Supporting Information

Transforming Terpene-Derived Aldehydes into 1,2-Epoxides via Asymmetric α-Chlorination: Subsequent Epoxide Opening with Carbon Nucleophiles

Philipp Winter, Jörg Swatschek, Matthieu Willot, Lea Radtke, Tobias Olbrisch, Andreas Schäfer and Mathias Christmann

> TU Dortmund University Otto-Hahn-Straße 6 D-44227 Dortmund Germany <u>mathias.christmann@tu-dortmund.de</u>

Content

- I. General Procedure
- **II.** Preparation of aldehydes 5a-f (starting materials for α-chlorination, table 1)
- **III.** General procedure for the synthesis of epoxides 7a-f (table 1)
- IV. Stepwise synthesis of epoxides 7g-h via the chloroalcohols 6g-h (table 1)
- V. Synthesis of substituted cyclopropanes 8 from epoxides 7c-f and i
- VI. Synthesis of (–)-*cis*-aerangis lactone (11)
- VII. NMR/ HPLC/ GC (Spectra)

I. GENERAL PROCEDURE

Solvents of HPLC grade were purchased from Fisher Scientific or VWR (Prolabo). Where dry solvents (diethyl ether, dichloromethane, toluene, DMF or THF) were required they were purified by Solvent Purification System M-BRAUN Glovebox Technology SPS-800. Dry DMPU was purchased from Aldrich or distilled from calcium hydride prior to use. Technical quality solvents for column chromatography were used after short path distillation in a rotary evaporator. Unless noted below, all other compounds are reported in literature or were supplied by Aldrich, Acros or AlfaAesar, and used without further purification. (R)-citronellal (ee = 97.5 %) was donated by Takasago. Thin-layer chromatography (SiO₂, TLC) was performed on Merck TLC silica gel 60 F₂₅₄. Column chromatography was performed on Merck silica gel 60 (0.040 - 0.063 nm), using standard flash chromatographic methods. Optical rotations were recorded on a Perkin Elmer polarimeter 341 at 589 nm, and were reported as $[\alpha]_D$ (concentration). The *NMR spectra* were recorded on Bruker DRX300 (300) MHz), DRX400 (400 MHz), DRX500 (500 MHz) or DRX600 (600 MHz) spectrometers and are referenced against the residual solvent peaks [CHCl₃: δ 7.26 ppm (¹H NMR) and 77.2 ppm (¹³C NMR)]. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant, and integration. Infrared spectra were recorded on a Nicolet Impact 400D spectrometer on potassium bromide matrix (disk or film). Low resolution mass spectra were performed on a Thermo TSQ mass spectrometer, Hewlett Packard 6890 series/Mass selective detector. High resolution mass spectra were recorded on a LTQ Orbitrap mass spectrometer coupled to an Accela HPLC-System (HPLC column: Hypersyl GOLD, 50 mm × 1 mm, 1.9 um). All instruments are from Thermo Electron. Chiral HPLC analysis was performed using an Agilent 1200 series HPLC with a diode array detector. Chiral columns include Daicel Chiralpak IA (Chiral Technologies Eur., 25 cm × 4.6 mm I.D.), Chiralpak IB (Chiral Technologies Eur., 25 cm × 4.6 mm I.D.) and Daicel Chiralpak IC (Chiral Technologies Eur., 25 cm \times 4.6 mm I.D.). Chiral GC analysis was performed using an Agilent 6850 series GC with a FID detector on a Hydrodex-β-6TBDM (Macherey & Nagel, 25 m x 0.25 mm) and Hydrodex-β-PM (Macherey & Nagel, 25 m x 0.25 mm).

II. Preparation of aldehydes 5a-f (starting materials for α-chlorination, table 1)

5a:

a) P. R. Skaanderup, T. Jensen, Org. Lett. 2008, 10, 2821–2824. b) M. Uyanik, K. Ishihara, H. Yamamoto, Org. Lett. 2006, 8, 5649–5652. c) P. A. Clarke, M. Grist, M. Ebden, C. Wilson, A. J. Blake, Tetrahedron 2005, 61, 353–363. d) J. Germain, P. J. Deslongchamps, Org. Chem. 2002, 67, 5269–5278. e) E. Fillion, R. L. Beingessner, J. Org. Chem. 2003, 68, 9485–9488. f)
S. Hashimoto, A. Itoh, Y. Kitagawa, H. Yamamoto, H. Nozaki, J. Am. Chem. Soc. 1977, 99, 4192–4194. g) K. Mori, Tetrahedron 1977, 33, 289–294.

5b:

a) M. Uyanik, K. Ishihara, H. Yamamoto, *Org. Lett.* 2006, **8**, 5649–5652. b) E. Marquez-Lopez, R. P. Herrera, T. Marks, W. Jacobs, D. Könning, R. M. De Figueiredo, M. Christmann, *Org. Lett.* 2009, **11**, 4116-4119.

5c:

P. Winter, C. Vaxelaire, C. Heinz, M. Christmann, Chem. Commun. 2011, 47, 394-396.

The epoxide **SI-1** was prepared according to the literature: P. Winter, C. Vaxelaire, C. Heinz, M. Christmann, *Chem. Commun.* 2011, **47**, 394–396.

To a stirred solution of **SI-1** (111 mg, 0.62 mmol, 1.0 eq.) in a THF/H₂O (2/1) mixture (2.6 mL) was added NaIO₄ (263 mg, 1.23 mmol, 2.0 eq.). After 16 h of stirring at rt, the conversion was complete (TLC: *c*-Hex/AcOEt = 5/1). The reaction was then filtrated over Celite and washed with Et₂O. The filtrate was dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, *n*-pentane:Et₂O = 20:1 to 10:1). **5d** (75 mg, 0.55 mmol, 87%) was isolated as colourless oil.

R_f = 0.63 (*c*-Hex:AcOEt = 5:1); **IR** ($\tilde{\nu}$ / cm⁻¹) = 3436, 3079, 2969, 2916, 2822, 2720, 1726, 1638; ¹**H-NMR** (500 MHz, CDCl₃): δ 9.77 (t, *J* = 1.5 Hz, 1H), 5.78 (ddt, *J* = 17.2, 9.9, 6.1 Hz, 1H), 5.23 (t, *J* = 7.6 Hz, 1H), 5.01 (dq, *J* = 17.2, 1.5 Hz, 1H), 4.96 (dq, *J* = 9.9, 1.5 Hz, 1H), 2.76 (dd, *J* = 7.3, 6.5 Hz, 2H), 2.50 (dd, *J* = 7.6, 1.5 Hz, 2H), 2.35 (d, *J* = 7.6 Hz, 2H), 1.71 (d, *J* = 1.5 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ 202.2, 137.2, 134.5, 123.8, 114.7, 42.4, 32.2, 24.4, 23.2; **HRMS** (ESI): *m*/*z* calculated for C₉H₁₅O ([M+H]⁺) 139.1117, found 139.1113.

5e:

P. Winter, C. Vaxelaire, C. Heinz, M. Christmann, Chem. Commun. 2011, 47, 394-396.

5f:

For the preparation of **SI-2** see for: E. Fillon, R. L. Beingessner, *J. Org. Chem.* 2003, **68**, 9485-9488; M. Uyanik, K. Ishihara, H. Yamamoto, *Org. Lett.* 2006, **8**, 5649-5652.

To a solution of **SI-2** (2.25 g, 10.6 mmol) in THF (56 mL) was added dropwise Li₂CuCl₄ (4.24 mL, 0.42 mmol, 4 mol%, 0.1 M in THF) at 0 °C followed by PhMgBr (31.8 mL, 31.8 mmol, 3.0 eq., 1 M in THF) over 20 min. After a further 2 h at 0 °C, saturated aq. NH₄Cl (4.2 mL) was added and the magnesium salts dissolved with water. The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic phases dried over MgSO₄. After evaporation of all solvents, the residue was purified by flash column chromatography (SiO₂, *c*-Hex:EtOAc = 10:1), yielding **SI-3** (2.42 g, 10.5 mmol, 99 %) as a colourless oil.

R_f = 0.40 (*c*-Hex:EtOAc = 5:1); **IR** ($\tilde{\nu}$ / cm⁻¹) 3026, 2962, 2925, 1733, 1602, 1494, 1452, 1377; ¹**H-NMR** (500 MHz, CDCl₃): δ 7.30-7.27 (m, 2H), 7.20-7.17 (m, 3H), 5.40 (t, *J* = 7.3 Hz, 1H), 3.39 (d, *J* = 7.3 Hz, 2H), 2.75 (t, *J* = 6.1 Hz, 1H), 2.35-2.25 (m, 2H), 1.78 (d, *J* = 1.5 Hz, 3H), 1.74-1.61 (m, 2H), 1.31 (s, 3H), 1.29 (s, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ 202.2, 135.3, 128.4 (2C), 128.3 (2C), 125.8, 124.5, 64.0, 58.4, 34.1, 28.6, 27.4, 24.9, 23.4, 18.7; **HRMS** (ESI) *m/z* calculated for C₁₆H₂₃O ([M+H]⁺) 231.1743, found 231.1743.

To a stirred solution of SI-3 (2.66 g, 11.6 mmol, 1.0 eq.) in a THF/H₂O (2/1) mixture (48 mL) was added NaIO₄ (4.92 g, 23.1 mmol, 2.0 eq.). After 16 h of stirring at rt, the conversion was complete. The reaction was then filtrated over Celite and washed with Et₂O. The filtrate was dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, *c*-Hex:EtOAc = 20:1). **5f** (1.72 g, 9.14 mmol, 82%) was isolated as colourless oil.

R_f = 0.44 (*c*-Hex:EtOAc = 5:1); **IR** ($\tilde{\nu}$ / cm⁻¹) 3061, 3027, 2966, 2915, 2724, 1725; ¹H-NMR (400 MHz, CDCl₃): δ 9.81 (t, *J* = 1.6 Hz, 1H), 7.31-7.27 (m, 2H), 7.21-7.17 (m, 3H), 5.42 (t, *J* = 7.4 Hz, 1H), 3.38 (d, *J* = 7.3 Hz, 2H), 2.58-2.53 (m, 2H), 2.49-2.45 (m, 2H), 1.78 (d, *J* = 1.25 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 202.0, 141.2, 134.0, 128.4 (2C), 128.2 (2C), 125.9, 125.2, 42.2, 34.0, 24.3, 23.1; HRMS (ESI) *m*/*z* calculated for C₁₃H₁₇O ([M+H]⁺) 189.1274, found 189.1268.

III. General procedure for the synthesis of epoxides 7a-f (table 1)

To a solution of aldehyde **5a-f** (1.0 eq.) in MeCN (0.5 M) at 0 °C was added catalyst 1·TFA (20 mol%), followed by NCS (1.1 eq.). The solution was stirred at that temperature until all starting material was consumed (TLC-control). At that point EtOH (30 Vol%) and NaBH₄ (2.5 eq.) were added. The white suspension was stirred 30 min and then diluted carefully with

a NaOH/EtOH/H₂O-solution (100 Vol%, solution prepared from: 12 mL EtOH, 12.5 g NaOH, 25 mL H₂O) and the medium was stirred vigorously for 1 h at rt. The reaction mixture was diluted with sat. aq. NH₄Cl (50 Vol%) and CH₂Cl₂ and the aqueous layer was further extracted with CH₂Cl₂, the organic layers dried over MgSO₄ and the solvents removed under reduced pressure. Purification by column chromatography (SiO₂, conditions: see below) of the crude product yielded epoxide **7a-f** as a colourless oil.

The enantiomeric excess was determined by chiral GC. In this case, D/L-proline was used instead of **1**·TFA, following the general procedure above.

7a: yield: 64 %, 95 % *ee*; In this case, the last reaction step was performed at 0°C for 0.5 h. Otherwise, a significant amount of the cyclization product was observed.

R_f = 0.23 (*n*-pentane:Et₂O = 1:2); $[α]_D^{20}$ = -10.9 (CHCl₃, c = 2.87); **IR** ($\tilde{\nu}$ / cm⁻¹) = 3450, 2902, 1723; ¹**H-NMR** (400 MHz, CDCl₃): δ 5.69 (tq, *J* = 7.4, 1.5 Hz, 1H), 3.99 (d, *J* = 7.4 Hz, 2H), 3.05 (dddd, *J* = 6.5, 3.6, 3.6, 2.7 Hz, 1H), 2.82 (dd, *J* = 5.0, 3.6 Hz, 1H), 2.57 (dd, *J* = 5.0, 2.7 Hz, 1H), 2.52 (dd, *J* = 14.2, 3.6 Hz, 1H), 2.27 (dd, *J* = 14.2, 6.5 Hz, 1H), 2.12 (s_{br}, 1H), 1.82 (d, *J* = 1.5 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ 135.4, 127.5, 58.2, 50.5, 47.3, 34.1, 24.6; **HRMS** (ESI): *m/z* calculated for C₇H₁₃O₂ ([M+H]⁺) 129.0910, found 129.0905.

7b: yield: 77 %, 95 % *ee*; $\mathbf{R}_f = 0.37$ (*c*-Hex:AcOEt = 1:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20} = +9.7$ (CHCl₃, $\mathbf{c} = 0.93$); **IR** ($\tilde{\nu} / \mathrm{cm}^{-1}$) = 3467, 2922, 1712; ¹H-NMR (400 MHz, CDCl₃): δ 5.54 (tq, J = 7.0, 1.2 Hz, 1H), 4.20 (dd, J = 5.8, 5.5 Hz, 2H), 3.02 (m, 1H), 2.79 (dd, J = 5.0, 4.0 Hz, 1H), 2.78 (s, 1H), 2.50 (dd, J = 4.8, 2.5 Hz, 1H), 2.25 (d, J = 5.8 Hz, 2H), 1.76 (s, 3H), OH-proton is missing; ¹³C-NMR (100 MHz, CDCl₃): δ 135.8, 125.8, 59.3, 51.2, 47.0, 42.5, 17.1; **HRMS** (ESI): *m/z* calculated for C₇H₁₃O₂ ([M+H]⁺) 129.0910, found 129.0905.

7c: yield: 66 %, 92 % *ee*; $\mathbf{R}_f = 0.69$ (*n*-pentane:Et₂O = 6:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20} = 4.14$ (CHCl₃, c = 11.4); IR ($\tilde{\nu}$ / cm⁻¹) = 2921, 2980; ¹H-NMR (400 MHz, CDCl₃): δ 5.82 (ddt, J = 16.9, 10.2, 6.3 Hz, 1H), 5.03 (ddt, J = 17.1, 5.5, 1.8 Hz, 1H), 4.98 (ddt, J = 10.0, 5.0, 1.5 Hz, 2H), 2.98-3.03 (m, 1H), 2.78-2.81 (m, 3H), 2.50 (dd, J = 5.0, 3.0 Hz, 1H), 2.28 (dd, J = 14.6, 6.0 Hz, 1H), 2.20 (dd, J = 14.6, 5.5 Hz, 1H), 1.71 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 16.7, 32.2, 42.5, 46.9, 51.4, 114.5, 123.9, 132.6, 136.9; HRMS (ESI): *m*/*z* for C₉H₁₅O [M+H]⁺, calculated 139.1117, found 139.1115.

7d: yield: 56 %, 94 % *ee*; $\mathbf{R}_f = 0.82$ (*c*-Hex:AcOEt = 5:1); $[\alpha]_D^{20} = -21.0$ (CHCl₃, c = 0.61); IR ($\tilde{\nu}$ / cm⁻¹) = 2974, 2918; ¹H-NMR (400 MHz, CDCl₃): δ 5.79 (ddt, *J* = 17.1, 10.0, 6.3 Hz, 1H), 5.23 (t, *J* = 7.3 Hz, 1H), 5.02 (dq, *J* = 17.1, 1.8 Hz, 1H), 4.96 (dq, *J* = 10.0, 1.8 Hz, 1H), 2.95 (m, 1H), 2.79-2.73 (m, 3H), 2.50 (dd, *J* = 5.0, 2.8 Hz, 1H), 2.38 (dd, *J* = 14.0, 5.5 Hz, 1H), 2.20 (dd, *J* = 14.0, 5.5 Hz, 1H), 1.80 (d, *J* = 1.0 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 137.3, 132.4, 124.7, 114.7, 51.3, 47.1, 34.9, 32.4, 24.5; HRMS (ESI): *m*/*z* for C₉H₁₅O [M+H]⁺, calculated 139.1117, found 139.1113.

7e: yield: 53 %, 91 % *ee*; $\mathbf{R}_f = 0.54$ (*n*-pentane:Et₂O = 10:1); $[\boldsymbol{\alpha}]_D^{20} = +2.8^\circ$ (CHCl₃, c = 0.65); **IR** ($\tilde{\nu}$ / cm⁻¹) = 3465, 3027, 2980, 2921, 2854; ¹**H-NMR** (400 MHz, CDCl₃): δ 7.31-7.26 (m, 2H), 7.21-7.18 (m, 3H), 5.49 (tq, J = 7.3, 1.3 Hz, 1H), 3.40 (d, J = 7.3 Hz, 2H), 3.02 (dddd, J = 6.0, 5.3, 4.0, 2.7 Hz, 1H), 2.79 (dd, J = 5.0, 4.0 Hz, 1H), 2.51 (dd, J = 5.0, 2.7 Hz, 1H), 2.30 (dd, J = 14.6, 6.0 Hz, 1H), 2.24 (dd, J = 14.6, 5.3 Hz, 1H), 1.81 (d, J = 1.2 Hz, 3H); ¹³**C- NMR** (101 MHz, CDCl₃): δ 141.3, 132.5, 128.5 (2C), 128.4 (2C), 125.9, 125.6, 51.5, 47.0, 42.6, 34.3, 17.0; **HRMS** (**ESI**): m/z for C₁₃H₁₇O [M+H]⁺, calculated 189.1274, found 189.1271.

7f: yield: 56 %, 93 % *ee*; \mathbf{R}_f = 0.62 (*c*-Hex:EtOAc = 2:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}$ = -11.7 (CHCl₃, c = 1.64); IR ($\tilde{\nu}$ / cm⁻¹) = 3470, 3027, 2970, 2917, 2853; ¹H-NMR (400 MHz, CDCl₃): δ 7.29-7.23 (m, 2H), 7.19-7.16 (m, 3H), 5.47 (t, *J* = 7.5 Hz, 1H), 3.36 (d, *J* = 7.5 Hz, 2H), 3.00-2.96 (m, 1H), 2.76 (t, *J* = 4.8 Hz, 1H), 2.51 (dd, *J* = 5.0, 2.8 Hz, 1H), 2.46 (dd, *J* = 14.1, 5.8 Hz, 1H), 2.31 (dd, *J* = 14.1, 5.3 Hz, 1H), 1.82 (d, *J* = 1.3 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 141.1, 131.9, 128.4 (2C), 128.3 (2C), 126.1, 125.8, 51.2, 47.0, 34.8, 34.2, 24.3. HRMS (ESI): *m/z* for C₁₃H₁₇O [M+H]⁺, calculated 189.1274, found 189.1271.

IV. Stepwise synthesis of epoxides 7g-h via the chloroalcohols 6g-h (table 1)

To a stirred solution of (*R*)-citronellal (77 mg, 0.5 mmol, 1.0 eq.) in MeCN (1 mL) at -30 °C was added (2*R*,5*S*)-2-(*tert*-butyl)-3,5-dimethylimidazolidin-4-one-TFA-salt **1**·TFA (40 mg, 0.30 mmol, 30 mol%) and successively NCS (87 mg, 0.65 mmol, 1.3 eq.). The reaction mixture was stirred for 1.5 h, allowed to warm to 0 °C and treated with NaBH₄ (47 mg, 2.50 mmol, 2.5 eq.) and EtOH (0.5 mL). After stirring for 15 min at 0 °C, the reaction was quenched by the addition of sat. aq. NH₄Cl-solution (2 mL), diluted with CH₂Cl₂ (2 mL) and stirred for 5 min at RT. The layers were separated, the aqueous layer extracted with CH₂Cl₂ (3 × 5 mL), the combined organic layers dried over MgSO₄ and the solvents removed under reduced pressure. The crude product was purified by flash column chromatography (*n*-pentane:Et₂O = 25:1) and the desired (2*S*,3*R*)-2-chloro-3,7-dimethyloct-6-en-1-ol **6g** (69 mg, 0.36 mmol, 73%, 99% *de*) obtained as a colourless oil.

R_f = 0.18 (*n*-pentane:Et₂O = 5:1); $[α]_D^{20} = -1.52$ (CHCl₃, c = 1.23); ; **IR** ($\tilde{\nu}$ / cm⁻¹): 3443, 2966, 2926, 2878, 2857, 1671, 1620, 1452, 1379, 1077, 1029, 953, 823, 666; ¹H-NMR (500 MHz, CDCl₃): δ 5.09 (tt, *J* = 7.1, 1.3 Hz, 1H), 4.07 (m, 1H), 3.76 (d, *J* = 6.5 Hz, 2H), 2.19 (brs, 1H), 2.01 (q, *J* = 7.6 Hz, 2H), 1.85-1.93 (m, 1H), 1.69 (s, 3H), 1.61 (s, 3H), 1.48-1.57 (m, 1H), 1.28-1.37 (m, 1H), 0.96 (d, *J* = 6.5 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): δ

131.9, 123.8, 70.0, 65.7, 35.3, 34.2, 25.6, 25.2, 17.6, 14.5; **HRMS** (EI) m/z calculated for C₁₀H₁₉OCl (M^{•+}) 190.1118, found 190.1114; calculated for C₁₀H₁₉O³⁷Cl (M^{•+}) 192.1089, found 192.1082.

To a stirred solution of (2S,3R)-2-chloro-3,7-dimethyloct-6-en-1-ol **6g** (381 mg, 2.00 mmol, 1.0 eq.) in MeCN (2 mL) was added a NaOH/EtOH/H₂O-solution (8 mL) and the reaction mixture was stirred for 2 h at rt. After addition of *n*-pentane (5 mL) the layers were separated, the aqueous layer extracted with *n*-pentane (3 x 5 mL), the combined organic layers dried over Na₂SO₄ and the solvents removed under reduced pressure. The crude product was purified by flash column chromatography (*n*-pentane:Et₂O = 100:1) and the desired (*R*)-2-((*R*)-6-methylhept-5-en-2-yl)oxirane **7g** (302 mg, 1.97 mmol, 98%, 98% *de*) obtained as a colourless oil.

R_f = 0.38 (*n*-pentane:Et₂O = 15:1); $[α]_D^{20}$ = +6.92 (CHCl₃, *c* = 0.96); **IR** ($\tilde{ν}$ / cm⁻¹): 3043, 2965, 2919, 2856, 1483, 1457, 1412, 1376, 1258, 1115, 985, 964, 931, 916, 882, 836, 736, 489; ¹**H** -**NMR** (500 MHz, CDCl₃): δ 5.08 (tt, *J* = 7.1, 1.2 Hz, 1H), 2.65-2.71 (m, 2H), 2.44 (dd, *J* = 5.0, 2.8 Hz, 1H), 1.97-2.11 (m, 2H), 1.65 (s, 3H), 1.58 (s, 3H), 1.51-1.57 (m, 1H), 1.26-1.36 (m, 2H), 0.91 (d, *J* = 6.6 Hz, 3H); ¹³**C-NMR** (126 MHz, CDCl₃): δ 131.3, 124.3, 56.8, 45.4, 35.5, 34.6, 25.6, 25.3, 17.5, 15.4; **HRMS** (ESI) *m*/*z* calculated for C₁₀H₁₇ ([M-H₂O]⁺) 137.13248, found 137.3218; calculated for C₁₀H₁₉O ([M+H]⁺) 155.1430, found 155.1429.

Applying the enantiomeric catalyst *ent* $1 \cdot \text{TFA}$ under the same reaction conditions (see **6g**) and the same scale (2R,3R)-2-chloro-3,7-dimethyloct-6-en-1-ol **6h** (67 mg, 0.35 mmol, 70%, >99% *de*) was obtained as a colourless oil.

R_f = 0.18 (*n*-pentane:Et₂O = 5:1); $[α]_D^{20}$ = +16.71 (CHCl₃, *c* = 0.75); **IR** ($\tilde{\nu}$ / cm⁻¹): 3375, 2965, 2928, 2877, 2858, 1455, 1379, 1259, 1199, 1071, 1031, 987, 953, 824, 669; ¹H-NMR (500 MHz, CDCl₃): δ 5.09 (t, *J* = 7.1 Hz, 1H), 3.98 (ddd, *J* = 8.3, 5.1, 3.8 Hz, 1H), 3.71-3.85 (m, 2H), 2.04-2.13 (m, 2H), 1.88-1.99 (m, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.52-1.60 (m, 1H),

1.27-1.35 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): δ 132.0, 123.9, 71.0, 64.9, 36.3, 32.7, 25.7, 25.3, 17.7, 16.3; **HRMS** (EI) *m/z* calculated for C₁₀H₁₉OCl (M^{•+}) 190.1119, found 190.1122; calculated for C₁₀H₁₉O³⁷Cl (M^{•+}) 192.1089, found 192.1077.

Applying the same reaction conditions and the same scale (see **7g**) (*S*)-2-((*R*)-6-methylhept-5en-2-yl)oxirane **7h** (252 mg, 1.64 mmol, 72%, 97% *de*) was obtained as a colourless oil. $\mathbf{R}_{f} = 0.38$ (*n*-pentane:Et₂O = 15:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20} = +2.77$ (CHCl₃, c = 0.94); \mathbf{IR} ($\tilde{\nu}$ / cm⁻¹): 3044, 2965, 2922, 2855, 1483, 1454, 1375, 929, 916, 892, 856, 833, 426, 406; ¹H-NMR (500 MHz, CDCl₃): δ 5.09 (tt, J = 7.1, 1.2 Hz, 1H), 2.76 (dd, J = 4.9, 4.0 Hz, 1H), 2.67-2.71 (m, 1H), 2.53 (dd, J = 5.0, 2.8 Hz, 1H), 1.97-2.10 (m, 2H), 1.69 (s, 3H), 1.61 (s, 3H), 1.40-1.49 (m, 1H), 1.26-1.35 (m, 2H), 1.04 (d, J = 6.4 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): δ 131.6, 124.2, 56.9, 46.8, 35.7, 33.6, 25.6, 25.5, 17.6, 17.0; HRMS (ESI) *m/z* calculated for C₁₀H₁₉O ([M+H]⁺) 155.1430, found 155.1429

V. Synthesis of substituted cyclopropanes 8-10 from epoxides 7c-f and i

General procedure:

t-BuLi (1.2 eq., 1.6 M in *n*-pentane) was added dropwise to a stirred solution of epoxide 7c-f,i (1.0 eq.) in THF/DMPU (6/1, 0.2 M) at -78 °C. After 30 min, the orange solution was warmed slowly to rt and quenched after a further 30 min with sat. aq. NH₄Cl. The aqueous phase was extracted with EtOAc, the combined organic phases washed with brine and dried over MgSO₄. After evaporation of all solvents, the residue was purified by flash column chromatography (SiO₂, conditions: see below).

Characterization of cyclopropane 8

Using epoxide **7d**, an inseparable 10:1 mixture favouring the *trans*-isomer (97 % isolated yield) was obtained. Epoxide **7c** yielded in an inseparable 1:1 mixture of the *trans*- and *cis*-isomer (90 % isolated yield).

trans-8: (as a diastereomeric mixture of 10:1, only main isomer): $\mathbf{R}_f = 0.42$ (*c*-Hex:AcOEt = 2:1); $[\alpha]_D{}^{20} = -26.2^\circ$ (CHCl₃, c = 0.32); $\mathbf{IR} (\tilde{\nu} / cm^{-1}) = 3443$, 2994, 2957, 2926, 2877, 1645; ¹H-NMR (400 MHz, CDCl₃): δ 6.29 (dt, J = 17.1, 10.3 Hz, 1H), 6.04 (dd, J = 15.3, 10.3 Hz, 1H), 5.33 (d, J = 15.3 Hz, 1H), 5.10 (dd, J = 17.1, 1.3 Hz, 1H), 4.94 (dd, J = 10.3, 1.3 Hz, 1H), 3.81 (dd, J = 11.5, 6.3 Hz, 1H), 3.59 (dd, J = 11.5, 8.5 Hz, 1H), 1.27 (s, 3H), 1.24 (m, 1H), 0.86 (dd, J = 9.0, 4.8 Hz, 1H), 0.53 (dd, J = 5.8, 4.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.4, 137.2, 126.7, 114.6, 63.4, 28.5, 21.9, 19.8, 16.0; HRMS (ESI): m/z for C₉H₁₅O [M+H]⁺, calculated 139.1117, found 139.1112.

cis-8: **R**_f = 0.42 (*c*-Hex:AcOEt = 2:1); ¹H-NMR (500 MHz, CDCl₃): δ 6.34 (dt, *J* = 16.9, 10.4 Hz, 1H), 6.14 (dd, *J* = 15.3, 10.4 Hz, 1H), 5.62 (d, *J* = 15.3 Hz, 1H), 5.12 (dd, *J* = 17.0, 1.7 Hz, 1H), 4.97 (dd, *J* = 10.1, 1.7 Hz, 1H), 3.74 (dd, *J* = 11.4, 6.2 Hz, 1H), 3.48 (dd, *J* = 11.6, 8.7 Hz, 1H), 1.23 (s, 3H), 1.25 (m, 1H), 0.83 (dd, *J* = 9.4, 4.9 Hz, 1H), 0.66 (dd, *J* = 5.4, 5.2 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ 137.4, 137.2, 130.3, 115.0, 63.7, 30.3, 23.5, 19.9, 16.0.

Characterization of cyclopropane 9

Using epoxide **7f**, an inseparable 8:1 mixture favouring the *trans*-isomer (69 % isolated yield) was obtained. Epoxide **7e** yielded in an inseparable 1:1 mixture of the *trans*- and *cis*-isomer (61 % isolated yield, 70 % brsm).

trans-8: (as a diastereomeric mixture of 8:1, only main isomer): $\mathbf{R}_f = 0.43$ (*c*-Hex:EtOAc = 2:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20} = -67.9$ (CHCl₃, $\mathbf{c} = 1.10$); \mathbf{IR} ($\tilde{\nu} / \mathbf{cm}^{-1}$) = 3438, 3059, 3024, 2954, 2926, 2876, 1644; ¹H-NMR (400 MHz, CDCl₃): δ 7.30-7.23 (m, 4H), 7.16-7.13 (m, 1H), 6.31 (d, *J* = 16.1 Hz, 1H), 5.80 (d, *J* = 16.1 Hz, 1H), 3.82 (dd, *J* = 11.5, 6.3 Hz, 1H), 3.60 (dd, *J* = 11.5, 8.5 Hz, 1H), 1.34 (s, 3H), 1.31-1.28 (m, 1H), 0.92 (dd, *J* = 9.0, 4.8 Hz, 1H), 0.56 (t, *J* = 5.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 138.9, 137.6, 128.5 (2C), 126.7, 125.7 (2C), 125.4, 63.3, 28.3, 22.1, 19.5, 16.0; HRMS (ESI): *m*/*z* for C₁₃H₁₇O [M+H]⁺, calculated 171.1168, found 171.1166.

cis-8: $\mathbf{R}_f = 0.43$ (*c*-Hex:EtOAc = 2:1); ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 4H), 7.23-7.17 (m, 1H), 6.47 (d, J = 15.8 Hz, 1H), 6.16 (d, J = 15.8 Hz, 1H), 3.87 (dd, J = 11.5, 5.0 Hz, 1H), 3.64 (dd, J = 11.3, 8.8 Hz, 1H), 1.38 (s, 3H), 1.37-1.33 (m, 1H), 0.97 (dd, J = 8.8, 4.8 Hz, 1H), 0.79 (t, J = 5.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 137.5, 133.0, 129.0, 128.5 (2C), 126.9, 125.8 (2C), 63.6, 30.1, 23.6, 22.4, 19.7.

Synthesis and characterization of epoxide 7i and cyclopropane 10

Alkyne SI-4

To a stirred solution of (3-phenylprop-1-ynyl)lithium¹ (267 mg, 2.19 mmol, 1 eq.) in dry THF (10.9 mL) under argon atmosphere at -78° C was added slowly (*S*)-(+)-epichlorhydrin (171 μ L, 2.19 mmol, 1.0 eq.). The solution was allowed to warm slowly to rt. After 16 h, the reaction was quenched with an aqueous saturated NH₄Cl solution and extracted 3 times with Et₂O. The organic phases were dried with anhydrous MgSO₄, filtered and concentrated under

¹A. Maercker, J. Fischenich, *Tetrahedron* 1995, **51**, 10209-10218.

reduced pressure. The crude product was purified by flash column chromatography (SiO₂, *n*-Pentane:Et₂O = 10:1). Highly volatile **SI-4** (75.2 mg, 437 μ mol, 20 %) was isolated as yellow oil in a *n*-pentane:Et₂O solution.

R_f = 0.21 (*c*-Hex:AcOEt = 20:1); $[α]_D^{20} = -1.3$ (Et₂O, c = 0.96); **IR** ($\tilde{\nu}$ / cm⁻¹) = 3459, 2960, 1714, 1643, 1360, 1094; ¹**H-NMR** (500 MHz, CDCl₃): δ 7.29-7.22 (m, 4H), 7.16 (m, 1H), 3.52 (t, *J* = 2.3 Hz, 2H), 3.05 (m, 1H), 2.72 (dd, *J* = 4.7, 4.0 Hz, 1H), 2.61 (dd, *J* = 4.7, 2.5 Hz, 1H), 2.59 (ddt, *J* = 17.1, 4.5, 2.4 Hz, 1H), 2.59 (ddt, *J* = 17.1, 5.0, 2.5 Hz, 1H); ¹³**C**-**NMR** (125 MHz, CDCl₃): δ 137.1, 128.6 (2C), 127.9 (2C), 126.6, 80.3, 76.6, 50.3, 46.5, 25.2, 22.7, **HRMS** (ESI): *m/z* for C₁₂H₁₃O [M+H]⁺, calculated 173.0957, found 173.0961.

Epoxide 7i

To a stirred solution of **SI-4** (10 mg, 59.2 μ mol, 1.0 equiv.) in AcOEt (0.67 mL) under argon atmosphere was added Lindlar Pd (1.7 mg). The solution was put under H₂ atmosphere through a quadruple cycle vacuum/H₂ atmosphere. After 1.5 h of stirring at rt, the solution was filtered under celite, washed with Et₂O and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, *n*-pentane:Et₂O = 10:1). Highly volatile **7i** (5.0 mg, 28.7 μ mol, 48%) was isolated as colorless liquid in a *n*pentane:Et₂O solution.

R_f = 0.59 (*c*-Hex:AcOEt = 5:1); ¹**H-NMR** (400 MHz, CDCl₃): δ 7.28 (m, 2H), 7.20 (m, 3H), 5.74 (m, 1H), 5.57 (m, 1H), 3.42 (d, J = 7.5 Hz, 2H), 3.01 (m, 1H), 2.77 (dd, J = 4.8, 4.3 Hz, 1H), 2.54 (dd, J = 4.8, 2.8 Hz, 1H), 2.49 (m, 1H), 2.43 (m, 1H); ¹³**C-NMR** (100 MHz, CDCl₃): δ 140.6, 131.4 (2C), 128.6 (2C), 128.5, 127.2 (2C), 51.7, 46.8, 34.3, 33.7.

Cyclopropane 10

To a stirred solution of **7i** (7.2 mg, 41.3 µmol, 1.0 eq.) in a dry mixture THF/DMPU (6/1, 0.21 mL) under argon atmosphere at -78° C was added *t*-BuLi (1.6 M in *n*-pentane, 31.0 µL, 49.6 µmol, 1.2 equiv.). After 30 min of stirring at -78° C, the solution was quenched with an aqueous saturated NH₄Cl-solution and extracted 3 times with Et₂O. The organic phases were dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, *n*-pentane:Et₂O = 5:1 to 1:1). cyclopropane **10** (5.3 mg, 30.4 µmol, 74%, *d.r.* = 6:1) was isolated as colorless oil.

R_f = 0.45 (*c*-Hex:AcOEt = 2:1); $[α]_D^{20}$ = +45.1 (CHCl₃, c = 0.37); ¹H-NMR (400 MHz, CDCl₃): δ 7.32-7.17 (m, 5H), 6.47 (d, *J* = 15.7 Hz, 1H), 5.80 (dd, *J* = 15.7, 8.8 Hz, 1H), 3.57 (d, *J* = 7.0 Hz, 2H), 1.55-1.47 (m, 1H), 1.32-1.25 (m, 1H), 0.80 (t, *J* = 7.0 Hz, 2H), OH-proton is missing; ¹³C-NMR (100 MHz, CDCl₃): δ 137.4, 132.7, 128.4 (2C), 128.0, 126.7 (2C), 125.6, 66.2, 23.4, 20.3, 12.1.

The analytical data (¹H-NMR, ¹³C-NMR, $[\alpha]_D^{20}$) of compound **10** match with previously published results according to *Charette et al.*² However, the absolute configuration of the cyclopropane clearly depends on the regioselective epichlorhydrin opening. In our case, we expect in the first step an epoxide opening, followed by an intramolecular chlorine displacement.

² A. B. Charette, C. Molinaro and C. Brochu, J. Am. Chem. Soc. 2001, **123**, 12168-12175.

VI. Synthesis of (–)-*cis*-aerangis lactone (12)

Alcohol 11

To a stirred suspension of CuCN (17.9 mg, 0.20 mmol, 20 mol%) and epoxide *ent*-**7h** (154 mg, 1.00 mmol, 1.0 eq.) in THF (1.4 mL) at -30 °C under Argon was added und dropwise *n*-BuLi (1.26 mL, 1.6 M in n-hexane, 2.00 mmol, 2.0 eq.). The reaction mixture was stirred for 5 h, allowed to warm to RT and quenched with aqueous saturated NH₄Cl solution. The layers were separated and the organic phase was extracted with EtOAc (3 ×10 mL). The combined organic layers were dried over MgSO₄ and the solvents removed under reduced pressure. The crude product was purified by flash column chromatography (*n*-pentane:EtOAc = 220:1) and the desired alcohol **11** (152 mg, 0.72 mmol, 72%) was obtained as a slightly yellow oil. **R**_f = 0.29 (*n*-pentane:EtOAc = 15:1); $[\alpha]_D^{20} = -5.9$ (CHCl₃, c = 1.04); **IR** ($\tilde{\nu}$ / cm⁻¹): 828,

943, 983, 1013, 1082, 1118, 1378, 1458, 2857, 2928, 2959, 3377; ¹H-NMR (500 MHz, CDCl₃) δ 5.07 - 5.12 (m, 1 H), 3.47 - 3.51 (m, 1 H), 1.91 - 2.08 (m, 2 H), 1.68 (s, 3 H), 1.60 (s, 3 H), 1.37 - 1.53 (m, 6 H), 1.25 - 1.36 (m, 5 H), 1.16 - 1.25 (m, 1 H), 0.85 - 0.92 (m, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 131.3, 124.6, 75.0, 37.7, 34.4, 33.4, 31.9, 25.9, 25.7, 25.6, 22.6, 17.6, 14.0, 13.5; HRMS (ESI): m/z for C₁₄H₂₉O [M+H]⁺, calculated 213.2213, found 213.2213.

(-)-cis-aerangis lactone (12)

Ozone was bubbled through a stirred solution of alcohol **9** (250 mg, 1.18 mmol, 1.0 eq.) in CH_2Cl_2 (45 mL) at -78°C until a blue colour appeared. Subsequently, air was blown through the mixture until the blue colour disappeared. PPh₃ (926 mg, 3.53 mmol, 3.0 eq.) was added, the solution was allowed to warm to rt and stirred for 2 h. The solvent was removed under

reduced pressure. The crude product was filtrated over SiO_2 (rinsed with *n*-pentane:Et₂O = 15:1) and used in the next step without further purification.

To a stirred solution of IBX (602 mg, 2.15 mmol, 2.6 eq.) in DMSO (4.3 mL) was added a solution of the crude lactole (not shown) DMSO (1.0 mL). After 1 h of stirring at rt the reaction was cooled to 0 °C and quenched by the addition of H₂O. The white solid was filtered and washed with Et₂O (3×10 mL). The layers were separated, the aqueous phase extracted with Et₂O (3×10 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the crude product purified by flash column chromatography (*n*-pentane:EtOAc = 5:1), yielding (–)-*cis*-aerangis lactone (**12**) (87 mg, 0.48 mmol, 41% over two steps) as a light yellow oil.

R_f = 0.30 (*n*-pentane:EtOAc = 5:1); $[α]_D^{20} = -57.8$ (CHCl₃, c = 1.0); **IR** ($\tilde{ν}$ / cm⁻¹): 732, 909, 995, 1070, 1097, 1123, 1204, 1244, 1344, 1380, 1462, 1735, 2872, 2934, 3465; ¹H-NMR (500 MHz, CDCl₃) δ 4.25 (ddd, J = 8.6, 4.4, 3.1 Hz, 1 H), 2.50 (t, J = 7.3 Hz, 2 H), 1.94 - 2.05 (m, 2 H), 1.58 - 1.68 (m, 2 H), 1.41 - 1.55 (m, 2 H), 1.22 - 1.34 (m, 5 H), 0.93 (d, J = 6.9 Hz, 3 H), 0.86 (t, J = 6.7 Hz, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.0, 82.9, 31.8, 31.5, 29.2, 26.6, 25.9, 25.1, 22.4, 13.9, 12.3; **HRMS** (ESI): *m*/*z* for C₁₁H₂₀O₂ [M+H]⁺, calculated 184.1463, found 184.1462.

Data File C:\CHEM32\2\DATA\PHILIPP\AS_29_4.D Sample Name: AS_29

```
Acq. Operator : Bokelmann
Acq. Instrument : GC 6850
                                          Location : Vial 1
Injection Date : 23-Nov-10, 14:20:35
                                               Inj: 1
                                         Inj Volume : 0.2 µl
            : C:\CHEM32\2\METHODS\140° 60MIN.M
Acq. Method
Last changed
             : 11/23/2010 2:18:16 PM by Bokelmann
               (modified after loading)
Analysis Method : C:\CHEM32\2\METHODS\100°_60MIN.M
Last changed
           : 1/18/2011 10:50:02 AM by Bokelmann
               (modified after loading)
Sample Info
             : MN Hydrodex-ß-6tDBM
               140 °C isotherm
               1.1 mL/min He
               50:1 split
```

Peak	RetTime	Туре	Width	Area	Height	Area
ŧ	[min]		[min]	[pA*s]	[pA]	8
1	35.887	MM	0.2915	37.21351	2.12794	51.28596
2	36.574	MM	0.2936	35.34731	2.00632	48.71404

Data File C:\CHEM32\2\DATA\PHILIPP\AS47.D Sample Name: AS47

```
Acq. Operator : Bokelmann
Acq. Instrument : GC 6850
                                           Location : Vial 1
Injection Date : 10-Dec-10, 09:03:57
                                               Inj: 1
                                         Inj Volume : 0.2 µl
             : C:\CHEM32\2\METHODS\AS 140 1 1ML 40MIN.M
Acq. Method
Last changed
             : 12/10/2010 9:01:20 AM by Bokelmann
               (modified after loading)
Analysis Method : C:\CHEM32\2\METHODS\100° 60MIN.M
Last changed
             : 1/18/2011 10:52:52 AM by Bokelmann
                (modified after loading)
             : MN Hydrodex-ß-6tDBM
Sample Info
               140 °C isotherm
               1.1 ml/min He
               50:1 split
```


sent and loss one same and they have	 a serie and a serie and a serie and a serie in the series of the series		and the local hand have been then been been and	 sent inter were inter much inter some time

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[pA*s]	[pA]	80
1	35.634	BV	0.1780	16.87003	1.20027	2.63862
2	36.028	VB	0.2709	622.47986	27.62294	97.36138

```
______
_____
Acq. Operator
               : Bokelmann
Acq. Instrument : GC 6850
                                              Location : Vial 5
Injection Date : 25-Mar-11, 14:15:43
                                                   Inj: 1
                                             Inj Volume : 0.2 µl
             : C:\CHEM32\2\METHODS\110° 120MIN.M
Acq. Method
              : 3/25/2011 2:14:33 PM by Bokelmann
Last changed
                 (modified after loading)
Analysis Method : C:\CHEM32\2\METHODS\SÄULENEINBAU.M
              : 7/8/2011 12:49:57 PM by Bokelmann
Last changed
                 (modified after loading)
Sample Info
               : MN-Lipodex E
                110 oC isotherm
                1.1 mL/min He
                 50:1 split
```


Peak #	RetTime [min]	Тур	pe	Width [min]	Area [pA*s]	Height [pA]	Area ۶
1	1.321	ΒB	S	0.0160	2.97646e4	2.88246e4	99.91683
2	1.402	BB	Х	0.0146	1.26667	1.44766	0.00425
3	14.783	MF		0.1615	22.33759	2.30494	0.07499
4	15.140	FM		0.1875	1.17177	1.04148e-1	0.00393

```
Acq. Operator
             : Bokelmann
Acq. Instrument : GC 6850
                                          Location : Vial 3
Injection Date : 25-Mar-11, 13:58:03
                                               Inj: 1
                                         Inj Volume : 0.2 µl
             : C:\CHEM32\2\METHODS\110°_120MIN.M
Acq. Method
            : 3/25/2011 1:56:28 PM by Bokelmann
Last changed
Analysis Method : C:\CHEM32\2\METHODS\SÄULENEINBAU.M
Last changed
             : 7/8/2011 12:48:37 PM by Bokelmann
               (modified after loading)
Sample Info
             : MN-Lipodex E
               110 oC isotherm
               1.1 mL/min He
               50:1 split
```


Sample Info : MN Hydrodex-&-6TDBM 80°C 0.9ml/min He 100:1 split

Sample Info : MN-Hydrodex-&-TBDM 80 oC isotherm 0.9 mL/min He 100:1 split


```
Sample Info : 99/1 n-Heptan/IPA
0.4 mL/min
DAICEL OD-H, 10°C
```



```
Sample Info : 99/1 n-Heptan/IPA
0.3 mL/min
DAICEL OD-H, 10°C
```


MN-Hydrodex-6β-TBDM, 60 °C isotherm, 1.1 mL/min He, 30:1 split

