Supporting information for

Aerobic oxidative esterification of 5-hydroxymethylfurfural to dimethyl

furan-2, 5-dicarboxylate by using homogeneous and heterogeneous

PdCoBi/C catalysts under atmospheric oxygen

Feng Li, Xing-Long Li, Chuang Li, Jing Shi and Yao Fu *

Hefei National Laboratory for Physical Sciences at the Microscale,

iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China. Fax: (+86) -551-63606689; E-mail: <u>fivao@ustc.edu.cn</u>

> **Corresponding author: Yao Fu** E-mail: <u>fuyao@ustc.edu.cn</u>

Figure S1. The XRD spectra of catalysts. (a) Fresh PdCoBi/C (1:1:1) catalyst. (b) PdCoBi/C (1:1:1) catalyst after recycling four times.

Figure S2. The Pd $3d_{5/2}$ XPS spectra of catalysts. (a) Fresh PdCoBi/C (1:1:1) catalyst. (b) PdCoBi/C (1:1:1) catalyst after recycling four times.

Figure S3. The Bi $4f_{7/2}$ XPS spectra of catalysts. (a) Fresh PdCoBi/C (1:1:1) catalyst. (b) PdCoBi/C (1:1:1) catalyst after recycling four times.

Figure S4. The Co $2p_{3/2}$ XPS spectra of catalysts. (a) Fresh PdCoBi/C (1:1:1) catalyst. (b) PdCoBi/C (1:1:1) catalyst after recycling four times.

Entry	Base	Conversion [%] ^b	Yield $[\%]^b$	TON ^c	TOF [h ⁻¹] ^d	
1	NaOAc	21	7	1.40	0.10	
2	NaHCO ₃	46	32	6.40	0.46	
3	K_2CO_3	98	93	18.60	1.33	
4	КОН	44	13	2.60	0.18	
5	t-BuOLi	98	84	16.80	1.20	
6	t-PenONa	97	75	15.00	1.07	
7	Et ₃ N	0	0	0.00	0.00	
8	KH ₂ PO ₄	0	0	0.00	0.00	

Table S1. Effect of alkaline species on oxidative esterification of HMF^a

[a] Reactions conditions : 0.5 mmol HMF, 5 mol% Pd/C catalyst, 5 mol% Co(NO₃)₂, 5 mol% Bi(NO₃)₃, 20 mol% base, 2 mL MeOH, 1 atm O₂, 14 h, 60 °C. [b] The product yields were determined by HPLC, ethyl benzoate was used as internal standard.[c] TON = (mol of DMFDCA)/ (mol of catalyst). [d] TOF = TON/ Reaction time (h).

Entry	Time (h)	Conversion [%] ^b	Yield [%] ^{<i>b</i>}	TON ^c	TOF [h ⁻¹] ^d	
1	1	80	24	4.80	4.80	
2	2	90	49	9.80	4.90	
3	4	93	63	12.60	3.15	
4	6	95	71	14.20	2.36	
5	8	96	79	15.80	1.96	
6	10	97	86	17.20	1.72	
7	12	97	90	18.00	1.50	
8	14	98	93	18.60	1.33	

Table S2. Effect of reaction time on oxidative esterification of HMF ^a

[a] Reactions conditions : 0.5 mmol HMF, 5% mol Pd/C, 5% mol Co(NO₃)₂, 5%mol Bi(NO₃)₂, 20 mol% K₂CO₃ as base, 2 mL MeOH, 1atm O₂, 60 °C. [b] The yields was determined by HPLC, ethyl benzoate was used as internal standard. [c] TON = (mol of DMFDCA)/ (mol of catalyst). [d] TOF = TON/ Reaction time (h).

Entry	Circulation times	Conversion [%] ^b	Yield [%] ^b	TON ^c	TOF $[h^{-1}]^d$	
1	1	99	96	9.60	0.69	
2	2	95	88	8.80	0.63	
3	3	95	85	8.50	0.61	
4	4	86	70	7.00	0.50	
5^c	5	96	90	9.00	0.64	

Table S3. Effect of heterogeneous catalyst recycle numbers ^a

[a] Reactions conditions: 0.5 mmol HMF, 20 mol% K_2CO_3 , 10 mol% PdCoBi /C (1:1:1) catalyst, 2 mL MeOH, 1atm O₂, 14 h, 60 °C. [b] The yields were determined by HPLC, ethyl benzoate was used as internal standard. [c] Added fresh heterogeneous catalyst to 10 mol% after recycling 4 times. [c] TON = (mol of DMFDCA)/ (mol of catalyst). [d] TOF = TON/ Reaction time (h).

Mechanistic experiments

To further study the mechanism, the ¹H-NMR and the Infrared Spectra (IR) analysis on 0.5 h, 8 h, and 14 h of the reaction mixture were carried out. The characteristic peaks of HMMF and FMF were obviously observed according to ¹H-NMR analysis. The ¹H-NMR characteristic peaks of HMF, HMMF, FMF, DMFDCA were successfully detected while reaction proceed at 0.5 h. The characteristic peaks of HMMF and FMF extremely decreased after 8 h. When the reaction time prolonged to 14 h, the characteristic peaks of FMF disappeared and very small amount of HMMF was observed. The results were listed in **Figure S5-Figure S7** and corresponding statements have been added and highlighted in manuscript.

According to the Infrared Spectra (**IR, Figure S8**), the obvious aldehyde peaks of FMF could be observed as the reaction was carried out for 0.5 h. This indicating that the intermediate FMF was generated during the reaction. In combination with the ¹H-NMR analysis, the characteristic peaks of the hydroxyl group was the overlap of HMMF and HMF. When the reaction was prolonged for 14 h, only the characteristic peaks of ester group belonged to FDCA were observed. And no significant hydroxyl peaks was observed which indicating that HMF and HMMF had been almost completely converted.

Figure S5. H-NMR spectra of reaction mixture for 0.5 hours

 \triangle : Dimethyl furan dicarboxylate (DMFDCA);

○: 5-hydroxymethyl-2-methyl-furoate (HMMF);

 \diamond : 5-formyl-2-methyl-furoate (FMF);

 $rac{k}{k}$: 5-Hydroxymethylfurfural (HMF)

Figure S6. ¹H-NMR spectra of reaction mixture for 8 hours

- \triangle : Dimethyl furan dicarboxylate (DMFDCA);
- O: 5-hydroxymethyl-2-methyl-furoate (HMMF);
- \diamond : 5-formyl-2-methyl-furoate (FMF);
- $\dot{\preceq}$: 5-Hydroxymethylfurfural (HMF)

Figure S7. ¹H-NMR spectra of reaction mixture for 8 hours

- \triangle : Dimethyl furan dicarboxylate (DMFDCA);
- ○: 5-hydroxymethyl-2-methyl-furoate (HMMF);
- \diamond : 5-formyl-2-methyl-furoate (FMF);
- ☆: 5-Hydroxymethylfurfural (HMF)

Figure S8. IR spectrum. \diamond : C=O stretching vibration absorption of HMF; O : C=O stretching vibration absorption of HFMF; \Leftrightarrow : C=O stretching vibration absorption of DMFDCA; \triangle :-OH stretching vibration absorption

NMR Spectra and Analysis

¹H-NMR and of 5-Hydroxymethylfurfural

¹H-NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.28 (d, *J* = 3.6 Hz, 1H), 6.57 (d, *J* = 3.6 Hz, 1H), 4.72 (s, 2H), 4.17 (s, 1H).

¹H-NMR and ¹³C-NMR of dimethyl furan-2,5-dicarboxylate

¹H-NMR (400 MHz, CDCl₃) δ 7.21 (s, 2H), 3.92 (s, 6H). ¹³C-NMR (101 MHz, CDCl₃) δ 158.57, 146.84, 118.63, 52.54.

HO

¹H-NMR and ¹³C-NMR of methyl 5-(hydroxymethyl)furan-2-carboxylate

¹H-NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 3.3 Hz, 1H), 6.40 (d, *J* = 3.3 Hz, 1H), 4.67 (s, 2H), 3.88 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ159.37, 158.46, 144.29, 119.09, 109.73, 57.80, 52.22.

¹H-NMR and ¹³C-NMR of methyl 5-formylfuran-2-carboxylate

¹H-NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.25 (d, J = 6.0 Hz, 2H), 3.95 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 179.25, 158.65, 154.06, 147.83, 119.07, 118.92, 52.85.

¹H-NMR and ¹³C-NMR of methyl benzoate

¹H-NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.57 – 7.49 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 3.90 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ 167.06, 132.91, 130.14, 129.56, 128.35, 52.06.

¹H-NMR and ¹³C-NMR of methyl 4-nitrobenzoate

¹H-NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 2H), 8.21 (d, J = 8.4 Hz,2H), 3.98 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.40, 150.76, 135.70, 130.94, 123.78, 53.07.

¹H-NMR and ¹³C-NMR of methyl 4-methylbenzoate

¹H-NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 3.90 (s, 3H), 2.40 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ 167.09, 143.44, 129.48, 128.96, 127.29, 51.84, 21.53.

¹H-NMR and ¹³C-NMR of methyl 4-chlorobenzoate

¹H-NMR (400 MHz, CDCl₃) δ 7.99 – 7.96 (m, 2H), 7.43 – 7.40 (m, 2H), 3.92 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 166.77, 139.90, 131.50, 129.24, 52.81

¹H-NMR and ¹³C-NMR of methyl 4-methoxybenzoate

¹H-NMR (400 MHz, CDCl₃) δ 8.01 – 7.98 (m, 2H), 6.93 – 6.90 (m, 2H), 3.88 (s, 3H), 3.86 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 166.78, 163.21, 131.48, 122.48, 113.49, 55.31, 51.76.

¹H-NMR and ¹³C-NMR of methyl furan-2-carboxylate ¹H-NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.12 (d, *J* = 11.4, 5.5 Hz, 1H), 6.46 (d, *J* = 1.7, 1.2 Hz, 1H), 3.84 (s, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ 159.23, 146.41, 144.66, 118.04, 111.95, 51.99.

0

¹H-NMR and ¹³C-NMR of methyl octanoate

¹H-NMR (400 MHz, CDCl₃) δ 3.64 (s, 3H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.62 – 1.56 (m, 2H), 1.27 (dd, *J* = 11.7, 6.2 Hz, 8H), 0.85 (t, *J* = 6.8 Hz, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ 174.51, 51.58, 34.26, 31.82, 29.27, 29.09, 25.12, 22.76, 14.21.

.

