Electronic Supplementary Information

Fe₃O₄-AuNPs Anchored 2D Metal-Organic Framework Nanosheets with DNA Regulated Switchable Peroxidase-Like Activity

Bing Tan,^a Huimin Zhao,^{*a} Weihao Wu,^a Xuan Liu,^a Yaobin Zhang^a and Xie Quan^a

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, P. R. China

Fig. S1 a) FESEM image, b) TEM image, c) XRD pattern and d) EDS pattern of the as-

synthesized Cu(HBTC)-1 nanosheets.

Fig. S2 AFM images and their height mode profiles of monolayer Cu(HBTC)-1/Fe₃O₄-AuNPs

nanosheets on a mica plate.

Fig. S3 XPS spectra of Cu(HBTC)-1 and Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets.

Fig. S4 Optimization of peroxidase-like catalytic conditions of Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets. Conditions (from left to right): pH = 3.6, 4.0, 4.4, 4.8, 5.2 (acetate buffer), 6.0, 7.0, 7.8 (PB buffer); reaction temperature = 25, 35, 45, 55, 65 °C; molar ratio of Fe to Au = 2.5:1, 3:1, 1:1, 1:2.5; TMB concentration = 0, 0.01, 0.03, 0.05, 0.08, 0.15, 0.50, 0.75 mM;

 H_2O_2 concentration = 0, 0.01, 0.02, 0.03, 0.07, 0.14, 0.36, 0.57, 0.71, 1.43 mM.

Fig. S5 The Lineweaver-Burk plots of a) and b) Cu(HBTC)-1, c) and d) Cu(HBTC)-1/AuNPs

and e) and f) Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets.

Fig. S6 In vivo toxicity of Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets. (Relative cell viability of

chlorella vulgaris and breast cancer cells after incubation with different weight concentration

of Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets for 24 h.)

Fig. S7 Specificity study of the proposed sensor for SDM detection. The concentration of

each antibiotic was 142.86 mg/mL.

Oligonucleotide names	Sequences (from 5' to 3') and modifications		
Random 22 mer ssDNA	GAG GGC AAC GAG TGT TTA TAG A		
Complementary 22 mer ssDNA	TCT ATA AAC ACT CGT TGC CCT C		
FAM-22 mer ssDNA	FAM-GAG GGC AAC GAG TGT TTA TAG A		
A ₂₂	AAA AAA AAA AAA AAA AAA AAA A		
T ₂₂	TTT TTT TTT TTT TTT TTT TTT T		
G ₂₂	GGG GGG GGG GGG GGG GGG GGG G		
C ₂₂	CCC CCC CCC CCC CCC CCC C		
C ₅	CCC CC		
C ₁₀	CCC CCC CCC C		
C ₄₀	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC		
C ₈₀	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC		
T ₅	TTT TT		
T ₁₀	TTT TTT TTT T		
T_{40}	TTT TTT TTT TTT TTT TTT TTT TTT TTT TT		
T ₈₀	TTT TTT TTT TTT TTT TTT TTT TTT TTT TT		
SDM aptamer	GAG GGC AAC GAG TGT TTA TAG A		

Table S1 The sequences and modifications of oligonucleotides used in this work

Peroxidase	substrate	$K_m(\mathrm{mM})$	$V_{max}(10^{-7} { m Ms}^{-1})$	Reference	
Cu(HBTC)-1		TMB	0.19	6.26	
		H_2O_2	0.14	5.52	
Cu(HBTC)-1/-AuNPs		TMB	0.22	3.29	Present
		$\mathrm{H}_{2}\mathrm{O}_{2}$	0.06	6.03	work
Cu(HBTC)-1/Fe ₃ O ₄ -AuNPs		TMB	0.22	15.05	
		$\mathrm{H}_{2}\mathrm{O}_{2}$	0.03	12.13	
	Hemin@MIL-101(Al)-	TMB	0.068	0.607	1
	NH_2	H_2O_2	10.90	0.898	
	Eo MIL OONIL	TMB	0.284	1.047	2
MOE	re-will-oonn ₂	H_2O_2	0.206	0.704	2
MOLS	$MIL 52(E_{e})$	TMB	1.08	0.878	2
	MIL-35(Fe)	$\mathrm{H}_{2}\mathrm{O}_{2}$	0.04	0.186	3
	Chusing MIL 52(Es)	TMB	0.11	0.228	Λ
	Glychie-MIL-55(Fe)	H_2O_2	0.10	0.225	4
	Mag nonachaota	TMB	0.525	0.516	5
	MOS_2 nanosneets	$\mathrm{H}_{2}\mathrm{O}_{2}$	0.0116	0.429	3
Transition motal	MoS_2 - $Pt_{74}Ag_{26}$	TMB	25.71	0.729	6
diabalaaganidag (TMDg)	nanosheets	H_2O_2	0.386	0.322	
uchaicogenides (TMDS)	Hemin-functionalized	TMB	0.467	0.645	7
nanosneets	WS ₂ nanosheets	H_2O_2	0.926	0.275	
		TMB	1.83	0.431	8
	WS_2 handsheets	H_2O_2	0.24	0.452	
	Carboxyl-modifie	TMB	0.0237	0.345	0
	graphene oxide	H_2O_2	3.99	0.385	9
		TMB	0.43	1.308	10
	Graphene Oxide/Fe ₃ O ₄	H_2O_2	0.71	0.531	
Cranhana hagad nanashaat		TMB	0.29	0.56	11
Graphene-based nanosneet	Graphene/Au	H_2O_2	274.22	2.56	
	Cranhana/Ea O Dd	TMB	0.34	2.00	12
	Graphene/Fe ₃ O ₄ -Pd	$\mathrm{H}_{2}\mathrm{O}_{2}$	0.02	0.558	
	3D graphene/Fe ₃ O ₄ -	TMB	0.20	4.60	13
	AuNP	$\mathrm{H}_{2}\mathrm{O}_{2}$	0.20	1.50	

Table S2 Comparison of kinetic parameters of previous reported peroxidase mimics.

ssDNA concentration (µM)	Zeta potential (mV)
No DNA	-7.16 ± 7.31
0.47	-15.1 ± 4.84
0.67	-16.4 ± 4.89
1.33	-19.8 ± 4.43

Table S3 Zeta potentials of Cu(HBTC)-1/Fe₃O₄-AuNPs nanosheets after incubating with

different concentrations of a random 22 mer ssDNA.

Table S4 Comparison of available methods for H_2O_2 and glucose detection based on various

Enzyme mimic	Chromogenic	$H_2O_2(nM)$		Glucose (µM)		Defense
	substrate	Ranges	LOD	Ranges	LOD	Kelelence
Carbon dots	TMB	1000-100000	200	1-500	0.40	14
Graphene oxide	TMB	50-1000	50	1-20	1.00	9
Graphene oxide/Fe ₃ O ₄	TMB	1000-50000	320	2-200	0.74	10
Graphene/Fe ₃ O ₄ -Pd	TMB	500-30000	86	0.50-60	0.13	12
3D graphene/Fe ₃ O ₄ -AuNP	TMB	20-190	12	0.015-0.50	0.012	13
MoS ₂ nanosheets	TMB	5000-100000	1500	5-150	1.20	5
MoS ₂ - Pt ₇₄ Ag ₂₆ nanosheets	TMB	1000-50000	400	1-10	0.80	6
Hemin-functionalized WS ₂ nanosheets	TMB	5000-140000	1000	5-200	1.50	7
WS ₂ nanosheets	TMB	10000-100000	1200	5-300	2.90	8
Hemin@metal-organic framework	TMB	5000-200000	2000	10-300		1
Cu(HBTC)-1/Fe ₃ O ₄ -AuNPs	TMB	2.86-71.43	1.10	12.86-257.14	12.20	Present work

inorganic enzyme mimic.

Signal type	Nanomaterials	Linear range (µg/L)	LOD (µg/L)	References
Colorimetric	AuNPs	50-100	50	15
	AuNPs		500	16
	AuNPs	10-1000,000	10	17
	graphene/nickel@palladium hybrids	1-500	0.7	18
	Cu(HBTC)-1/Fe ₃ O ₄ -AuNPs nanosheets	3.57-357.14	1.7	Present study
Fluorescent	coordination polymer nanobelt	10-500	10	19
	graphene oxide hydrogel	25-1000	25	20

Table S5 Comparison of available optical aptasensors for SDM detection.

Table S6 SDM detection in natural samples and spiked recoveries.

Sample	Added (µg/L)	Detected (µg/L)	Recovery (%)	RSD (n=3)
Tap Water	75	82	113%	2.75%
	125	118	96%	1.59%
Xishan Reservoir	75	71	95%	1.06%
	125	145	116%	2.15%

References

1. F. X. Qin, S. Y. Jia, F. F. Wang, S.-H. Wu, J. Song and Y. Liu, Catal. Sci. Technol.,

2013, **3**, 2761-2768.

- 2. Y. L. Liu, X. J. Zhao, X. X. Yang and Y. F. Li, Analyst, 2013, 138, 4526-4531.
- 3. L. Ai, L. Li, C. Zhang, J. Fu and J. Jiang, Chem. Eur. J., 2013, 19, 15105-15108.
- 4. W. Dong, L. Yang and Y. Huang, Talanta, 2017, 167, 359-366.
- 5. T. Lin, L. Zhong, L. Guo, F. Fu and G. Chen, Nanoscale, 2014, 6, 11856-11862.

6. S. Cai, Q. Han, C. Qi, Z. Lian, X. Jia, R. Yang and C. Wang, *Nanoscale*, 2016, **8**, 3685-3693.

7. Q. Chen, J. Chen, C. Gao, M. Zhang, J. Chen and H. Qiu, *Analyst*, 2015, **140**, 2857-2863.

8. T. Lin, L. Zhong, Z. Song, L. Guo, H. Wu, Q. Guo, Y. Chen, F. Fu and G. Chen, *Biosens. Bioelectron.*, 2014, **62**, 302-307.

 Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren and X. G. Qu, *Adv. Mater.*, 2010, 22, 2206-2210.

10. Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu and X. G. Chen, *Nanoscale*, 2012, **4**, 3969-3976.

11. M. Liu, H. Zhao, S. Chen, H. Yu and X. Quan, ACS Nano, 2012, 6, 3142-3151.

12. X. J. Zheng, Q. Zhu, H. Q. Song, X. R. Zhao, T. Yi, H. L. Chen and X. G. Chen, *ACS Appl. Mater. Interfaces*, 2015, 7, 3480-3491.

13. F. Yuan, H. Zhao, H. Zang, F. Ye and X. Quan, ACS Appl. Mater. Interfaces, 2016, 8, 9855-9864.

14. W. B. Shi, Q. L. Wang, Y. J. Long, Z. L. Cheng, S. H. Chen, H. Z. Zheng and Y. M. Huang, *Chem. Commun.*, 2011, **47**, 6695-6697.

15. A. Chen, X. Jiang, W. Zhang, G. Chen, Y. Zhao, T. M. Tunio, J. Liu, Z. Lv, C. Li and S. Yang, *Biosens. Bioelectron.*, 2013, 42, 419-425.

16. S. Niu, Z. Lv, J. Liu, W. Bai, S. Yang and A. Chen, PLoS One, 2014, 9, e109263.

17. J. Yan, Y. Huang, C. Zhang, Z. Fang, W. Bai, M. Yan, C. Zhu and A. Chen,

Microchim. Acta, 2017, 184, 59-63.

18. A. Wang, H. Zhao, X. Chen, B. Tan, Y. Zhang and X. Quan, *Anal. Biochem.*, 2017, 525, 92-99.

19. K. M. Song, E. Jeong, W. Jeon, H. Jo and C. Ban, *Biosens. Bioelectron.*, 2012, 33, 113-119.

20. B. Tan, H. M. Zhao, L. Du, X. R. Gan and X. Quan, *Biosens. Bioelectron.*, 2016, 83, 267-273.