Supporting Information on

An Overview on Nanoparticles Commonly Used in Fluorescent Bioimaging

Otto S. Wolfbeis

Table S1. Representative examples of nanoparticles (NPs) for use in plain (non-bimodal) fluorescence (bio)imaging

(bio)imaging	1
Material and application	Ref.
Reviews on synthesis, characterization, properties and uses of P-dots in bioimaging and other fields	1,2
Review on carbonic nanomaterials for sensing and imaging	3
Review on nanoparticles and nanocomposites for fluorescence sensing and imaging	4
SiNPs doped with NIR dyes to enable imaging in the optical window of biomatter; allows simultaneous imaging with	5
other commonly used dyes or fluorescent proteins	
SiNPs wrapped with graphene oxide; this hybrid material exhibits good stability and protects the fluorescent dye in the	6
NPs from external attack	
Hydrophilic fluorescent core-shell SiNPs containing NIR cyanine chromophore	7
SiNPs doped with green fluorescence protein	8
Organic NPs containing a dye that undergoes aggregation-induced emission; applied to cell imaging	9
Photostable fluorescent organic NPs with aggregation-induced emission for noninvasive long-term cell tracing	10
Organic NPs with red fluorescent aggregation-induced emission dye, and cell imaging applications	11,12
Biocompatible organic polymer NPs prepared from a zwitterionic monomer: doped with red fluorescent dve that	13
displays aggregation-induced emission: applied to cell imaging	
Aggregation-induced emission based fluorescent NPs for cell imaging applications	14
Reversibly photoswitchable dual-color fluorescent NPs for live-cell imaging: uses photochromism and a FRET system.	15
used in HEK-293 cells where it display red or green fluorescence depending on the wavelength of light to which the	
cells are highlighted	
Carbon dots for multicolor patterning sensors and bioimaging	16
Mesoporous upconverting NCs coated with a shell of silica: bioimaging of living cells	17
Tm(III) doped NaYbF ₄ unconversion NPs coated with CaF_2 , excellent brightness and suitable for high-contrast deep	18
tissue imaging	
Silica NPs loaded with the sensitizer Pd(II) octaethylporphyrin and an annihilator: low-power excitation: used for	19
bioimaging of lymph nodes of living mice	
C-dots functionalized with and rhodamine B for imaging cells: excitation at 225 nm is disadvantageous	20
Near-infrared emitting gold nanoclusters for tumor imaging in vivo	21
Fluorescent gold nanoclusters used as biocompatible marker for tracking endothelial cells: delivered into cells via the	22
liposome complex	
Sandwich-like SiO ₂ @CdTe@SiO ₂ fluorescent NPs for cellular imaging	23
O-dots loaded with fluorescent linosomes: fluorescence resonance energy transfer studies: NIR in-vivo imaging of	24
wouse fissue	
Clathrin- and caveolin-mediated endocytosis and macroninocytosis of 6-nm titanium dioxide (anastase) NPs in prostate	25
cancer PC-3M cells	
Biocompatible fluorescent hydroxyapatite NPs for live cell imaging	26
Calcium phosphate NPs doped with NIR emitting fluorophore: used for in vivo-imaging of	27
human breast cancer	
DNA-quantum dot sheath used to image and electrochemically detect cancer cells	28
Multicolor unconversion NaLuE ₄ NPs for plant cell imaging and detection of sodium fluorescein. NPs are paramagnetic	29
in strong magnetic field	
Comparative study on upconversion NPs prepared by hydrothermal synthesis and coated with poly(ethylene glycol)	30
polyethylenimine or 6-aminocapronic acid: used to image HeLa cells	
Unconversion NP based luminescence imaging of cells and small animals	31
Preparation of core-shell NaGdF ₄ upconversion NPs doped with luminescent lanthanide ions for used as NIR probes	32
NaYbF. Tm Gd NPs with engineered NIR-to-NIR unconversion fluorescence for in-vivo imaging	33
10-nm sized lanthanide-doned NaLuF ₄ unconversion NPs for imaging of a whole-body black mouse with a penetration	34
denth of ~ 2 cm	
NaYF. Nd nanocrystals for in-vivo bioimaging with minimized heating	35
	1

Table S2. Representative examples of fluorescent nanoparticles (NPs) for use in targeted imaging. Numerous others are known based on the use of various kinds of (bright) nanoparticles and surface-modified in order to target specific domains

Method and nanomaterial	Ref.
Quantum dots functionalized with streptavidin and a zwitterions used to track the cannabinoid receptor in live cells	36
Graphene oxide nanosheet modified with an aptamer and carboxyfluorescein used for intracellular molecular targeting	37
Silver cluster with aptamer used to specifically mark the nucleus of live cells	38
Two-photon imaging of immune-functionalized NPs targeted to breast cancer cell line SK-BR-3; alternating 780-nm	39
two-photon and 488-nm single-photon excitations induce reversible on-off fluorescence switching	
Antigen-loaded pH-sensitive hydrogel particles; used for T-cell activation in vivo	40
Semiconducting conjugated organic polymer NPs with folic acid on surface to target and image tumor tissue	41
Nanoprobe enables all targeted cells to be imaged (at 680 nm) and specific cells to be photoactivated using 405- nm	42
light; photoactivated cells can then be tracked (at 525 nm) spatiotemporally	
High contrast targeted imaging in-vivo using peptide labeled upconversion NPs	43
Poly(ethylene glycol)-co-poly(lactic acid) NPs dyes with NIR fluorophore and labeled with two targeting peptides; used	44
to target amyloid plaques in the brains of Alzheimer's disease mice	
Gold NPs modified with hairpin DNA to target mRNA	45
Aptamer-based silver NPs used to target and image intracellular proteins	46
Amino-modified lanthanide-doped zirconia NPs for use in time-resolved FRET assay and in targeted imaging	47
Hyperbranched dendritic NPs for sub-cellular targeting of doxorubicin and the sensitization breast cancer cells by	48
circumventing microsomal glutathione transferase-mediated drug resistance	

Table S3. Representative examples of fluorescent nanoparticles (NPs) for sensing and imaging of intracellular pH values

Materials and Methods	Ref.
Dually colored mesoporous SiNPs with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity	49
CdSe/ZnS quantum dot photoluminescence lifetime-based pH nanosensors; capped with mercaptopropionic acid;	50
lifetime depends on pH in the range from 5.2 to 6.9; applied to simulated intracellular media	
Quantum dot-fluorescent protein FRET probes for sensing intracellular pH; used to visualize the acidification of	51
endosomes in living cells following polyarginine-mediated uptake	
C-dots labeled with fluorophores FITC and RBITC (acting as ratiometric probe and reference, respectively) for intracellular pH ² applied to intract HeLa cells under oxidative stress	52
C-dots used for ratiometric (2-wavelength) sensing of intracellular pH ⁻ uses two types of C-dots one exhibiting	53
excitation-independent and pH independent blue emission, the other showing excitation-dependent and pH dependent	
full-color emissions	
Polyurethane nanogel for ratiometric fluorescent sensing of intracellular pH values; uses FRET; three dyes are employed	54
(the pH probe Bromothymol Blue, Nile Red and a coumarin)	
Nanogel containing a ratiometric pH probe (8-hydroxypyrene-1-carbaldehyde) for imaging intracellular pH; pH induces	55
and up to 100-nm hypsochromic shift	
Fluorescent pH-sensitive NPs in an agarose matrix for imaging of bacterial growth and metabolism	56
Hydrogel particles made from a block copolymer (made from modified PEO, PMMA and PMA); multicolored; pH-	57
activatable; pK _a values range from pH 5.2, 6.4, 6.9, to 7.2.; used to image the pH of lung cancer cells.	
Mesoporous silica NPs (MSNs); pH can be probed by ratiometric fluoroimaging; positively charged MSNs locate in	58
higher pH regions (cytosol mostly), negatively charged MSNs mainly trapped in acidic endosomes.	
Crosslinked polyacrylamide NPs used for time-resolved imaging; NPs contain two pH indicators; applied to sense pH in	59
the endosomes-lyosome pathway in living cells	
Mesoporous silica NPs to sense and image pH; dyed with FTC (pH responsive) and RITC (the reference dye); covers	60
wide pH range	
Ultrabright semiconducting P-dots labeled with the pH probe fluorescein; ratiometric (2-wavelength) sensing of pH in	61
HeLa cells	
Gold NP pH sensor based on ratiometric photoinduced electron-transfer and confocal microscopy to image localized intracellular pH	62
Indicator-labelled PAA particles used to image intra(sub)cellular pH via 2-photon-excited fluorescence; non-targeted	63
nanosensors were modified with a peptide in order to target them to escape/avoid acidic compartments in cancer cells	
Polystyrene nanosensors used for 2D luminescence imaging of pH in wounds in vivo	64
Q-dots based FRET sensing scheme for intracellular pH values; images obtained by ratioing the fluorescence intensities	65
of the Q-dots (the reference) and a pH-sensitive fluorescent protein; FRET efficiency is highly pH-dependent	
pH-sensitive CdSe/ZnSe/ZnS quantum dots used to image pH value in human ovarian cancer cells	66
Nanoprobes for sensing and imaging of pH based on resonance energy transfer from an UCNP to a pH-dependent dye covalently bound to the aminosilane surface	67

Table S4. Representative examples of fluorescent nanoparticles (NPs) for sensing and imaging of oxygen in biomatter

bioinattei	
Material and method	Ref.
Nontoxic, targeted, and ratiometric 30-nm oxygen nanosensors made of polyacrylamide; uses two NIR luminescent dyes	68
(probe and reference) and surface-conjugated tumor-specific peptides to target tumor cells; used to sense oxygen in	
tumorous tissue	
Polystyrene nanosensors for sensing and imaging of extracellular, intracellular, and intra-mitochondrial oxygen; targeted	69
sensing of O ₂ is accomplished by proper modification of the surface of the polystyrene NPs with either silica,	
polylysine, or triphenylphosphonium groups	
Upconversion NP sensors for imaging oxygen (hypoxia) in malignant solid tumors upon NIR excitation	70
PS nanoparticles dyed with a ruthenium-based probe; applied to image cellular oxygen via 2-photon excitation	71
Sol-gel based spherical optical nanosensors; applied to ratiometric sensing of oxygen inside living rat C6 glioma cells	72
NPs made from a hydrophobic composite and having a PEG shell; membrane-impermeable; complexes of Ir(III), Ru(II),	73
Pt(II) and Pd(II) used as indicator probes	
Nanosensors consisting of a hydrophobic silica-rigidized core (Pluronic) and a hydrophilic PEG shell; labeled with a pH	74
probe and an oxygen probe; applied to image intracellular oxygen and pH values	
Polystyrene based luminescent dually responding nanosensors (for pH and oxygen) can visualize extracellular pH-	75
gradients and hypoxia on chronic wounds that disrupt epidermal repair	
Dendrimer probe (referred to as <i>Oxyphore</i> TM) used to sense local oxygen concentration in the bone marrow of live mice	76
Phosphorescent dendrimer probe used for functional imaging of cerebral oxygenation	77
Fluorescent NPs for sensing oxygen; surface modified with poly-L-lysine to favor internalization; contain a red	78
fluorescent quenchable probe for oxygen and a green emitting reference dye	
Cationic hydrogel NPs dyed with a Pt(II)porphyrin oxygen probe and poly(9,9-dioctylfluorene) acting as a fluorophore	79
in a FRET system and as a 2-photon antenna	

Table S5. Selected examples of fluorescent nanoparticles (NPs) for use in intracellular sensing/imaging of ions, organic and other species

Material and method	Ref.
Indicator dye for Mg(II) immobilized in polyacrylamide NPs (40 nm i.d.); dynamic range $1 - 30$ mM; 2-wavelength ratiometric sensing; used to monitor Mg(II) in C6 glioma cells	80
Ca(II)-sensitive indicator dve and Ca(II)-insensitive reference dve in poly(acrylamide-co-decylmethacrylate) NPs:	81
responds with a K_d of 293 nM	
Silica NPs dyed with the calcium probe Fluo-4 and an inert reference dye; coated with dextran; dissociation constant is	82
520 nM which covers the physiological range	
Optical nanosensors ("PEBBLE" type) using fluorescent probes and organic polymer hosts; used to image both Ca(II)	83
and pH values	
Silica NPs functionalized with 8-aminoquinoline for imaging Zn(II) in yeast cell suspension	84
Silica-coated thiol-enriched and Zn-doped CdS quantum dots; applied as a turn-on fluorescent probe for imaging	85
intracellular Zn(II) and Cd(II) in endophytes	
Q-dots covered with a dendron and a Cu(II)-free derivative of zinc superoxide dismutase; used to image changes of	86
intracellular Cu(II) levels with red-to-yellow color change	
Gold NPs functionalized with BODIPY as a fluoroprobe for imaging Cu(II) in living cells	87
Chloride probe lucigenin self-assembled on mercaptopropionic acid capped QDs; lifetimes of both QD and lucigenin	88
change with chloride concentration; applied to lifetime imaging in simulated intracellular media	
Nanosensor synthesized by linking a chloride receptor to a water soluble CdSe/ZnS quantum dot; emission peaking at	89
620 nm quenched by a photo-induced electron transfer mechanism; applied to epithelial cells	
C-dots acting as fluorescent probes for iodide	90
Iridium(III) complex coated onto a nanosystem for ratiometric luminescence bioimaging of cyanide anion	91
Probing phosphate ion via fluorescent gold nanoclusters capped with 11-mercaptoundecanoic acid and Eu(III) ion	92
Two-photon turn-on fluorescent probe based on C-dots for imaging H ₂ S in cells	93
NIR-fluorescent carbon nanotube nanosensors for spatiotemporal NO signalling in cell cultures	94
PEG-ligated single-walled carbon nanotubes injected into mice for determination of local NO concentration; detection	95
limit is 1 mM; half-life for liver retention is 4 h; NPs clearing the lungs within 2 h after injection	
C-dot based nanosensor for chromium(VI) and ascorbate based on an inner filter effect	96
Ratiometric fluorescent probe for the hydroxy radical in live cells based on gold nanoclusters	97
Glucose imaged by using polyacrylamide-based, ratiometric nanosensors (PEBBLEs) that incorporate glucose oxidase	98
and an oxygen sensitive fluorescent Ru(II) indicator	
Glucose imaged with a gold nanoprobe carrying apo-glucose oxidase; method is based on FRET between apo-GOx and	99
dextran labeled with fluorescein isothiocyanate; no oxygen consumed, no H ₂ O ₂ formed	

Table S6. Representative examples of fluorescent nanoparticles (NPs) for use in intracellular sensing/imaging of temperature (*T*)

Methods and materials	Ref.
Review on probes and NPs for sensing temperature; includes methods of imaging	101
Quantum dot based nanothermometers; used to image heterogeneous local thermogenesis in living cells	102
Luminescent Eu(III) complex in composite NPs made from 2-bis(trimethoxysilyl)decane and PMMA; used to image T	103
in the physiological range;	
Silica NPs doped with the T-probe Ru(bpy) ₃ used to image intracellular temperature	104
Silica nanoparticles and sensor films based on a terbium(III) complex probe	105
Semiconducting P-dots labeled with rhodamine; fluorescence is highly T-dependent	106
Dual-emitting quantum dot/quantum rod-based nanothermometer; delivered to live cells using a pH-responsive cationic	107
polymer colloid	
Upconversion NPs for ratiometric nanoscale thermometry of cellular systems	108
NPs made from a poly(methyl methacrylate)-co-1,2-bis(trimethoxysilyl)decane composite and a red-emitting Eu(III)	109
dye and a green-emitting reference dye used to sense T in the 25 - 45 °C range with a sensitivity of -4.0 % per °C	
Quantum dot nanothermometers used to used to map intracellular heat generation in NIH/3T3 cells following Ca(II)	110
stress and cold shock	
A molecular thermometer for nanoparticles for optical hyperthermia	111
High-spatial-resolution surface-temperature mapping using fluorescent thermometry	112
T measured on the surface of gold nanorods and nanostars along with magnetite NPs under near-infrared and	113
radiofrequency excitation by monitoring the excited state lifetime of the T probe Rhodamine B placed some 20 nm from	
the NP surface: sensitivity is 0.029 ns/°C	

Table S7. Representative examples of nanoparticles (NP) for use in multimodal imaging (i.e., fluorescence combined with MRI or other methods)

Methods and materials	Ref.
Polymer-functionalized NIR fluorescent dyes on magnetic NPs for optical bioimaging and MRI	114
Fluorescently doped SiNPs for use in bimodal (PET and fluorescent) imaging of lymph nodes	115
Dual-modal upconversion fluorescence and X-ray imaging using NaLuF ₄ :Gd,Yb,Er nanorods for blood vessel	116
visualization	
PEGylated NaLuF ₄ :Yb,Er upconversion nanophosphors for in-vivo fluorescence and X-ray imaging	117
Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent NPs for targeted magnetic	118
resonance and fluorescence imaging and subsequent photodynamic therapy of cancer	
Combined delivery of antigens and CpG by lanthanide-based core-shell NPs for enhanced immuno response and dual	119
mode imaging	
¹⁸ F-Labeled magnetic upconversion NPs prepared via rare-earth cation-assisted ligand assembly	120
Bimodal magnetic resonance (MRI) and fluorescence imaging of intracranial glioblastoma using NP of the type	121
NaYF ₄ :Yb,Tm,Gd@oleate and a surface modified with HS-PEG-NH2	
Upconverting NPs as optical imaging nanoprobe and T1 MRI contrast agents	122
Rhodamine dye conjugated to gold NPs; used as labels for bimodal SERS and 3D fluorescence studies on live	123
endothelial cells; reveals inhomogeneous distribution in the cytoplasm	
Hydroxyapatite NPs doped with Tb(III) and Gd(III) ions for fluorescence and magnetic bimodal imaging	124
Controlled synthesis of uniform and monodisperse upconversion NPs with a mesoporous silica shell for bimodal	125
imaging	
Upconverting NPs for optical imaging and as a T1 MRI contrast agent	126

Table S8. Representative examples of nanoparticles (NP) for use in drug release and gene delivery

Methods and materials	Ref.
Mesoporous titania NPs functionalized with flavin mononucleotide and loaded with the cancer drug doxorubicin used	127
for imaging drug delivery in breast cancer cells BT-20	
Mesoporous strontium hydroxyapatite; if capped with a respective aptamer, it serves as a nanovehicle for both cancer	128
cell-responsive drug delivery and optical imaging	
Upconversion luminescence cell imaging combined with drug-storage and drug release using particles consisting of an	129
upconversion luminescent core and a mesoporous silica shell	
Upconversion NPs for fluorescent labeling and targeted delivery of siRNA; folic acid and anti-Her2 antibody conjugated	130
to the NPs and used to label folate receptors of cells	

Upconversion NPs coated with mesoporous silica for imaging and PDT	131
Aptamer-directed synthesis of multifunctional lanthanide-doped porous nanoprobes for targeted imaging and drug	132
delivery	
Upconversion NPs in mesoporous silica used for plasmon-enhanced luminescence imaging and NIR light triggered drug	133
release	
Water-stable NaLuF ₄ -based upconversion nanophosphors for multimodal (fluorescence, CT, MR) imaging of lymphs;	134
stable for 6 months	
Amino-modified lanthanide-doped KGdF ₄ NPs capped with PEI; acting as FRET bioprobes for avidin at a concentration	135
of 5.5 nM; also acting as a MRI contrast agent in bimodal imaging	
DNA-functionalized upconversion NPs for nanoassembly, DNA delivery, and fluorescence imaging	136
NIR-light triggered anticancer drug delivery by upconverting NPs with azobenzene-modified mesoporous silica	137
Doxorubicin loaded into NaYF ₄ :Yb,Tm NPs for drug delivery and imaging by luminescence resonance energy transfer	138
Tween-coated NaYF ₄ :Yb,Er@NaYF ₄ core/shell upconversion NPs for bioimaging and drug delivery	139
Upconversion luminescent NPs with mesoporous silica shell for anti-cancer drug delivery and cell imaging.	140
Upconversion luminescent NPs with two silica shells (the second being mesoporous) for imaging and drug	141
storage/release	
Magnetic resonance and fluorescence imaging of doxorubicin-loaded and dextrane coated NPs	142
Hydroxyapatite NPs doped with Eu(III) and Gd(III) ions dual imaging of drug delivery	143
LaF ₃ :Yb,Tm coated with SiO ₂ for folic acid-directed targeting of cancer cells; bimodal imaging by upconversion	144
luminescence and X-ray computer tomography	
Lanthanide-doped upconverting luminescent NPs for optical imaging, guided drug delivery and therapy	145
Urethane-doped biodegradable photoluminescent polymers; typical size 100 nm; obtained by nanoprecipitation;	146
loaded with the drug 5-fluorouracil	

Table S9. Representative examples of nanoparticles (NP) for use in photodynamic (PDT), photothermal (PTT) and other therapies

Methods and materials	Ref.
Review on upconversion nanomaterials for bioimaging and in vivo therapy	147
Upconversion imaging and photothermal therapy using NaYF ₄ :Yb,Er@oleylamine NPs with a shell of silver metal	148
Upconversion NPs coupled to a photosensitizers for NIR-triggered photodynamic therapy and imaging	149
Rare-earth functionalized reduced graphene oxide for tracking and photothermal killing of drug-resistant bacteria	150
30 nm-sized nanohybrid upconversion nanocrystals capped with a PEG derivative and loaded with a photosensitizer;	151
imaging and PDT of cancer cells	
Carbon nanodots for fluorescent bioimaging and targeted PDT; uses fluorescent, folic acid (FA)-functionalized carbon	152
nanodots as carriers for the photosensitizer Zn(II)phthalocyanine	1
Aptamer-guided G-quadruplex DNA nanoplatform for targeted bioimaging and PDT; capable of selective recognition	153
and imaging of cancer cells, and of controllable activation of the photosensitizer	
Targeted bioimaging and PDT of cancer cells with an activatable fluorescent probe; uses a new red-emissive bioprobe (a	154
dicyanomethylene-tetraphenylethylene) and a cancer cell-specific peptide	Í
Mesoporous silica-coated NaYF4:Yb,Er nanocrystals for in vitro bioimaging and PDT of cancer cells	155
In-vivo PDT using upconversion NPs coated with dye-doped mesoporous-silica functioning as a remotely controlled	156
nanotransducer	
Core-shell hybrid nanogel capable of (a) optical sensing of <i>T</i> , (b) targeted tumor cell imaging, and (c) combined chemo-	157
photothermal treatment	

References (Supp. Information)

- ¹ D. Tuncel, H.V. Demir, *Nanoscale*, 2010, *2*, 484-494
- ²C. Wu, D.T. Chiu, Angew Chem Int. Ed., 2013, 52, 3086-3109
- ³ A. P. Demchenko and M. O. Dekaliuk, Methods Appl. Fluoresc., 2013, 1, 042001
- ⁴ A. P. Demchenko, Methods Appl. Fluoresc. 2013, 1, 022001
- ⁵ T. Ribeiro, S. Raja, A.S. Rodrigues, F. Fernandes, J. P. S. Farinha, C. Baleizao, RSC Advances, 2013, 3, 9171-9174
- ⁶ S. Sreejith, X. Ma, Y. Zhao, J. Am. Chem. Soc., 2012, 134, 17346–17349
- ⁷ X Wu, S Chang, X Sun, Z Guo, Y Li, J Tang, Y Shen, J. Shi, H. Tian, W. Zhu, Chem. Sci., 2013, 4, 1221-1228
- ⁸ Z.W. Cai, Z.M. Ye, X.W. Yang, Y.L. Chang, H.F. Wang, Y.F. Liu, A.N. Cao. Nanoscale 2011, 3, 1974–1976
- ⁹ X. Zhang, X. Zhang, B. Yang, J. Hui, M. Liu, Z. Chi, S. Liu, J. Xu, Y. Wei, Polymer Chem., 2014, 5, 318-322
- ¹⁰ K. Li, W. Qin, D. Ding, N. Tomczak, J. Geng, R. Liu, J. Liu, X. Zhang, H. Liu, B. Liu, B. Z. Tang, Scientific Reports 2013, 3, Article number: 1150
- ¹¹ X. Zhang, M. Liu, B. Yang, X. Zhang, Z. Chi, S. Liu, J. Xu, Y. Wei, *Polym. Chem.*, 2013, *4*, 5060-5064
- ¹² X. Zhang, X. Zhang, B. Yang, J. Hui, M. Liu, Y. Wei, *Colloids Surf. B: Biointerf.* 2014, 116, 739
- ¹³ M. Liu, X. Zhang, B. Yang, F. Deng, Z. Huang, Y. Yang, Z. Li, X. Zhang, Y. Wei, *RSC Adv.*, 2014, *4*, 35137-35143
- ¹⁴ X. Zhang, Xiqi Zhang, Bin Yang, Meiying Liu, Wanyun Liu, Yiwang Chen, Yen Wei, Polym. Chem., 2014, 5, 356-360

¹⁵ L. Zhu, W. Wu, M.-Q. Zhu, J. J. Han, J. K. Hurst, A.D.Q. Li, J. Am. Chem. Soc. 2007, 129, 3524–3526

- 16 S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. 2013, 125, 4045– 4049
- 17 L. Sun, T. Liu, Y. Qiu, J. Liu, F. Li, L. Shi, O. S. Wolfbeis. Microchim. Acta 2014, 181, 775-782
- 18 G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, G. Han, ACS Nano, 2012, 6, 8280–8287
- 19 Q. Liu, T. Yang, W. Feng, F. Li, J. Am. Chem. Soc., 2012, 134, 5390-5397
- 20 S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Nanoscale, 2011, 3, 1533
- 21 X. Wu, X. He, K. Wang, C. Xie, B. Zhou, Z. Qing, Nanoscale, 2010, 2, 2244-2249
- 22 H. Wang, C. J. Lin, C. Lee, Y. Lin, Y. Tseng, C. Hsieh, C. Chen, C. Tsai, C. Hsieh, J. Shen, W. Chan, W. H. Chang, H. Yeh, ACS Nano, 2011, 5, 4337–4344
- 23 Y. Zhu, Z. Li, M. Chen, H.M. Cooper, G.Q. Lu, Z.P. Xu, Chem. Mater., 2012, 24, 421-423
- 24 C. Ye, Y. Wang, C. Li, J. Yu, Y. Hu, Microchim. Acta, 2013, 180, 117-125
- 25 K.T. Thurn, H. Arora, T. Paunesku, A. Wu, E. M. B. Brown, C. Doty, J. Kremer, G. Woloschak, *Biology and Medicine*, 2011, 7, 123-130
- 26 H. Liu, F. Chen, P. Xi, B. Chen, L. Huang, J. Cheng, C. Shao, J. Wang, D. Bai, Z. Zeng, J. Phys. Chem. C 2011, 115, 18538-18544
- 27 E.I. Altinoglu, T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund , M. Kester, J. H. Adair, ACS Nano 2008, 2, 2075-2084
- 28 H. Zhong, Q.L. Zhang, S.S. Zhang, Chem Eur J. 2011, 17, 8388-8394
- 29 Z Chen, X Wu, S Hu, P Hu, H Yan, Z Tang and Y. Liu, J. Materials Chem. C 2014; on the web. DOI: 10.1039/C4TC01766H
- 30 M.K. Tsang, C.F. Chan, K.L. Wong and J. Hao, J. Luminesc. 2014, 57, 172–178
- 31 Q. Liu, W. Feng, T. S. Yang, T. Yi, and F. Y. Li, Nat. Protoc. 2013, 8, 2033-2044
- 32 F. Wang, R. Deng, and X. Liu, Nat. Protoc. 2014, 9, 1634-1644
- 33 J. A. Damasco, G. Chen, W. Shao, H. Ågren, H. Huang, W. Song, J. F. Lovell, and P. N. Prasad, ACS Appl. Mater. Interf., 2014, 6, 13884-13893
- 34 Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li; J. Am. Chem. Soc. 2011, 133, 17122-17125
- 35 Y. Wang, G. Liu, L. Sun, J. Xiao, J. Zhou, and C. Yan, ACS Nano 2013, 7, 7200-7206
- 36 E. Muro, T. Pons, N. Lequeux, A. Fragola, N. Sanson, Z. Lenkei, B. Dubertret, J. Am. Chem. Soc., 2010, 132 (13), pp 4556– 4557
- 37 Y. Wang, Z.H. Li, D.H. Hu, C.T. Lin, J.H. Li, Y.H. Lin, J. Am. Chem. Soc. 2010, 132, 9274–9276
- 38 Z.P. Sun, Y.L. Wang, Y.T. Wei, R. Liu, H.R. Zhu, Y.Y. Cui, Y.L. Zhao, X.Y. Gao. Chem. Commun. 2011, 47, 11960–11962
- 39 M.Q. Zhu, G.F. Zhang, C. Li, M.P. Aldred, E. Chang, R. A. Drezek, A. D. Q. Li, J. Am. Chem. Soc., 2011, 133, 365–372
- 40 J.A. Cohen, T. T. Beaudette, W. W. Tseng, E. M. Bachelder, I. Mende, E. G. Engleman, J. M. J. Fréchet, *Bioconj. Chem.* 2008, 20, 111–119
- 41 E. Ahmed, S.W. Morton, P.T. Hammond, T. M. Swager, Adv. Mat. 2013, 25, 4504-4510
- 42 S.S. Agasti, R.H. Kohler, M. Liong, V.M. Peterson, H. Lee, R. Weissleder, Small, 2013, 9, 222-227
- 43 L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu and F. Li, Anal. Chem. 2009, 81, 8687-8694
- 44 C. Zhang, X. Wan, X. Zheng, X. Shao, Q. Liu, Q. Zhang, Y. Qian, Biomaterials 2014, 35, 456-465
- 45 A. Jayagopal, K.C. Halfpenny, J.W. Perez, D.W. Wright, J. Am. Chem. Soc. 2010, 132, 9789-9796
- 46 L.Q. Chen, S.J. Xiao, L. Peng, T. Wu, J. Ling, Y.F. Li, C.Z. Huang, J. Phys. Chem. B 2010, 114, 3655-3659
- 47 Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma and X. Chen, J. Am. Chem. Soc. 2012, 134, 15083 15090
- 48 X. Zeng, R. Morgenstern, A.M. Nyström, Biomaterials, 2014, 35, 1227-1239
- 49 S. Q. Wu, Z. Li, J. H. Han and S. F. Han, Chem. Comm. 2011, 47, 11276-11278
- 50 M.J. Ruedas-Rama, A. Orte, E.A.H. Hall, J.M. Alvarez-Peza, E. M. Talavera, Chem. Commun., 2011, 47, 2898-2900.
- 51 A.M. Dennis, W.J. Rhee, D. Sotto, S.N. Dublin, G. Bao, ACS Nano, 2012, 6, 2917–2924
- 52 W. Shi, X. Li, H. Ma, Angew. Chem. Int. Ed., 2012, 51, 6432-5653.
- 53 H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi, S. X. Zhang, Chem. Mater., 2014, 26, 3104–3112
- 54 H. Peng, J. A. Stolwijk, L. Sun, J. Wegener, O. S. Wolfbeis. Angew. Chem. Intl. Ed. 2010, 49, 4246-4249
- 55 L. Cao, X. Li, S. Wang, S. Li, Y. Li, G. Yang, Chem. Comm., 2014, 50, 8787-8790
- 56 X. Wang, R.J. Meier, O.S. Wolfbeis, Angew. Chem. Intl. Ed. 2013, 52, 406-409
- 57 K. Zhou, H. Liu, S. Zhang, X. Huang, Y. Wang, G. Huang, B. D. Sumer, J. Gao, J. Am. Chem. Soc., 2012, 134, 7803-7811
- 58 Y.P. Chen, H.A. Chen, Y. Hung, F.C. Chien, P. Chen, C.Y. Mou, RSC Adv., 2012, 2, 968-973.
- 59 R.V. Benjaminsen, H. Sun, J.R. Henriksen, N. M. Christensen, K. Almdal, T. L. Andresen, ACS Nano, 2011, 5, 5864-5873
- 60 C. Tsou, C. Chu, Y. Hung, C. Mou. J. Mater. Chem. B, 2013, 1, 5557-5563
- 61 Y. H. Chan, C. Wu, F. Ye, Y. Jin, P.B. Smith, T.C. Chiu, Anal. Chem., 2011, 83, 1448-1455
- 62 M.J. Marín, F. Galindo, P. Thomas, D. A. Russell, Angew. Chem. Int. Ed. 2012, 51, 9657-96616
- 63 A. Ray, Y.E.K. Lee, T. Epstein, G. Kim, R. Kopelman, Analyst, 2011, 136, 3616-3622
- 64 S. Schreml, R. J. Meier, O. S. Wolfbeis, M. Landthaler, R. M. Szeimies and P. Babilas, Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 2432–2437
- 65 A.M. Dennis, W.J. Rhee, D. Sotto, S.N. Dublin, G. Bao, ACS Nano, 2012, 6, 2917-2924.
- 66 Y. S. Liu, Y. H. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, M.A. Gundersen, J. Phys. Chem. C 2007, 111, 2872–2878
- 67 R. Arppe, T. Näreoja, S. Nylund, L. Mattsson, S. Koho, J. M. Rosenholm, T. Soukka and M. Schaeferling, Nanoscale, 2014, 6, 6837-6843
- 68 Y. K. Lee, E. E. Ulbrich, G. Kim, H. Hah, C. Strollo, W. Fan, R. Gurjar, S. Koo, R. Kopelman. Anal. Chem., 2010, 82, 8446– 8455

- 69 X. Wang, H. Peng, L. Yang, F. You, F. Teng, L. Hou, O. S. Wolfbeis; Angew. Chem. Int. Ed. 2014, 53, on the web. DOI: 10.1002/anie.201405048
- 70 J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, J. Shi; J. Am. Chem. Soc., 2014, 136, 9701-9709
- 71 X. Wang, D. E. Achatz, C. Hupf, Sperber, J. Wegener, S. Bange, J. M. Lupton, O. S. Wolfbeis. Sensors Actuat. B, 2013, 188, 257-262
- 72 H. Xu, J.W. Aylott, R. Kopelman, T.J. Miller, M.A. Philbert, Anal Chem. 2001, 73, 4124-33
- 73 X. Wang, J. A. Stolwijk, M. Sperber, R. J. Meier, J. Wegener, O. S. Wolfbeis; Meth. Appl. Fluoresc. (IOP Publ.; London) 2013, 1, 035002 (7 pp)
- 74 X. Wang, J. A. Stolwijk, T. Lang, M. Sperber, R. J. Meier, J. Wegener, O. S. Wolfbeis. J. Am. Chem. Soc. 2012, 134, 17011-17014
- 75 S. Schreml, R. J. Meier, M. Kirschbaum, O. S. Wolfbeis, M. Landthaler, P. Babilas, *Theranostics* 2014, *4*, 721-735
- 76 J. A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J. M. Runnels, W. Zaher, L. J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Côté, S.A. Vinogradov, T. Scadden, C. P. Lin, *Nature*, 2014, 508, 269–273
- 77 A. Devor, S. Sakadzic, M. A. Yaseen, E. Roussakis, P. Tian, H. Slovin, I. Vanzetta, I. Teng, P.A Saisan, L.E. Sinks, A.M. Dale, S. A. Vinogradov, D.A. Boas, *Neuromethods* 2014, 85, 225-253
- 78 X.H. Wang, H.S. Peng, Z. Chang, L.L. Hou, F.T. You, F. Teng, H.W. Song, B. Dong, Microchim. Acta, 2012, 178, 147-152
- 79 A.V. Kondrashina, R.I. Dmitriev, S. M. Borisov, I. Klimant, I. O'Brien, Y. M. Nolan, A. V. Zhdanov, D. B. Papkovsky, Adv. Funct. Mater. 2012, 22, 4931–4939
- 80 E.J. Park, M. Brasuel, C. Behrend, M.A. Philbert, R. Kopelman, Anal. Chem., 2003, 75, 3784-3791
- 81 D. Si, T. Epstein, Y.E. K. Lee, R. Kopelman; Anal. Chem., 2012, 84, 978-986
- 82 A. Schulz, R. Woolley, T. Tabarin, C. McDonagh, Analyst 2011, 136, 1722-1727
- 83 H.A. Clark, M. Hoyer, M.A. Philbert, R. Kopelman, Anal. Chem. 1999, 71, 4831-4836
- 84 S.K. Rastogi, P. Pal, D.E. Aston, T.E. Bitterwolf, A.L. Branen, ACS Appl. Mat. Interf. 2011, 3, 1731–1739
- 85 X. Luo, W. Wu, F. Deng, D. Chen, S. Luo, C. Au, Microchim. Acta, 2014, 181, 1361-1367
- 86 Y. Fu, C. Ding, A. Zhu, Z. Deng, Y. Tian, M. Jin, Anal. Chem., 2013, 85, 11936-11943
- 87 H. Y. Lee, H. Son, J. M. Lim, J. Oh, D. Kang, W. S. Han, J. H. Jung, Analyst, 2010, 135, 2022-2027
- 88 M.J. Ruedas-Rama, A. Orte, E.A.H. Hall, J.M. Alvarez-Pez, E.M. Talavera, Analyst, 2012, 137, 1500-1508
- 89 Y. Wang, H. Mao, L.B. Wong, Nanotechnology 2010, 21, 055101
- 90 F. Du, F. Zeng, Y. Ming, S. Wu, Microchim. Acta, 2013, 180, 453-460
- 91 J. Liu, Y. Liu, Q. Liu, C. Li, L. Sun, and F. Li, J. Am. Chem. Soc., 2011, 133, 15276-15279
- 92 S.N. Ding, C.M. Li, B.H. Gao, O. Kargbo, N. Wan, X. Chen, C. Zhou, *Microchim. Acta*, 2014, on the web. DOI: 10.1007/s00604-014-1299-1
- 93 A. Zhu, Z. Luo, C. Ding, B. Li, S. Zhou, R. Wang, Y. Tian, Analyst, 2014, 139, 1945-1952
- 94 Z. W. Ulissi, F. Sen, X. Gong, S. Sen, N. Iverson, A. A. Boghossian, L. C. Godoy, G. N. Wogan, D. Mukhopadhyay, M. S. Strano, *Nano Lett.*, 2014, 14, 4887–4894
- 95 N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A Parry, G.N. Wogan, M.S. Strano, *Nature Nanotechnol.* 2013, *8*, 873–880.
- 96 M. Zheng, Z. Xie, D. Qu, D. Li, P. Du, X. Jing, Z. Sun, ACS Appl. Mater. Interf., 2013, 5, 13242-13247
- 97 M. Zhuang, C. Ding, A. Zhu, Y. Tian, Anal. Chem., 2014, 86, 1829-1836
- 98 H. Xu, J. W. Aylott and R. Kopelman, Analyst, 2002, 127, 1471–1477
- 99 L. Li, F. Gao, J. Ye, Z. Chen, Q. Li, W. Gao, L. Ji, R. Zhang, B. Tang, Anal. Chem., 2013, 85, 9721-9727
- 100 J. Zhang, N. Ma, F. Tang, Q. Cui, F. He, L. Li, ACS Appl. Mater. Interf., 2012, 4, 1747-1751
- 101 X. Wang, R. J. Meier, O. S. Wolfbeis. Chem. Soc. Rev. 2013, 42, 7834-7869
- 102 J.M. Yang, H. Yang, L. Lin, ACS Nano, 2011, 5, 5067-5071
- 103 H. Peng, M. I. J. Stich, J. Yu, L. Sun, L. H. Fischer, O. S. Wolfbeis; Adv. Mat. 2010, 22, 716-719
- 104 L. Yang, H.S. Peng, H. Ding, F.T. You, L.L. Hou, F. Teng, Microchim. Acta, 2014, 181, 743-749
- 105 L. Sun, J. Yu, H. Peng, J. Z. Zhang, L. Shi and O. S. Wolfbeis; J. Phys. Chem. C 2010, 114, 12642-12648
- 106 F. Ye, C. Wu, Y. Jin, Y.H. Chan, X. Zhang, D. T. Chiu, J. Am. Chem. Soc., 2011, 133, 8146-8149
- 107 A.E. Albers, E.M. Chan, P.M. McBride, C. M. Ajo-Franklin, B. E. Cohen, B. A. Helms, J. Am. Chem. Soc., 2012, 134, 9565–9568
- 108 L. H. Fischer, G. S. Harms and O. S. Wolfbeis, Angew. Chem. Int. Ed. 2011, 50, 4546-4551
- 109 H. Peng, S. Huang, O. S. Wolfbeis. J. Nanoparticle Res. 2010, 12, 2729-2733
- 110 J.M. Yang, H. Yang, L. Lin, ACS Nano, 2011, 5, 5067-5071
- 111 S. Freddi, L. Sironi, R. D'Antuono, D. Morone, A. Donà, E. Cabrini, L. D'Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni and G. Chirico, *Nano Lett.* 2013, 13, 2004-2010
- 112 P. Löw, B. Kim, N. Takama and C. Bergaud, Small 2008, 4, 908-914
- 113 S. Freddi, L. Sironi, R. D'Antuono, D. Morone, A. Donà, E. Cabrini, L. D'Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni and G. Chirico, *Nano Lett.* 2013, 13, 2004-2010
- 114 S.K. Yen, D. Jańczewski, J.L. Lakshmi, S.B. Dolmanan, S. Tripathy, V. H. B. Ho, V. Vijayaragavan, A. Hariharan, P. Padmanabhan, K. K. Bhakoo, T. Sudhaharan, S. Ahmed, Y. Zhan, S. T. Selvan, *ACS Nano*, 2013, *7*, 6796–6805
- 115 M. S. Bradbury, E. Phillips, P. H. Montero, S. M. Cheal, H. Stambuk, J. C. Durack, C. T. Sofocleous, R. J. C. Meester, U. Wiesner, S. Patel, *Integr. Biol.*, 2013, *5*, 74-86
- 116 S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, J. Hao; Biomaterials, 2014, 9, 2934-2941.
- 117 Z. Yi, W. Lu, Y. Xu, J. Yang, L. Deng, C. Qian, T. Zeng, H. Wang, L. Rao, H. Liu, S. Zeng, *Biomaterials* 2014, on the web. DOI: 10.1016/j.biomaterials.2014.08.021

- 118 M. Yin, Z. Li, Z. Liu, J. Ren, X. Yang, X. Qu, Chem. Comm. 2012, 48, 6556.
- 119 Z. Li, Z. Liu, M. Yin, X. Yang, J. Ren and X. Qu, X., Adv. Healthcare Mat. 2013, 2, 1309
- 120 Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, F. Li, F., ACS Nano 2011, 5, 3146-3157
- 121 D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, J. Shi, *ACS Nano* 2014, *8*, 1231–1242
- 122 Y. I. Park, J. H. Kim, K. T. Lee, Y. D. Suh, T. Hyeon, Adv. Mater. 2009, 21, 4467-4471
- 123 A. Jaworska, T. Wojcik, K. Malek, U. Kwolek, M. Kepczynski, A. A. Ansary, S. Chlopicki, M. Baranska, *Microchim. Acta*, 2014, on the web. DOI: 10.1007/s00604-014-1307-5
- 124 Z. Liu, Q. Wang, S. Yao, L. Yang, S. Yu , X. Feng, F. Li, Ceram. Int. 2014, 40, 2613-2617
- 125 J. Liu, W. Bu, S. Zhang, F. Chen, H. Xing, L. Pan,, L. Zhou, W. Peng, J. Shi, Chem. Eur. J. 2012, 18, 2335-2341
- 126 Y. I. Park, J. H. Kim, K. T. Lee, K. S. Jeon, B. N. Hyon, Adv. Mater. 2009, 21, 4467-4471.
- 127 K. C.-W. Wu, Y. Yamauchi, Chen-Yu Hong, Ya-Huei Yang, Yung-He Liang, T. Funatsu, M. Tsunoda, *Chem. Comm.* 2011, 47, 5232-5234
- 128 Z. Li, Z. Liu, M. Yin, X. Yang, Q. Yuan, J. Ren and X. Qu, Biomacromol. 2012, 13, 4257.
- 129 B. Liu, C. Li, D. Yang, Z. Hou, P. Ma, Z. Cheng, H. Lian, S. Hunag and J. Lin, Eur. J. Inorg. Chem., 2014, 1906-1913
- 130 S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim and L. Ye. Nanotechnol. 2009, 20, 155101. doi: 10.1088/0957-4484/20/15/155101.
- 131 H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran and Y. Zhang, Small 2009, 5, 2285-2290
- 132 L. Zhou, Z. Li, E. Ju, Z. Liu, J. Ren, X. Qu, Small 2013, 9, 4262
- 133 N Niu, F He, P Ma, S Gai, G Yang, F Qu, Y. Wang, J. Xu and P. Yang, ACS Appl. Mat. Interf. 2014, 6, 3250–3262; and other papers by this group published in this journal.
- 134 J. Zhou, X. Zhu, M. Chen, Y. Sun, F. Li, Biomaterials, 2012, 26, 6201-6210
- 135 Q. Ju, D. Tu, Y. Liu, R. Li, H. Zhu, J. Chen, Z. Chen, M. Huang, X. Chen, J. Am. Chem. Soc., 2012, 134, 1323-1330
- 136 L. Li, P. Wu, K. Hwang, and Y. Lu, J. Am. Chem. Soc., 2013, 135, 2411-2414
- 137 J. Liu, W. Bu, L. Pan, J. Shi, Angew. Chem. Int. Ed. 2013, 52, 4375-4379
- 138 Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, J. Lin, Biomaterials 2012, 33, 8704-8713
- 139 W. Ren, G. Tian, S. Jian, Z. Gu, L. Zhou, L. Yan, S. Jin, W. Yin, Y. Zhao, RSC Adv. 2012, 2, 7037-7041
- 140 C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, P. Ma, J. A. Lin, Biomater. Sci. 2013, 1, 213-223
- 141 B. Liu, C. Li, D. Yang, Z. Hou, P. Ma, Z. Cheng, H. Lian, S. Huang, J. Lin, Eur. J. Inorg. Chem. 2014, 1906–1913
- 142 A. Erten, W. Wrasidlo, M. Scadeng, S. Esener, R.M. Hoffman, M. Bouvet, M. Makale, Nanomed.: Nanotechnol., Biol. Med. 2010, 6, 797–807
- 143 F. Chen, P. Huang, Y.-J. Zhu, J. Wu, C.-L. Zhang, D.-X. Cui, Biomaterials 2011, 32, 9031-9039
- ¹⁴⁴ J. Ma, P. Huang, M. He, L. Pan, Z. Zhou, L. Feng, G. Gao, D. Cui, J Phys Chem B 2012, 116, 14062-14070
- ¹⁴⁵ J. Shen, L. Zhao and G. Han, Adv. Drug Deliver. Rev. 2013, 65, 744-755
- ¹⁴⁶ Y. Zhang, R. T. Tran, I. S. Qattan, Y. Tsai, L. Tang, C. Liu, J. Yang, Biomaterials, 2013, 34, 4048–4056
- ¹⁴⁷ W. Feng, X. Zhu and F. Li, NPG Asia Mater. 2013, 5, e75. DOI: 10.1038/am.2013.63
- ¹⁴⁸ B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, H. Song, J. Mater. Chem. 2011, 21, 6193–6200
- ¹⁴⁹ M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang and X. Chen; *Nanoscale*, 2014. DOI: 10.1039/C4NR01826E (on the web)
- ¹⁵⁰ X. Yang, Z. Li, E. Ju, J. Ren and X. Qu, Chem. Eur. J. 2014, 20, 394
- ¹⁵¹ M. González-Béjar, M. Liras, L. Francés-Soriano, V. Voliani, V. Herranz-Pérez, M. Duran-Moreno, J. M. Garcia-Verdugo, E. I. Alarcon, J. C. Scaiano, J. Pérez-Prieto, *J. Mater. Chem. B*, 2014, *2*, 4554-4563
- ¹⁵² Y. Choi, S. Kim, M.H. Choi, S.R. Ryoo, J. Park, D. H. Min, B. S. Kim, Adv. Funct. Mat. 2014, 24, 5781-5789
- ¹⁵³ Q. Yuan, Y. Wu, J. Wang, D. Lu, Z. Zhao, T. Liu, X. Zhang, W. Tan, *Angew. Chem. Int. Ed.* 2013, *52*, 13965 –13969
- ¹⁵⁴ F. Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang, D. Zhang, Anal. Chem. 2014, 86, 7987-7995
- ¹⁵⁵ X. Liu, H. Qian, Y. Ji, Z. Li, Y. Shao, Y. Hu, G.X. Tong, L. Li, W. Gua, H. Guo, *RSC Adv.*, 2012, *2*, 12263-12268
- ¹⁵⁶ N.M. Idris, M.K. Gnanasammandhan, J. Zhang, P.C. Ho, R. Mahendran and Y. Zhang, *Nature Med.* 2012, *18*, 1580–1585
- ¹⁵⁷ W. Wu, J. Shen, P. Banerjee and S Zhou, *Biomaterials* 2010, 31, 7555