FERRIHYDRITE DEPOSITED ON COTTON TEXTILES AS PROTECTION MEDIA AGAINST CHEMICAL WARFARE AGENT SURROGATE (2-CHLOROETHYL ETHYL SULFIDE)

Rajiv Wallace,¹ Dimitrios A. Giannakoudakis,^{1,2} Marc Florent,¹ Christopher Karwacki,³ Teresa Bandosz^{1,2*}

¹ Department of Chemistry, The City College of New York, New York, NY 10031 USA

² Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016

³ Edgewood Chemical Biological Center, U.S. Army Research, Development and Engineering Command, 5183 Blackhawk Road, APG, Aberdeen, Maryland 21010 USA

Figure S1. Representation of the dip-and-dry process to deposit ferrihydrite on a cotton cloth

Figure S2. XRD patterns of the initial cotton cloth/fibers and modified with ferrihydrite

Figure S3. IR spectra of the initial cotton textiles/fibers, modified with ferrihydrite, and exposed to CEES

Figure S4. Weight uptake after 7 days of exposure to CEES vapors expressed in gram per gram of iron in the sample (A), in milligram per surface area (S_{BET}) of the sample (B), and in gram per pore volume (V_T) of the sample (C)

Figure S5. Correlation plot between the weight uptakes and the surface area and total pore volume

Figure S6. DTG curve for the initial ferrihydrite modified cloth/fibers and those exposed to CEES for 7 days.