Coordinatively Unsaturated Metal Sites (Open Metal Sites) in Metal-Organic Frameworks: Design and Applications⁺

Ülkü Kökçam-Demir,^{§a} Anna Goldman,^{§a} Leili Esrafili,^b Maniya Gharib,^b Ali Morsali^{§b,*} Oliver Weingart^c and Christoph Janiak ^{§a,*}

^a Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf Germany. Email: janiak@hhu.de

^b Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran. Email: <u>morsali_a@modares.ac.ir</u>

^c Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf Germany. Email: Oliver.Weingart@hhu.de

+ § These authors contributed equally.

E-mail addresses: <u>Uelkue.Koekcam@hhu.de</u>, <u>Anna.Goldman@hhu.de</u>, <u>leiliesrafili@gmail.com</u>, <u>mania.gha1990@gmail.com</u>, <u>morsali_a@modares.ac.ir</u> <u>Oliver.Weingart@hhu.de</u>, <u>janiak@hhu.de</u>,

Table S 1 Calculated binding energies $-\Delta E$ and isosteric heats of adsorption ($-\Delta H$, $-Q_{st}$) values for CO₂ in relation to the different OMS, using computational methods in comparison to $-Q_{st}^{0}$ values from experimental studies.

MOF	M-MOF-74								HKUST-1
OMS	Mg	Cr	Mn	Fe	Со	Ni	Cu	Zn	Cu
Exp.	39.0-47.0 1,2,3,4,6,17	/	31.7-31.9 ^{6,17}	33.2-34.3 ^{6,17}	33.6-37.0 ^{3,4,6,17}	38.6-41.0 ^{3,4,6,17}	22.1-24.0 ^{6,17}	26.8-30.6 ^{1,6,17}	29.0 ⁵
MP2	40.5 ⁶		30.3 ⁶	24.2 ⁶	29.7 ⁶	31.26	16.2 ⁶	29.7 ⁶	
LDA	54.3 ⁶ (51.2) ⁷		38.4 ⁶	38.1 ⁶	42.5 ⁶ (36.6) ⁷	43.1 ⁶	31.0 ⁶	40.2 ⁶	(30.6) ⁷ 32.7 ⁸
GGA-PW91	23.9 ⁶		13.3 ⁶	9.4 ⁶	10.6 ⁶	12.5 ⁶	6.0 ⁶	12.6 ⁶	
GGA-PBE	(20.2) ⁷				(8.3)7	(8.8) ⁷			(9.4) ⁷
Hybrid-GGA B3LYP	23.9 ⁶ 27.1 ⁹		12.1 ⁶	4.5 ⁶	7.0 ⁶	11.66	3.5 ⁶	11.86	
DFT-D2	(39.7) ⁷				(29.0) ⁷	(30.6) ⁷			(18.5) ⁷
PBE-D2	40.5 ¹⁰		33.8 ¹⁰	33.9 ¹⁰	33.7 ¹⁰	36.9 ¹⁰	27.1 ¹⁰	30.5 ¹⁰	21.0 ¹¹
PBE-D3	39.7 ¹⁰		34.6 ¹⁰ 32.4 ¹²	34.5 ¹⁰	33.9 ¹⁰ 29.5 ¹²	36.7 ¹⁰ 32.3 ¹²	28.0 ¹⁰ 21.5 ¹²	31.8 ¹⁰	21.011
PBE-D3 BJ	40.5 ¹⁰		35.5 ¹⁰	35.3 ¹⁰	34.5 ¹⁰	37.4 ¹⁰	27.8 ¹⁰	31.010	
B3LYP-D*	(37.9) ^{13,14}					(35.5) ¹⁴		(31.7) ¹⁴	
ωB97X-D	(44.9) ⁹								
optB88-vdW	(52.8) ⁷ 53.1 ¹⁰	46.2 ¹⁰		46.5 ¹⁰	(39.9) ⁷ 46.7 ¹⁰	(43.1) ⁷ 51.0 ¹⁰	37.9 ^{10**}	41.6 ¹⁰	
optB86b-vdW	52.5 ¹⁰ (53.9) ⁷	45.9 ¹⁰		46.1 ¹⁰	46.6 ¹⁰ (40.4) ⁷	50.7 ¹⁰ (45.6) ⁷	37.5 ¹⁰	41.3 ¹⁰	28.0 ¹¹ (25.4) ⁷
vdW-DF	(40.5) ¹⁵								
PBE-vdW	(58.3) ¹⁵								
optPBE-vdW	(57.2) ⁷				(43.7) ⁷	(46.6)7			(27.7) ⁷
revPBE-vdW	(47.3) ⁷				(37.2) ⁷	(37.8) ⁷			(23.3) ⁷
rPW86-vdW	(46.2) ⁷				(32.5) ⁷	(34.5)7			(21.5) ⁷

vdW-DF2	(37.4) ¹⁵ (44.7) ¹⁶	38.1 ¹⁰		38.1 ¹⁰	37.7 ¹⁰	41.5 ¹⁰	30.9 ¹⁰	34.010	22.011	
vdW-DF2 + U	(40.9) ¹⁷		(33.9) ¹⁷	(34.1) ¹⁷	(33.8)17	(37.3)17	(27.1)17	(30.2)17	(30.0) ²⁹	
	(41.0) ²⁹		(27.0) ²⁹	(34.0) ²⁹	(34.0) ²⁹	(34.0) ²⁹	(37.0) ²⁹	(27.0) ²⁹		
rev-vdW-DF2	43.6 ¹⁰		37.0 ¹⁰	37.3 ¹⁰	37.4 ¹⁰	41.3 ¹⁰	28.2 ¹⁰	32.1 ¹⁰		
B3LYP+D*/MP 2	(42.7) ¹⁴					(40.5) ¹⁴		(39.0)14		
DFT/CC									28.011	
QM/MM	49.26		27.26	22.2 6	27.06	20.16	22.06	27.06		
DFT/MP2	40.2		57.2	52.2	57.0*	59.1	25.9	57.0*		
GCMC PHAST*									30 ¹⁸	
MOF	M-btt									
Exp.		36.7 ¹⁹		51.2 ¹⁹			30.7 ¹⁹			
vdW-DF+ U		(36.6)19		(51.7) ¹⁹			(29.4)19			

Table S 2 Calculated $-\Delta E$ and $(-\Delta H, -Q_{st})$ values for H₂ in relation to the different OMS, using computational methods in comparison to $-Q_{st}^0$ from experimental studies.

MOF	M-MOF-74									
OMS	Mg	Cr	Mn	Fe	Со	Ni	Cu	Zn		
Exp.	10.1-10.7 ^{20,24}		8.8 ^{21,24}	9.721	10.7 ^{21,24}	12.9-13.5 ^{22,23,24}	6.1 ²⁸	8.5-8.8 ²⁴ , ²⁵		
DL	(6.5) ²⁰									
BSS	(6.0) ²⁰									
BSSP	(10.9) ²⁰				(12.4) ²⁶	(14.0) ²⁶	(6.5) ²⁷	(8.7) ²⁶		
LDA	24.8 ²⁴		22.4 ²⁴		35.6 ²⁴	39.0 ²⁴		22 .0 ²⁴		
GGA-PBE	12.4 ²⁴		11.124		12.824	15.0 ²⁴		10.5 ²⁴		
PBE+D			13.9 ²⁸				11.3 ²⁸			
vdW-DF2	(10.0) ²⁹	(6.0) ²⁹	(8.0) ²⁹	(9.0) ²⁹	(9.0) ²⁹	(10.0) ²⁹	(6.0) ²⁹	(8.0) ²⁹		
MOF	MOF-505									
Exp.							6.1 ^{24,30}			
PBE							13.4 ³¹			

C ₂ H ₂										
MOF	M-MOF-74									
OMS	Mg	Cr	Mn	Fe	Со	Ni	Cu	Zn		
Exp.	41.0 ³²			45.0-46.5 ^{32,33}	45.0 ³²				30.4-39.0 ^{32,34}	
DFT-PBE									(30.0)35	
vdW-DF2	(38.0) ²⁹	(31.0) ²⁹	(38.0) ²⁹	(37.0) ²⁹	(36.0) ²⁹	(37.0) ²⁹	(20.0) ²⁹	(35.0) ²⁹		
				Cu-paddle-	wheel-MOFs					
MOF	MOF-505	PCN-46	NJU-Bai12	ZJU-40	NOT-101	NOT-102	NOT-103	NOT-106	NOT-108	
Exp.	24.7 ^{38,36}			34.5 ^{38,37}	37.1 ^{38,36}	22.0 ^{38,37}	30.8 ^{38,36}			
GCMC	(27.7) ³⁸	(24.1) ³⁸	(22.9) ³⁸	(23.9) ³⁸	(23.8) ³⁸	(24.7) ³⁸	(23.3) ³⁸	(25.5) ³⁸	(26.2) ³⁸	
PBE	33.6 ³⁸	34.8 ³⁸	31.4 ³⁸	30.8 ³⁸	30.7 ³⁸	33.7 ³⁸	31.2 ³⁸	31.8 ³⁸	30.838	
CO										
MOF					M-MOF-74					
OMS	Mg	Cr	Mn	Fe	Со	Ni	Cu	Zn		
Exp.	38.0 ³				55.5 ³	59.7 ³				
B3LYP-D*	(30.0) ¹⁴					(41.9) ¹⁴		(24.8)14		
vdW-DF2	(35.0) ²⁹	(20.0) ²⁹	(29.0) ²⁹	(30.0) ²⁹	(30.0) ²⁹	(34.0) ²⁹	(16.0) ²⁹	(25.0) ²⁹		
B3LYP+D*/MP 2	(41.2) ¹⁴					(50.3) ¹⁴		(39.8)		
MOF			÷		MIL-101		÷			
Exp.										
ωB97X-D		(37.4) ⁹								
CH4										
MOF					M-MOF-74					
Exp.	18.2 ⁶		18.2 ⁶		19.2 ⁶	19.0 ⁶		18.3 ³⁹		
vdW-DF2+U	(19.0) ²⁹	(14.0) ²⁹	(19.0) ²⁹	(19.0) ²⁹	(18.0) ²⁹	(19.0) ²⁹	(14.0) ²⁹	(19.0) ²⁹		
MOF	HKUST-1									
DFT/CC-PES							13.2340			

Table S 3 Calculated –ΔE and (–ΔH, –Q_{st}) values for C₂H₂, CO, CH₄ in relation to the different OMS, using computational methods in comparison to –Q_{st}⁰ from experimental studies.

- 1 J. M. Simmons, H. Wu, W. Zhou and T. Yildirim, Energy Environ. Sci., 2011, 4, 2177–2185.
- 2 D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi, PNAS, 2009, 106, 20637–20640.
- 3 H. Kim, M. Sohail, K. Yim, Y. C. Park, D. H. Chun, H. J. Kim, S. O. Han and J.-H. Moon, *ACS Appl. Mater. Interfaces*, 2019, **11**, 7014-7021.
- 4 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870-10871.
- 5 L. Grajciar, A. D. Wiersum, P. L. Llewellyn, J.-S. Chang and P. Nachtigall, J. Phys. Chem. C, 2011, 115, 17925–17933.
- 6 D. Yu, A. O. Yazaydin, J. R. Lane, P. D. C. Dietzel and R. Q. Snurr, Chem. Sci., 2013, 4, 3544–3556.
- 7 M. K. Rana, H. S. Koh, J. Hwang and D. J. Siegel, J. Phys. Chem. C, 2012, 116, 16957–16968.
- 8 H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 2010, 1, 1946–1951.
- 9 K. Yu, K. Kiesling and J. R. Schmidt, J. Phys. Chem. C, 2012, 116, 20480-20488.
- 10 B. Vlaisavljevich, J. Huck, Z. Hulvey, K. Lee, J. A. Mason, J. B. Neaton, J. R. Long, C. M. Brown, D. Alfè, A. Michaelides and B. Smit, J. Phys. Chem. A, 2017, 121, 4139–4151.
- 11 L. Grajciar, P. Nachtigall, O. Bludský and M. Rubeš, J. Chem. Theory Comput., 2015, 11, 230–238.
- 12 E. Haldoupis, J. Borycz, H. Shi, K. D. Vogiatzis, P. Bai, W. L. Queen, L. Gagliardi and J. I. Siepmann, *J. Phys. Chem. C*, 2015, **119**, 16058-16071.
- 13 L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C. O. Arean and S. Bordiga, J. Phys. Chem. C, 2010, 114, 11185–11191.
- 14 L. Valenzano, B. Civalleri, K. Sillar and J. Sauer, J. Phys. Chem. C, 2011, 115, 21777–21784.
- 15 R. Poloni, B. Smit and J. B. Neaton, J. Phys. Chem. A, 2012, 116, 4957–4964.
- 16 G. Alonso, D. Bahamon, F. Keshavarz, X. Giménez, P. Gamallo and R. Sayós, J. Phys. Chem. C, 2018, **122**, 3945–3957. 17 W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D. Gygi, J. D. Howe, K. Lee, T. A. Darwish,
- M. James, V. K. Peterson, S. J. Teat, B. Smit, J. B. Neaton, J. R. Long and C. M. Brown, Chem. Sci., 2014, 5, 4569–4581.
- T. Pham, K. A. Forrest, D. M. Franz, Z. Guo, B. Chen and B. Space, *Phys. Chem. Chem. Phys.*, 2017, **19**, 18587–18602.
 M. Asgari, S. Jawahery, E, D. Bloch, M. R. Hudson, R. Flacau, B. Vlaisavljevich, J. R. Long, C. M. Brown and W. L. Queen, *Chem. Sci.*, 2018, **9**, 4579-4588.
- 20 T. Pham, K. A. Forrest, K. McLaughlin, J. Eckert and B. Space, J. Phys. Chem. C, 2014, 118, 22683-22690.
- 21 D. Gygi, E. D. Bloch, J. A. Mason, M. R. Hudson, M. I. Gonzalez, R. L. Siegelman, T. A. Darwish, W. L. Queen, C. M. Brown and J. R. Long, *Chem. Mater.*, 2016, 28, 1128–1138.
- 22 P. D. C. Dietzel, P. A. Georgiev, J. Eckert, R. Blom, T. Strassle and T. Unruh, Chem. Commun., 2010, 46, 4962–4964.
- 23 J. G. Vitillo, L. Regli, S. Chavan, G. Ricchiardi, G. Spoto, P. D. C. Dietzel, S. Bordiga, and A. Zecchina, J. Am. Chem. Soc., 2008, **130**, 8386–8396.
- 24 W. Zhou, H. Wu and T. Yildirim, J. Am. Chem. Soc., 2008, 130, 15268-15269.
- 25 Y. Liu, H. Kabbour, C. M. Brown, D. A. Neumann and C. C. Ahn, *Langmuir*, 2008, **24**, 4772–4777.
- 26 T. Pham, K. A. Forrest, R. Banerjee, G. Orcajo, J. Eckert and B. Space, J. Phys. Chem. C, 2015, 119, 1078-1090.
- 27 T. Pham, K. A. Forrest, J. Eckert and B. Space, Cryst. Growth Des., 2016, 16, 867–874.
- 28 M. H. Rosnes, M. Opitz, M. Frontzek, W. Lohstroh, J. Peter Embs, P. A. Georgiev and P. D. C. Dietzel, J. Mater. Chem. A, 2015, **3**, 4827-4839.
- 29 K. Lee, J. D. Howe, L.-C. Lin, B. Smit and J. B. Neaton, Chem. Mat., 2015, 27, 668-678.
- 30 Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey and M. Schröder, *Chem. Commun.*, 2009, 1025-1027.
- 31 Q. Yang and C. Zhong, J. Phys. Chem. B, 2006, 110, 655-658.
- 32 Y. He, R. Krishna and B. Chen, *Energy Environ. Sci.*, 2012, **5**, 9107–9120.
- 33 A. Luna-Triguero, J. M. Vicent-Luna, R. M. Madero-Castro, P. Gómez-Álvarez and S. Calero, ACS Appl. Mater. Interfaces, 2019, 11, 31499–31507.
- 34 S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu and B. Chen, J. Am. Chem. Soc., 2009, 131, 12415–12419.
- 35 M. Fischer, F. Hoffmann and M. Fröba, ChemPhysChem, 2010, 11, 2220-2229.
- 36 Y He, B. Li, M. O'Keeffe and B. Chen, Chem. Soc. Rev., 2014, 43, 5618-5656
- 37 H.-M. Wen, H. Wang, B. Li, Y. Cui, H. Wang and G. Qian, Inorg. Chem., 2016, 55, 7214-7218.
- 38 Y. Ji, L. Ding, Y. Cheng, H. Zhou, S. Yang, F. Li and Y. Li, J. Phys. Chem. C, 2017, 121, 24104–24113.
- 39 H.Wu, W. Zhou and T. Yildirim, J. am. Chem. Soc., 2009, 131, 4995–5000.
- 40 L. Chen, L. Grajciar, P. Nachtigall and T. Düren, J. Phys. Chem. C, 2011, 115, 23074–23080.