 1400 (COO⁻_{sym}).

<u>PPI₄CzB2:</u>

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.11-8.09 (m, 16H), 7.49-7.45 (m, 16H), 7.44-7.40 (m, 16H), 7.24-7.22 (m, 16H), 5.35 (s, 8H), 5.42-5.25 (m, 8H), 4.67-4.57 (m, 8H), 4.39-4.10 (m, 64H), 3.95-3.61 (m, 8H), 3.14 –3.06 (m, 16H), 2.72-2.52 (m, 44H), 2.37-2.27 (m, 16H), 2.02-1.05 (m, 268H), 1.22 (s, 24H), 1.01 (s, 24H), 0.94-0.88 (m, 84H), 0.68 (s, 24H).

¹³C-NMR (100 MHz, CDCl₃, δ): 179.15, 172.96, 172.81, 172.73, 172.43, 172.21, 171.89, 155.89, 140.31, 139.41, 125.62, 122.72, 120.30, 118.75, 108.60, 76.71, 74.85, 74.67, 66.36, 66.21, 66.12, 65.98, 65.70, 56.62, 56.10, 49.93, 46.78, 46.70, 42.84, 42.27, 40.75, 39.65, 39.50, 38.04, 37.90, 36.88, 36.52, 36.17, 35.78, 31.85, 31.79, 29.59, 29.20, 29.15, 28.75, 28.62, 28.21, 28.01, 27.65, 24.40, 24.24, 23.82, 22.81, 22.56, 20.98, 19.26, 18.70, 18.05, 17.66, 11.82.

IR (Nujol) (cm⁻¹): 3385 (N-H), 2942 (C-H), 1733 (C=O), 1557 (COO⁻_{asym}), 1438 (COO⁻_{sym}).

PPI₈CzB2:

¹**H-NMR** (400 MHz, CDCl₃, δ): 8.11-8.09 (m, 32H), 7.48-7.45 (m, 32H), 7.43-7.40 (m, 32H), 7.25-7.22 (m, 32H), 5.36 (s, 16H), 5.42-5.25 (m, 16H), 4.67-4.57 (m, 16H), 4.39-4.10 (m, 128H), 3.95-3.61 (m, 16H), 3.14 –3.06 (m, 32H), 2.72-2.52 (m, 84H), 2.37-2.27 (m, 32H), 2.02-1.05 (m, 528H), 1.22 (s, 48H), 1.01 (s, 48H), 0.94-0.88 (m, 168H), 0.68 (s, 48H).

¹³C-NMR (100 MHz, CDCl₃, δ): 179.13, 172.98, 172.89, 172.75, 172.49, 172.23, 171.92, 155.92, 140.34, 139.45, 125.62, 122.78, 120.32, 118.76, 108.63, 76.75, 74.86, 74.68, 66.38, 66.24, 66.13, 65.99, 65.71, 56.63, 56.11, 49.95, 46.77, 46.71, 42.85, 42.28, 40.85, 39.68, 39.51, 38.07, 37.97, 36.88, 36.52, 36.17, 35.78, 31.85, 31.79, 29.59, 29.20, 29.15, 28.75, 28.62, 28.21, 28.01, 27.66, 24.40, 24.25, 23.83, 22.81, 22.56, 20.99, 19.26, 18.70, 18.06, 17.68, 11.83.

IR (Nujol) (cm⁻¹): 3388 (N-H), 2943 (C-H), 1733 (C=O), 1557 (COO⁻_{asym}), 1436 (COO⁻_{sym}).

<u>**PPI₁₆CzB2:</u></u></u>**

¹**H-NMR** (300 MHz, CDCl₃, δ) 8.08-8.06 (m, 64H), 7.46-7.41 (m, 64H), 7.39-7.37 (m, 64H), 7.22-7.18 (m, 64H), 5.32 (s, 32H), 5.44-5.13 (32H), 4.66-4.51 (m, 32H), 4.35-4.04 (m, 256H), 3.13-2.88 (m, 64H), 2.64-2.52 (m, 160H), 2.35-2.25 (m, 108H), 2.04-1.05 (m, 1056H), 1.18 (s, 96H), 0.98 (s, 96H), 0.92-0.86 (m, 336H), 0.66 (s, 96H).

20

¹³C-NMR (75 MHz, CDCl₃, δ): 179.15, 172.86, 172.83, 172.71, 172.52, 172.21, 171.90, 155.62, 140.14, 139.43, 125.63, 122.73, 120.30, 118.67, 108.66, 76.74, 74.83, 74.68, 66.41, 66.25, 66.10, 65.90, 65.73, 56.65, 56.08, 49.93, 46.87, 46.72, 42.83, 42.28, 40.84, 39.62, 39.49, 38.07, 37.97, 36.82, 36.51, 36.18, 35.79, 31.82, 31.73, 29.56, 29.21, 29.11, 28.75, 28.62, 28.21, 28.03, 27.66, 24.40, 24.23, 23.83, 22.81, 22.56, 20.97, 19.26, 18.70, 18.06, 17.68, 11.83.

IR (Nujol) (cm⁻¹): 3389 (N-H), 2936 (C-H), 1729 (C=O), 1548 (COO⁻_{asym}), 1439 (COO⁻_{sym})

<u>**PPI**</u>₃₂**CzB2**:

¹**H-NMR** (300 MHz, CDCl₃, δ): 8.09-8.07 (m, 128H), 7.45-7.41 (m, 128H), 7.39-7.37 (m, 128H), 7.21-7.18 (m, 128H), 5.33 (s, 64H), 5.45-5.15 (64H), 4.65-4.50 (m, 64H), 4.32-4.01 (m, 512H), 3.12-3.01 (m, 128H), 2.62-2.54 (m, 320H), 2.33-2.23 (m, 228H), 2.03-1.01 (m, 2112H), 1.19 (s, 192H), 0.99 (s, 192H), 0.91-0.84 (m, 672H), 0.65 (s, 192H).

¹³C-NMR (75 MHz, CDCl₃, δ): 179.14, 172.96, 172.87, 172.73, 172.45, 172.22, 171.92, 155.92, 140.34, 139.44, 125.62, 122.78, 120.32, 118.75, 108.63, 76.75, 74.86, 74.68, 66.38, 66.24, 66.13, 65.92, 65.71, 56.63, 56.11, 49.95, 46.78, 46.73, 42.85, 42.28, 40.85, 39.68, 39.51, 38.07, 37.97, 36.88, 36.52, 36.30, 35.78, 31.83, 31.79, 29.59, 29.21, 29.15, 28.75, 28.62, 28.21, 28.01, 27.68, 24.40, 24.25, 23.83, 22.80, 22.56, 20.99, 19.26, 18.70, 18.08, 17.68, 11.82.

IR (Nujol) (cm⁻¹): 3388 (N-H), 2944 (C-H), 1729 (C=O), 1549 (COO⁻_{asym}), 1436 (COO⁻_{sym}).

21

PPI₆₄CzB2:

¹**H-NMR** (300 MHz, CDCl₃, δ): 8.08-8.06 (m, 256H), 7.45-7.41 (m, 256H), 7.40-7.38 (m, 256H), 7.21-7.18 (m, 256H), 5.33 (s, 128H), 5.45-5.12 (128H), 4.65-4.51 (m, 128H), 4.37-4.04 (m, 1024H), 3.13-3.03 (m, 256H), 2.65-2.51 (m, 640H), 2.33-2.25 (m, 620H), 2.05-1.05 (m, 4348H), 1.19 (s, 384H), 0.99 (s, 384H), 0.94-0.86 (m, 1344H), 0.65 (s, 384H).

¹³C-NMR (75 MHz, CDCl₃, δ): 179.15, 172.97, 172.88, 172.74, 172.45, 172.21, 171.95, 155.98, 140.34, 139.45, 125.65, 122.78, 120.32, 118.74, 108.63, 76.75, 74.89, 74.68, 66.38, 66.24, 66.13, 65.94, 65.71, 56.63, 56.11, 49.91, 46.77, 46.73, 42.85, 42.28, 40.85, 39.65, 39.51, 38.03, 37.97, 36.88, 36.52, 36.17, 35.75, 31.85, 31.75, 29.59, 29.20, 29.14, 28.73, 28.62, 28.21, 28.02, 27.66, 24.40, 24.26, 23.83, 22.82, 22.56, 20.95, 19.26, 18.70, 18.09, 17.68, 11.82.

IR (Nujol) (cm⁻¹): 3389 (N-H), 2943 (C-H), 1730 (C=O), 1550 (COO⁻_{asym}), 1436 (COO⁻_{sym}).

3. Supporting Tables

Table S1. Main IR data (cm⁻¹) for ionic hybrid dendrimers

Compound	N-H (carbamate)	COO- _{asym} (carboxylate)	COO ⁻ _{sym} (carboxylate)	C=O (ester and carbamate)
PPI ₄ CzA1	3368 cm ⁻¹	1580 cm ⁻¹	1400 cm ⁻¹	1728 cm ⁻¹
PPI ₈ CzA1	3400 cm ⁻¹	1580 cm ⁻¹	1401 cm ⁻¹	1727 cm ⁻¹
PPI ₁₆ CzA1	3384 cm ⁻¹	1578 cm ⁻¹	1401 cm ⁻¹	1729 cm ⁻¹
PPI ₃₂ CzA1	3386 cm ⁻¹	1578 cm ⁻¹	1401 cm ⁻¹	1729 cm ⁻¹
PPI ₆₄ CzA1	3386 cm ⁻¹	1578 cm ⁻¹	1401 cm ⁻¹	1729 cm ⁻¹
PPI ₄ CzA2	3398 cm ⁻¹	1579 cm ⁻¹	1400 cm ⁻¹	1730 cm ⁻¹
PPI ₈ CzA2	3397 cm ⁻¹	1579 cm ⁻¹	1400 cm ⁻¹	1730 cm ⁻¹
PPI ₁₆ CzA2	3394 cm ⁻¹	1576 cm ⁻¹	1401 cm ⁻¹	1729 cm ⁻¹
PPI ₃₂ CzA2	3396 cm ⁻¹	1578 cm ⁻¹	1401 cm ⁻¹	1730 cm ⁻¹
PPI ₆₄ CzA2	3397 cm ⁻¹	1579 cm ⁻¹	1400 cm ⁻¹	1730 cm ⁻¹
PPI ₄ CzB1	3400 cm ⁻¹	1577 cm ⁻¹	1408 cm ⁻¹	1729 cm ⁻¹
PPI ₈ CzB1	3373 cm ⁻¹	1573 cm ⁻¹	1406 cm ⁻¹	1728 cm ⁻¹
PPI ₁₆ CzB1	3384 cm ⁻¹	1576 cm ⁻¹	1405 cm ⁻¹	1726 cm ⁻¹
PPI ₃₂ CzB1	3385 cm ⁻¹	1576 cm ⁻¹	1404 cm ⁻¹	1729 cm ⁻¹
PPI ₆₄ CzB1	3385 cm ⁻¹	1573 cm ⁻¹	1404 cm ⁻¹	1729 cm ⁻¹
PPI ₄ CzB2	3385 cm ⁻¹	1557 cm ⁻¹	1438 cm ⁻¹	1733 cm ⁻¹
PPI ₈ CzB2	3388 cm ⁻¹	1557 cm ⁻¹	1436 cm ⁻¹	1733 cm ⁻¹
PPI ₁₆ CzB2	3389 cm ⁻¹	1548 cm ⁻¹	1439 cm ⁻¹	1729 cm ⁻¹
PPI ₃₂ CzB2	3388 cm ⁻¹	1549 cm ⁻¹	1436 cm ⁻¹	1729 cm ⁻¹
PPI ₆₄ CzB2	3389 cm ⁻¹	1550 cm ⁻¹	1436 cm ⁻¹	1730 cm ⁻¹

Compound	-C <u>H</u> 2-NH2	$C\underline{H}_2$ - CH_2 - NH_2	N <u>H</u> COO	С <u>Н</u> ₃ ССООН	-СС <u>Н</u> 2О-
PPI ₁₆ -NH ₂	2.56	1.43			
CzA1			4.71/5.30	1.25	4.22/4.21
CzA2			5.22	1.20	4.19/4.14
CzB1			4.79/5.46	1.24	4.25/4.20
CzB2			4.61/5.04	1.20	4.20/4.16
PPI ₁₆ CzA1	2.85	1.65	6.06	1.08	4.19/4.15
PPI ₁₆ CzA2	2.86	1.70	5.41	1.17	4.17/4.16
PPI ₁₆ CzB1	2.88	1.68	6.04/5.76	1.08	4.22/4.11
PPI ₁₆ CzB2	2.90	1.65	5.42/5.28	1.08	4.31/4.22

Table S2. Main shifts in the ¹H NMR spectra of dendrons and ionic hybrid dendrimers for

 G3 complexes.

Ionic hybrid dendrimer	T _{5%}	T ^a onset (°C)
PPI ₄ CzA1	145	237
PPI ₈ CzA1	151	215
PPI ₁₆ CzA1	129	237
PPI ₃₂ CzA1	135	235
PPI ₆₄ CzA1	172	234
PPI ₄ CzB1	182	258
PPI ₈ CzB1	168	246
PPI ₁₆ CzB1	191	260
PPI ₃₂ CzB1	202	242
PPI ₆₄ CzB1	205	241
PPI ₄ CzA2	169	229
PPI ₈ CzA2	159	221
PPI ₁₆ CzA2	234	247
PPI ₃₂ CzA2	234	248
PPI ₆₄ CzA2	239	246
PPI ₄ CzB2	151	244
PPI ₈ CzB2	135	235
PPI ₁₆ CzB2	224	273
PPI ₃₂ CzB2	228	276
PPI ₆₄ CzB2	230	279

 Table S3. Thermal stability of dendrimers under study.

Compound	λabs [nm]	λabs [nm]	λem [nm]	λem [nm]	Compound	λabs [nm]	λabs [nm]	λem [nm]	λem [nm]
	(CH ₂ Cl ₂)	(film)	(CH ₂ Cl ₂)	(film)		(CH_2Cl_2)	(film)	(CH ₂ Cl ₂)	(film)
PPI ₄ CzA1	230	236	352	355(h)	PPI ₄ CzA2	238	240	352,5	355
	265	265	368,5	372		265	264	369	372,5
	295	296	388(h)	389,5(h)		295	296	388(h)	389,5(h)
	332	332				332	332		
	347	347				347	348		
PPI ₈ CzA1	238	236	352	359	PPI ₈ CzA2	238	240	352,5	356
	264	265	369,5	372,5		265	266	369	371
	295	295	389(h)	392(h)		295	296	388(h)	389,5(h)
	332	332				332	332		
	347	348				347	348		
PPI ₁₆ CzA1	238,5	239	352,5	353,5	PPI ₁₆ CzA2	238,5	240	352,5	355,5
	264	267	369,5	371		263,5	268	369	370,5
	295	297	388(h)	389(h)		295	296	388,5(h)	389(h)
	332	335				332,5	332		
	347	350				347	348		
PPI ₃₂ CzA1	238	244	352,5	354,5	PPI ₃₂ CzA2	238	240	352	356
	265	268	367	369		265	264	369	371,5
	295	296	390(h)	391,5(h)		295	296	388(h)	389(h)
	332,5	332				332	336		
	348	348				347	348		
PPI ₆₄ CzA1	238,5	232	352,5	354	PPI ₆₄ CzA2	238,5	240	352,5	355
	263,5	264	368,5	370		264	264	368,5	370,5
	295	296	388(h)	389,5(h)		295	296	388(h)	389,5(h)
	332,5	332				331,5	332		
	347	348				347	348		

Table S4. Photophysical data for hybrid dendrimers derived from CzA1 and CzA2 dendrons.

^{*a*} Measured in CH₂Cl₂ solution, ^{*b*} shoulder (h)

Compound	$\lambda abs [nm] (CH_2Cl_2)$	λabs [nm] (film)	λem [nm] (CH ₂ Cl ₂)	λem [nm] (film)	Compound	λ abs [nm] (CH ₂ Cl ₂)	λabs [nm] (film)	λem [nm] (CH₂Cl₂)	λem [nm] (film)
PPI ₄ CzB1	238	236	352,5	355,5	PPI₄CzB2	238	240	352,5	354
	265	265	368,5	370,5		265	266	368,5	370,5
	295	295	388(h)	389,5(h)		295	296	388(h)	389(h)
	332	332				332	332		
	347	348				347	348		
PPI ₈ CzB1	238	236	352	354,5	PPI ₈ CzB2	238	240	352,5	354,5
	265	266	368	370		265	268	369	370
	295	296	388(h)	389,5(h)		295	296	389(h)	389,5(h)
	332	333				332	332		
	347	348				347	348		
PPI ₁₆ CzB1	240	236,5	352	353,5	PPI ₁₆ CzB2	239	240	352	354
	264	266	369	369,5		265	268	370	370,5
	296	297	388(h)	389,5(h)		295	296	388(h)	389(h)
	332	333,5				333	332		
	348	348				346	348		
PPI ₃₂ CzB1	236	244	352	354,5	PPI ₃₂ CzB2	238	240	352	354,5
	264	268	369	370		265	264	369	371
	296	296	388,5(h)	391(h)		295	296	389(h)	389,5(h)
	332	336				333	336		
	348	348				347	348		
PPI ₆₄ CzB1	236	232	352,5	353	PPI ₆₄ CzB2	238	240	352	354
	264	264	368,5	369,5		264	264	369	370
	296	296	388,5(h)	390,5(h)		295	296	388(h)	389(h)
	332	336				332	332		
	348	348				347	348		

Table S5. Photophysical data for hybrid dendrimers derived from CzB1 and CzB2 dendrons.

^{*a*} Measured in CH₂Cl₂ solution, ^{*b*} shoulder (h)

Compound	Absorptivity molar (ε)*	No of carbazoles (actual)	No of carbazoles (calculated)
CzA1	44400	1	1
PPI ₄ CzA1	140800	4	3.2
PPI ₈ CzA1	421200	8	9.5
PPI ₁₆ CzA1	739500	16	16.6
PPI ₃₂ CzA1	1153000	32	26
PPI ₆₄ CzA1	2712000	64	61.1

Table S6. Molar absorptivity parameters for ionic derivatives CzA1 dendrimers and calculated numbers of carbazoles.

*Data at 265 nm

Table S7. Molar absorptivity parameters for ionic CzB1 dendrimer derivatives and calculated numbers of carbazoles.

Compound	Absorptivity molar (ε)*	No of carbazoles (actual)	No of carbazoles (calculated)
CzB1	11320	1	1
PPI ₄ CzB1	89000	4	7.9
PPI ₈ CzB1	178000	8	15.7
PPI ₁₆ CzB1	776365	16	68.6
PPI ₃₂ CzB1	691887	32	61.1
PPI ₆₄ CzB1	1220000	64	107.8

*Data at 265 nm.

Compound	Quantum yields (Φ)
Cz	0.101
CzNH ₂	0.027
CzB1	0.093
PPI ₄ CzB1	0.098
PPI ₈ CzB1	0.123
PPI ₁₆ CzB1	0.149
PPI ₃₂ CzB1	0.107
PPI ₆₄ CzB1	0.100

Table S8. Quantum yields for the PPI_nCzB1 family

^a Onset oxidation and reduction potentials versus Ag/Ag⁺, ^b Estimated from the onset oxidation and reduction potential by using HOMO = $-E_{onset(ox)} - 4.8 \text{ eV}$ and LUMO = $-E_{onset(red)} - 4.8 \text{ eV}$., ^c Electrochemical band gaps determined using Eg = $E_{onset(ox)} - E_{onset(red)}$

Compound	$E_{ox}(V)$	Compound	$E_{ox}(V)$
PPI ₄ CzA1	1.356; 1.766	PPI ₄ CzA2	1.295; 1.681
PPI ₈ CzA1	1.132; 1.395	PPI ₈ CzA2	1.326; 1.597
PPI ₁₆ CzA1	1.409; 1.719	PPI ₁₆ CzA2	1.412
PPI ₃₂ CzA1	1.326; 1.651	PPI ₃₂ CzA2	1.212; 1.648
PPI ₆₄ CzA1	1.283; 1.396	PPI ₆₄ CzA2	1.221; 1.781
PPI ₄ CzB1	1.284	PPI ₄ CzB2	1.294
PPI ₈ CzB1	1.301	PPI ₈ CzB2	1.353
PPI ₁₆ CzB1	0.945; 1.299	PPI ₁₆ CzB2	1.463
PPI ₃₂ CzB1	1.418	PPI ₃₂ CzB2	1.298; 1.516
PPI ₆₄ CzB1	1.362	PPI ₆₄ CzB2	1.223; 1.613

 Table S9. Cyclic voltammety data for ionic hybrid dendrimers

^aCalculated from absorption spectrum λ onset.

4. Calculations based on the X-ray data

Smectic mesophases

The volume of a cylindrical molecule in the smectic phase can be calculated from its height d (measured experimentally) and its cross-section S:

$$V = d \times S = d \times \pi r^{2} = d \times \pi \times \left(\frac{\emptyset}{2}\right)^{2} = d \times \frac{\pi}{4} \times \frac{\emptyset^{2}}{4}$$

and the cylinder diameter \emptyset is related to the density ρ by the following equation:

$$\rho = \frac{m}{V} = \frac{M/N_A}{d \times \pi \mathscr{Q}^2/4 \times 10^{24}} \approx 1$$

From the cylinder diameter it is possible to calculate the total cross-section S_t and the cross-section per dendron S_d :

$$S_t = \pi \times \left(\frac{\emptyset}{2}\right)^2 \qquad \qquad S_d = \frac{S_t \times 2}{n}$$

m being the number of dendrons in each ionic hybrid dendrimer.

Columnar mesophases

The cross-sectional area S of each column in the two-dimensional rectangular lattice can be calculated as $S = a \times b/2$, where a and b are the rectangular lattice constants (Table 3). The reason for dividing by 2 is the fact that the rectangular columnar mesophase usually contains two columns per elementary lattice. This assumption is supported by the fact that the S values obtained in this way are consistent with those deduced for the hexagonal columnar mesophase of PPI₆₄CzA2 and PPI₆₄CzB2. It must be pointed out that the gap between the rigid regions of neighboring columns is filled by the peripheral hydrocarbon chains and therefore the effective cross-section of the column corresponds to half the rectangular cell surface. The column cross-section S and the disc thickness h_d are related by the formula

$$h_d \ge V_m$$

where is the molecule volume. In the absence of a scattering maximum related to the stacking distance, h_d cannot be measured experimentally but can be estimated from the above-mentioned formula taking into account that the molecule volume V_m is related to the density ρ and the molar mass M by the following equation:

$$\rho = (M \ge 10^{24} / (N \ge V_m))$$

where N is Avogadro's number. Making the density equal to 1 g cm⁻³, the following equation is deduced:

$$h_d = M \ge 10^{24}/(N \ge S)$$

From this equation the values for h_d shown in Table 3 are deduced.

5. Supporting Figures

FT-IR spectra

Figure S1. FT-IR spectra for PPI₁₆CzB1 (black), dendron CzB1 (blue) and dendrimer PPI₁₆-NH₂ (red)

NMR Spectra

Fig. S2. Proton assignment for PPI₁₆CzB1 and comparative spectra of the dendron CzB1 dendrimer PPI₁₆ (G=3) and its ionic hybrid dendrimers PPI₁₆CzB1, PPI₃₂CzB1, PPI₆₄CzB1. (500 MHz, CDCl₃, 25 °C). *Residual THF.

Fig. S3. Expansions of ¹³C NMR spectra for dendron CzB1 and its ionic dendrimers: PPI₁₆CzB1, PPI₃₂CzB1, PPI₆₄CzB1. (125 MHz, CDCl₃, 25 °C).

Figure S4. NOESY spectrum of PPI₁₆CzB1 (CDCl₃, 298 K, tmix = 200 ms).

Figure S5. ¹³C CPMAS NMR spectra of CzB1dendron and its ionic hybrid dendrimer PPI₆₄CzB1

Differential Scanning Calorimetry

Figure S6. a) DSC scan at 10 °C/min for ionic hybrid dendrimer PPI₁₆CzA1, **b)** DSC scan at 10 °C/min for ionic hybrid dendrimer PPI₁₆CzB1

UV-Vis absorption and emission spectra

a)

Figure S7. Normalized UV-vis absorption spectra in CH_2Cl_2 solution of of a) dendrons, b) dendrimers PPI_nCzA1 , c) dendrimer PPI_nCzB1

Cyclic voltammetry plots

Figure S8. Cyclic voltammograms of the first five cycles of: a) PPI₈CzA1, b) PPI₈CzB1, c) PPI₈CzA2, d) PPI₈CzB2.