Supplementary Information

Status and perspectives of CO₂ conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes

Evgenii V. Kondratenko,*^a Guido Mul,^b Jonas Baltrusaitis,^b Gastón O. Larrazábal^c and Javier Pérez-Ramírez*^c

^aLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str., 29A, 18059 Rostock, Germany. Fax: +49-381-128151290; Tel: +49-381-1281290; E-mail: evgenii.kondratenko@catalysis.de

^bPhotocatalytic Synthesis Group, MESA⁺ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, NL 7500 AE, Enschede, The Netherlands

^c Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E 125, Wolfgang-Pauli-Strasse 10, CH-8093, Zurich, Switzerland. Fax: +41 44 633 1405; Tel: +41 44 633 7120; E-mail: jpr@chem.ethz.ch

				prod	uct yield							
year	Catalysts	loading	primary products	methane	methanol	quantum yield	reactor/sample cell	reactants	T / K.	light source	light intensity	reference
1978*	p type-GaP(WE); n type-TiO ₂ (CE)		HCHO, HCOOH, CH ₃ OH	-	1.88(µmol/h)			CO2 in Li2CO3(aq)	298	Hg lamp	210mW/cm ²	Halmann et al.128
1979*	SiC		HCHO, CH ₃ OH	-	76.4(µmol/g-cat/h)	0.45% (CH ₃ OH)	glass cell,	CO2 in H2O	-	500W Xe/Hg lamp		Inoue et al.129
	TiO ₂			-	4.86	0.019	quartz window					
	GaP			-	15.7	-						
	CdS			-	16.7	-						
	WO ₃				0	-						
1987	Ru/TiO ₂	3.8wt%	CH_4	1.7(µmol/g-cat/h)	-		pyrex cell	CO ₂ , H ₂ O (1:12)	298	solar simulator	80mW/cm ²	Thampi et al.130
				51.78	-				319			
				105	-				363			
				2.7	-				298	150W Xe lamp+ filt	er	
	Ru/TiO2 - no illumination	3.8		1.7	-				319	(λ<435nm)		
1992*	TiO ₂ (anatase, Furuuchi) + Cu(Wako)	$0.5g\ TiO_2+0.3g\ Cu$	CO, HCHO, HCOOH,	-	0.56(µmol/g-cat/h)		cylindrical pyrex cell	CO2 in H2O	313	500W Xe lamp		Hirano et al.131
			CH ₃ OH	0.05(µmol/g-cat/h)	1.32			CO2 in KHCO3(aq)				
1993*	Degussa P25 TiO ₂	-	CH ₄ , C ₂ H ₆ , CH ₃ OH,	0.93(µmol/g-cat/h)	Trace		quartz cell	CO ₂ in H ₂ O	278	500W Hg lamp		Ishitani et al.132
	Pd-TiO ₂	2wt%	HCOOH, CH ₃ COOH	32.93	Trace					(λ>310nm)		
	Rh-TiO ₂	2		13.33	Trace							
	Pt-TiO ₂	2		6.67	Trace							
	Au-TiO ₂	2		4.4	Trace							
	Cu-TiO ₂	2		2.53	Trace							
	Ru-TiO ₂	2		0.8	Trace							
1995	TiO ₂ (100) (rutile single crystal on wafer)	-	CH ₄ , CH ₃ OH	3.5(µmol/g-cat/h)	2.4(µmol/g-cat/h)		quartz cell	CO ₂ , H ₂ O (1:3)	275	75W Hg lamp		Anpo et al.133
	TiO ₂ (110)	-		0	0.8					(λ>280nm)		
	TiO_2 anchored on porous Vycor glass	-		0.02	-			CO ₂ , H ₂ O (1:5)				
1995	Ti-ZSM-5(ion exchange)	10wt%	CO, CH ₄ , CH ₃ OH	0.03(µmol/g-cat)	-			H ₂ O/CO ₂ =5 (at most)	323	75W Hg lamp		Yamashita et al.134
	Ti-ZSM-5(anchored)	10		0.01	-					(λ>280nm)		
	Ti-Y(ion exchange)	10		0.2	0.13(µmol/g-cat)							
	Ti-PVG(anchored)	10		0.17	0.03							
1995	Degussa P25 TiO ₂	-	H ₂ , CO, CH ₄	2(µmol/g-cat/h)	-		quartz cell	CO ₂ , H ₂ O	343	1000W Hg lamp		Saladin et al.135
										(λ<700nm)		
1997	TiO ₂ (anatase, 500m ² /g)	-	H ₂ , CH ₄ , C _n H _m	3.75(µmol/g-cat/h)	-		miniaturized photoreactor	CO _{2,} H ₂ O	373	200W Hg/Xe lamp		Saladin et al.136
	Degussa P25 TiO ₂	-		4.74	-				298	(λ<900nm)		
		-		5.68	-				373			
		-		6.42	-				473			
1998*	Degussa P25 TiO ₂	-	CH ₄ , HCOOH	0.43			stainless steel vessel	CO2 in iso-propyl alcohol		4200W Xe lamp	62mW/cm ²	Kaneco et al.137

Table S1 Compilation of literature reports on photocatalytic CO₂ reduction. Numbers marked are discussed in more detail.

	product yield											
year	catalysts	loading	primary products	methane	methanol	quantum yield	reactor/sample cell	reactants	temp.	light source	light intensity	reference
1998	Pt-Ti/MCM-48	80 (Si/Ti)	CH ₄ , CH ₃ OH	12.3(µmol/g-TiO2/h)	0.2(µmol/g-TiO2/h)		quartz cell	CO ₂ , H ₂ O (1:5)	328K	Hg lamp (λ>280nm)		Yamashita
	Ti-MCM-48	80 (Si/Ti)		7.6	3							et al.138
	Ti-MCM-41	100 (Si/Ti)		3.6	1.36							
	TS-1	85 (Si/Ti)		2.7	0.6							
	Pt-ion-ex-TiOY	1wt%Pt; 1.1wt%Ti		12.4	1.12							
	ion-ex-TiOY	1.1wt%Ti		7.2	4.8							
	$imp\text{-}TiO_2/Y(SiO_2/Al_2O_3\text{=}5.5)$	1wt%Ti		5	0.34							
	$imp\text{-}TiO_2/Y(SiO_2/Al_2O_3\text{=}5.5)$	10wt%Ti		1.2	-							
	TiO ₂ (JRC-TIO-4)(92% anatase,8% rutile)	-		0.34	-							
1999*	TiO ₂ /Pd/SiO ₂	10wt%TiO2	CH ₄ , HCHO, HCOOH,	0.8(µmol/h)	2.5(µmol/h)		batch type reactor	CO2 in KHCO3(aq)		250mW Hg lamp		Subrahmanyam
	Li-TiO ₂ /Al2O ₃		CH ₃ OH, C ₂ H ₅ OH	2.5	0.8							et al.139
2001	TiO ₂ /FSM-16(physical mix)	1wt%Ti	CH ₄ , CH ₃ OH	127(µmol/g-cat/h)	5.4(µmol/g-cat/h)		quartz cell	CO2, H2O (1:5)	323K	100W Hg lamp		Ikeue et al.140
	imp-Ti/FSM-16	1		207	10.8					(λ>250nm)		
	anc-Ti/FSM-16(anchoring with TPOT)	1		270	35							
	Ti-FSM-16(direct synthesis)	1		259	40.5							
2001	Ti-Beta(F)	2wt%Ti	CH ₄ , CH ₃ OH	0.7(µmol/g-Ti/h)	0.47(µmol/g-Ti/h)		quartz cell	CO ₂ , H ₂ O (1:5)	323K	75W Hg lamp		Ikeue et al.141
	Ti-Beta(OH)	2	CH ₄ , CH ₃ OH	5.76	1.35					(λ>250nm)		
	TS-1	-	CH ₄ , CH ₃ OH	1.29	0.41							
	Degussa P25 TiO ₂	-	CH_4	0.35	-							
2002*	Degussa P25 TiO ₂	-	СНЗОН	-	6.37(µmol/g-cat/h)	3.41% (CH ₃ OH)	inner-irradiated cell	CO2 in NaOH(aq)	323K	8W Hg lamp	0.138mW/cm^2	Tseng et al.142
	TiO ₂	-		-	0.78	0.42				(λ=254nm)		
	Cu/P25 TiO ₂	2wt%		-	10	5.35						
	Cu/TiO ₂	2		-	19.75	10.02						
2002	Ti-containing nanoporous silica films (Ti-I	PS)					quartz cell	CO ₂ , H ₂ O (1:5)	323K	100W Hg lamp	0.265mW/cm^2	Ikeue et al.143
	Ti-PS film(c,50)	50 (Si/Ti)	CH ₄ , CH ₃ OH	1.2(µmol/g-Ti/h)	1.7(µmol/g-Ti/h)	0.07%				(λ>250nm)		
	Ti-PS film(h,25)	25		4.2	0.2	0.17						
	Ti-PS film(h,50)	50		7.1	1.8	0.28						
	Ti-PS powder(h,50)	50		3.6	0.85							
	Ti-MCM-41 powder	100		3	1.3							
2003	Fe-Cu-K/DAY and Pt/K2Ti6O10 (1:1)		H ₂ , HCHO, HCOOH,	0.013(µmol/g-cat/h)	-		optical quartz tube cell	CO ₂ , H ₂ O	298K	300W Xe arc lamp	-	Guan et al.144
			CH ₄ , CH ₃ OH, C ₂ H ₅ OH	0.05	-				298	150W Hg lamp	-	
				0.047	4.83(µmol/g-cat/h)				590	concentrated sunlight	62mW/cm ²	
				0.043	2.3				562	concentrated sunlight	72mW/cm ²	
				0.037	Trace				534		101mW/cm^2	
2004*	TiO ₂ (anatase, Aldrich)		CH_4	0.88(µmol/g-TiO2/h)	-		Rayonet photoreactor	CO ₂ in H ₂ O	298K	350nm light source		Dey et al.145
				0.84	-			CO2 in 0.05M 2-propanol				
				2.16	-			CO2 in 0.5M 2-propanol				
2004*	Cu/TiO ₂ (CuCl ₂ -0hr)	2wt%Cu	CH ₃ OH	-	23.33(µmol/g-cat/h)		cylindrical quartz reactor	CO2 in NaOH(aq)		UVC (λ=254nm)		Tseng et al.146
	Cu/TiO ₂ (CuCl ₂ -0hr)	2		-	6.67		-					
	Cu/TiO ₂ (CuCl ₂ -8hr)	2		-	0.33					UVA (λ=365nm)		

	product yield											
year	catalysts	loading	primary products	methane	methanol	quantum yield	reactor/sample cell	reactants	temp.	light source	light intensity	reference
2004*	Cu/TiO ₂	2wt%	CH ₃ OH		16.7(µmol/g-cat/h)		cylindrical quartz reactor	CO2 in NaOH(aq)	323K	8W Hg lamp		Tseng et al.147
	Ag/TiO ₂	2			14.3					(λ=254nm)		
2004*	TiO ₂ /Nafion film	10wt%TiO2/g-Nafion	HCOOH, CH ₃ OH,	-	56(µmol/g-TiO ₂ /h)		flow system,	liquid CO2	-	990W Xe arc lamp		Pathak et al.124
	Degussa P25 TiO ₂	-	CH ₃ COOH	-	1.8		quartz window					
2004*	P-25(1gTiO2/L sol.)		CH ₄ , CH ₃ OH	-	93.75(µmol/g-cat/h)		inner-irradiated cell	NaHCO _{3(aq)}		15W UV lamp (365nm)	1.3mW/cm ²	Ku et al.148
2005	Ti-MCM-41	100 (Si/Ti)	CH ₄ , CH ₃ OH	2.99(µmol/g-Ti/h)	1.33(µmol/g-Ti/h)		quartz cell	CO ₂ , H ₂ O (1:5)	323K	100W Hg lamp		Hwang et al.149
	Ti-MCM-48	80		7.57(µmol/g-Ti/h)	3.06(µmol/g-Ti/h)					(λ>250nm)		
	Ti-SBA-15	270		106(µmol/g-Ti/h)	27.7(µmol/g-Ti/h)							
	TS-1	85		2.6(µmol/g-TiO ₂ /h)	$0.6(\mu mol/g-TiO_2/h)$							
	Degussa P25 TiO ₂	-		0.33(µmol/g-Ti/h)	0.005(µmol/g-Ti/h)							
2005	Cu/TiO ₂	0.52wt%Cu	CH ₃ OH		0.18(µmol/g-cat./h)		optical fiber photoreactor	CO ₂ , H ₂ O (50:1)	348K	Hg lamp (λ=365nm)	13500mW/cm ²	Wu et al.126
		1.2			0.42							
		2.06			0.35							
2006*	Ru/TiO ₂	0.5wt%Ru	CH ₄ , CH ₃ OH	205.4(µmol/g-Ti)	13.8(µmol/g-Ti)		inner-irradiated cell	CO2 in H2O		1000W Hg lamp		Sasirekha et al.150
	TiO ₂ /SiO ₂	10wt%Ti		267.7	80.7					(λ=365nm)		
	Ru-TiO ₂ /SiO ₂	0.5wt%Ru; 10wt%Ti		223.8	43.8							
	TiO ₂ (99%, Lancaster)	-		184.6	11.9							
2007	Degussa P25 TiO ₂ pellet	-	CH ₄	$0.001(\mu mol/g-TiO_2/h)$	-		top-illuminated quartz cell	l	311K	4.8W UVC		Tan et al. ¹⁵¹
										(λ=253.7nm)		
2007	multi-walled carbon nanotube (MWCNT)	-	CH ₄ , HCOOH, C ₂ H ₅ OH	0.98(µmol/g-cat/h)	-		samples laid over glass,	CO ₂ , H ₂ O (1:5)	298K	15W UVA		Xia et al. ¹⁵²
	TiO2-MWCNTs(0.01g CNT)	-		11.74	-		stainless steel reactor			(λ=365nm)		
	Degussa P25 TiO ₂	-		14.67	-							
	TiO2-AC(0.01g activated carbon)	-		4.31	-							
	Activated carbons (AC)	-		0.67	-							
2007*	titania-supported cobalt phthalocyanine	0.5wt%CoPc	СО, СН ₄ , НСООН, НСНО	0.63(µmol/g-cat/h)	0.21(µmol/g-cat/h)		pyrex cell	CO ₂ in NaOH _(aq)	-	500W halogen lamp		Liu et al.153
2007*	InTaO ₄	-	CH ₂ OH	-	1.06(umol/g-cat/h)		continuous flow reactor.	CO ₂ in KHCO _{2(ag)}		500W halogen lamp		Pan et al. ¹⁵⁴
	NiO-InTaO ₄	1wt%NiO		-	1.39	2.45% (CH3OH)	down-window type cell	2 5(aq)		e e e e e e e e e e e e e e e e e e e		
2008*	TiO ₂ (anatase 773K)	-	CH_4	33.68(µmol/g-cat/h)	-	,	commercial annular	CO ₂ in	293- 208K	450W Hg lamp		Li et al. ¹⁵⁵
	TiO ₂ (anatase-rutile 773K)	-		14.03	-		reactor	NaHCO3/isopropanol	2701			
	Degussa P25 TiO ₂	-		3.51	-			······································				
2008	Degussa P25 TiO ₂	-	-	trace	-		optical fiber photoreactor	CO ₂ , H ₂ O	348K	UVA light	225mW/cm ²	Nguyen et al.156
	Cu-Fe/TiO ₂	0.5wt%Cu; 0.5wt%Fe	CH4, C2H4	0.91	-	0.025% (CH ₄)	1 1	27 2		$(\lambda = 320-500 \text{nm})$		0.
2009	nitrogen-doped titania nanotube (NT)		H ₂ , CO, CH ₄ , alkanes,				stainless steel chamber	CO ₂ , H ₂ O	317K	sun light (AM 1.5)	75-102mW/cm2	Varghese et al.157
	NT/Pt-460	0.75at%N	olefin, branched paraffin	1.19(µmol/g-cat/h)	-			-		- · · · · ·		
	NT/Pt-600	0.4at%N	· •	2.86	-							
	NT/Cu-600	0.4at%N		3.09	-							

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2013

jear catalysts loading primary products methano quantum yied reactor/sample cell reactor/s	
yearcatalystsloadingprimary productsmethanomethanolquantury jedreactor/sample cellreactoristemp.light sourcelight methanolreactoris2009Degussa P25 TrO2CH30HCH30H-A30(moly cath)inden-irradiated quat cellCO in NaOH _(sa) A15K40W haide lampYang et al. Si Yang et al. Si <br< th=""><th></th></br<>	
yearcatalystsloadingprimary productsmethanolquatum yielreactor/sample cellreactor/sample c	
2009Degussa P25 TiO2CH3OHCH3OH430(µm0/g-cat/)inner-irradiated quartz cellCO2 in NaOH _(sq) 315K400W halide lampYang et al. 150TiO2/SBA-1545w;%TiO22w;%Cu-972-($::300-600$ m) </th <th>nce</th>	nce
TiO_ySBA-15 $45w\% TiO_2$ $a 50\%$ 72 $(\lambda:300-600nm)$ CuTiO_2 $2w\% Cu$ $a 50\%$ 1250 $(\lambda:300-600nm)$ CuTiO_ySBA-15 $45w\% TiO_2: 2w\% Cu$ $a 60\%$ 1444 2009 $Pegussa P25 TiO_2 (TO-NP)$ $a CH_4$ $a 60\% (mol/geTi/h)$ $a 444$ $100 - NP$ $0.12w\% Pt$ $0.06(\mumol/geTi/h)$ $a 60\% (mol/geTi/h)$ $a 70\% (mol/ge$	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
2009 Degussa P25 TiO ₂ (TO-NP) - CH ₄ - - quartz plate, CO ₂ , H ₂ O (50:1) 323K 300W Hg lamp Zhang et al. ¹⁴ Pt/TO-NP 0.12wt% Pt 0.06(µmol/g-Ti/h) - top-irradiated cell top-irradiated cell -	
Pr/TO-NP 0.12w%Pt 0.06(µm0/g-Ti/h) ip-iradiate cell TiO_ nanotube (TO-NT) - - - Pr/TO-NT 0.15w%Pt 0.13 - - TiO_ nanotube (TO-NT) 0.15w%Pt 0.13 - - - Nin TaO_4(100°C) - CH_3OH - 0.31(µm0/g-cal/ cylindrical quartz reactor CO_2 in NaOH _(ap) 298K fluorescent and the MV/cm ² Marge at 1 ¹² Nin TaO_4(100°C) 1w%Ni - 2.8 0.045% (CH_3OH) 298K fluorescent and the MV/cm ² Marge at 1 ¹²	59
FiO2 nanotube (TO-NT) -	
Pt/TO-NT 0.15wt%Pt 0.13 -	
2010* InTaO ₄ (1100°C) - CH ₃ OH - 0.31(µmol/g-cat/h) cylindrical quartz reactor CO ₂ in NaOH _(aq) 298K fluorescent lamp 146mW/cm ² Wang et al. ¹² NiO/InTaO ₄ (1100°C) 1wt%Ni - 2.8 0.0045% (CH ₃ OH) (\lambda: 452, 543, 611nm) - <td< td=""><td></td></td<>	
NiO/InTaO ₄ (1100°C) 1wt%Ni - 2.8 0.0045% (CH ₃ OH) (λ :452, 543, 611nm)	л
- 11.1 0.063 optical fiber photoreactor CO_2 , H_2O 298 100W halogen lamp 327mW/cm ²	
- 21 348 (λ:400-1100nm)	
- 11.3 305 solar concentrator	
2010 Ga ₂ SO ₃ - CO 0.72(μmolCO/g-cat/h) - quartz reactor CO ₂ , H ₂ O (1:1) 200W Hg/Xe lamp Tsureoka et al	al. ¹⁶⁰
MgO - 0.71 -	
CaO - 0.35 -	
ZrO ₂ - 0.12 -	
Al ₂ O ₃ - 0.07 -	
TiO ₂	
V ₂ O ₅	
Nb ₂ O ₅	
$2010^{*} \text{ TiO}_{2} - \text{ CH}_{4}, \text{CH}_{3}\text{OH} 3.3(\mu\text{mol/g-cat/h}) 0.8(\mu\text{mol/g-cat/h}) \text{inner-irradiated cell} \text{CO}_{2} \text{ in NaOH}_{(aq)} 8W \text{ Hg lamp} 1.41 \text{mW/cm}^{2} \text{ Koci et al.}^{161} Ko$	
Ag/TiO ₂ 1wt% 5.2 0.96 (λ=254nm)	
3 4.2 0.9	
5 5.6 1.2	
7 8.5 1.9	
2010 TiO_2 SiO ₂ 12wt%TiO ₂ CO continuous flow reactor, CO ₂ , H ₂ O Xe arc lamp 2.4mW/cm ² Li et al. ¹⁶²	
Cu/TiO ₂ -SiO ₂ 12wt%TiO ₂ :0.5wt%Cu CO, CH ₄ 13.2(µmol/g-TiO ₂ /h) - 0.56% (CH ₄) side-illuminated cell	
2010 $Zn2GeO_4(solid-state reaction)$ - CH_4 $0.67(\mu mol/g-cat/h)$ - top-illuminated cell CO_2 , injected H_2O 300W Xe lamp Liu et al. ¹⁶³	
Zn2GeO ₄ (nanoribbons) - 1.5 -	
Pt-loaded nanoribons 1wt%Pt 2 -	
RuO2-loaded nanoribbons lwt%RuO2 2 -	
RuO ₂ +Pt-loaded nanoribbons 1wt%RuO ₂ ;1wt%Pt 25 -	
2010 $ZnGa_2O_4(solid-state reaction)$ - CH_4 top-illuminated cell CO_2 , injected H_2O 300W Xe lamp Yan et al. ¹⁶⁴	
meso-ZnGa ₂ O ₄ (mesoporous) - 5.3(ppm/h) -	
RuO ₂ -loaded meso-ZnGa ₂ O ₄ 1wt%RuO ₂ 50.4 -	
2010 CdSe quantum dots/Pt/TiO ₂ 1at%Cd;0.5at%Pt CO, H ₂ , CH ₄ , CH ₃ OH 48(ppm/g-cat/h) 3.3(ppm/g-cat/h) stainless steel cube CO ₂ , H ₂ O 300W Xe lamp ≤ 100 mW/cm ² Wang et al. ¹⁶	i5
$[0.6(\mu mol/g-cat/h)] + filter (\lambda>420nm)$	

	product yield											
year	catalysts	loading	primary products	methane	methanol	quantum yield	reactor/sample cell	reactants t	emp. light source	light intensi	ty reference	
2011	Ti-SBA-15	-	CH4,C2H4,C2H6	0.016(µmol/g-cat/h)	-		combinatorial photoreactor	CO ₂ , H ₂ O	120 W high-pressure mercury lamp. 15 $(280 < \lambda < 650 \text{ nm})$	50 mW/cm ²	Yang et al. ¹²⁵	
2011	TiO ₂ (Degussa P25) kaolinite/TiO ₂ (KATI66)	99.4wt%TiO ₂ 60wt%TiO ₂	H ₂ , CH ₄ , CH ₃ OH, CO	0.13(µmol/g-TiO ₂ /h) 0.31	0.03(µmol/gTiO ₂ /h) 0.18		stirred batch annular reactor	CO_2 in NaOH _(aq) (0.2M)	8 W Hg lamps (λ=254 nm)		Kočí et al. ¹⁶⁶	
2012	TiO ₂ 10I-TiO ₂ 1Cu-TiO ₂ 0.1Cu-10I-TiO ₂ 0.5Cu-10I-TiO ₂ 1Cu-10I-TiO ₂ 1Cu-10I-TiO ₂	- - - - - - - -	CO,CH4,CH3Cl	- - 0.109(μmol/g-cat/h) - 0.011 0.011 0.026			top-illuminated quartz cell	CO ₂ , H ₂ O	450 W Xe lamp (Oriel) (λ > 250 nm)		Zhang et al. ¹⁶⁷	
2012	TiO ₂ -RMA	-	CH_4	2.36(µmol/g-cat/h)	-		glass reactor	CO ₂ , H ₂ O	300W mercury lamp (λ=365 nm)		Wang et al. 168	
2013	Pt/CuGaAlO ₄	- 0.5wt%Pt 1.0wt%Pt 1.5wt%Pt	H ₂ , CH ₃ OH, CO	-	- 5.3(µmol/g-cat/h) 7.8 6.1		novel twin reactor divided by a membrane	¹ CO ₂ , H ₂ O	300 W xenon (Xe) 90 lamp) mW/cm ²	Lee et al. ¹⁶⁹	
2013	Mes-TiO2 Mes-CeTi-0.5 Mes-CeTi-1.0 Mes-CeTi-2.0 Mes-CeO2		CH ₄ , CO	1220(µmol/g-cat/h) 2010 2220 1960 940	- - - -		stainless steel reactor	CO ₂ (95.5%), H ₂ O (4.5%) 303	K Xe arc lamp (300 W)		Wang et al. ¹⁷⁰	

* liquid phase photocatalytic CO₂ reduction. Others: gas phase photocatalytic CO₂ reduction.