Supporting Information

The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction

- J. B. Dunn,^{a,*} L. Gaines,^a J. C. Kelly,^a C. James,^b and K. G. Gallagher^c
 - a. Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States
 - b. Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering Building, East Lansing, MI 48824, United States
 - c. Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States
- * Corresponding author: jdunn@anl.gov, 1-630-252-4667

The areas in this diagram for each processing step are approximately proportional to the estimated plant areas in the baseline plant.

Figure S1. Battery assembly plant schematic¹

Figure S2. Steps and materials in the production of the lithium-ion battery with the assembly step separated from all material production steps. BMS = battery management system

Figure S3. Cradle-to-gate NOx, VOC, PM_{10} , and $PM_{2.5}$ emissions (kg/tonne) for different cathode materials

The following table provides material and purchased energy flows for the preparation of cathode materials by solid-state (SS) or hydrothermal (HT) preparation techniques. Complete material and energy flows for all compounds used in this analysis are provided in Dunn et al. 2014² and in the 2014 release of the GREET model (http://es.greet.anl.gov).

	1		1	1			
	NCM	LFP	LMR-	LCO SS	LCO	LFP SS	LMO
	SS	HT	NMC SS		HT		SS
Material Inputs (kg/kg							
cathode)							
Ni _{0.4} Co _{0.2} Mn _{0.4} (OH) ₂	0.95		0.85				
Lithium Hydoxide	0.25	0.27			0.25		
Oxygen	0.08		0.37				
Phosphoric Acid		0.37					
Iron Sulfate		0.57					
Lithium Carbonate			0.52	0.38		0.23	0.20
Cobalt Oxide				0.82			
Hydrochloric acid					0.12		
Sodium Chlorate					0.45		
Sodium Hydroxide					1.9		
Cobalt Chloride					1.3		
Iron Oxide						0.49	
Diammonium Phosphate						0.84	
Manganese Oxide							0.87
Purchased Energy							
Inputs (MJ/kg							
cathode)							
Natural Gas					34		15
Electricity	2.2	36	3.2	1.2		2.9	0.15

Table S1. Material (kg/kg) and purchased energy (MJ/kg) inputs for the production of cathode materials via solid-state (SS) or hydrothermal (HT) preparation.

Chemical Formula	Abbreviation	Specific Energy (Wh/kg vs Li- metal)	Capacity (mAh/g)	Advantages	Drawbacks
LiMn ₂ O ₄	LMO	405	100	 Low cost High power density	 Lower energy density Accelerated capacity fade
LiCoO ₂	LCO	610	150	High energy density	High costModerate stability
LiFePO ₄	LFP	515	150	 High power density Very stable 	Lower energy density
LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂	NMC	675	150	• Performs well for all metrics	Moderate costModerate stability
$\begin{array}{c} 0.5Li_2MnO_3\\ \cdot 0.5LiNi_{0.44}C\\ o_{0.25}Mn_{0.31}O_2 \end{array}$	LMR-NMC	940	250	 High energy density Low cost 	 Not commercial Degrades quickly

Table S2. Cathode material properties³

The following tables report battery parameters as determined with Argonne's BatPaC model³ and incorporated into GREET.

Table S3. BEV Battery Properties

	LMO	LCO	NMC	LFP	LMR-NMC
Power (kW)			14	9	
Energy (kWh)	28				
Energy Requirement (Wh/km)	136				
Cells in Battery	96	96	96	100	100

Table S4. PHEV Battery Properties

		PHEV			
	LMO	NMC	LFP		
Power (kW)		60			
Energy (kWh)	9				
Energy Requirement	136				
(Wh/km)					
Cells in Battery	96	96	100		

Table S5. PHEV Battery Composition

		PHEV	
Material (wt%)	NMC	LMO	LFP
Active Material	15	27	17
Wrought Aluminum	26	22	27
Copper	25	15	19
Graphite/Carbon	9.7	12	11
Electrolyte: Ethylene	4.7	4.8	6.3
Carbonate			
Electrolyte: Dimethyl	4.7	4.8	6.3
Carbonate			
Electrolyte: LiPF ₆	1.6	1.7	2.2
Electronic Parts	2.2	2.8	2.2
Steel	2.0	2.0	2.1
Binder	1.3	2.1	1.4
Polypropylene	3.7	2.2	2.9
Polyethylene	0.75	0.38	0.52
Polyethylene Terephthalate	1.6	1.7	1.8
Glycol (coolant)	1.1	1.3	1.2
Thermal Insulation	0.30	0.34	0.42
Total Mass (kg)	108	85	107

		B	EV			
Material (wt%)	LFP	NMC	LCO	LMO	LMR-	LMR-
					NMC	NMC
					(Gr	(Gr/Si
					anode)	anode)
Active Material	24	28	29	34	20.	24
Wrought	20.	20.	20.	19	22	25
Aluminum						
Copper	12	11	11	11	15	20.
Graphite/Carbon	15	18	18	15	20.	5.6
Electrolyte:	7.8	5.4	5.4	5.4	5.5	5.6
Ethylene Carbonate						
Electrolyte:	7.8	5.4	5.4	5.4	5.5	5.6
Dimethyl						
Carbonate						
Electrolyte: LiPF ₆	2.7	1.9	1.9	1.9	1.9	1.9
Electronic Parts	1.0	1.3	1.4	1.1	1.5	1.7
Steel	1.6	1.4	1.4	1.4	1.4	1.2
Binder	2.1	2.5	2.5	2.5	2.1	2.1
Polypropylene	1.9	1.7	1.6	1.7	2.1	2.8
Polyethylene	0.33	0.30	0.28	0.29	0.40	0.56
Polyethylene	1.4	1.2	1.2	1.2	1.2	1.2
Terephthalate						
Glycol (coolant)	0.99	1.0	1.1	0.95	1.1	1.3
Thermal Insulation	0.35	0.36	0.37	0.33	0.39	0.41
Total Mass (kg)	230	180	170	210	160	140

Table S6. BEV Battery Composition

Table S7. Contribution (MJ/kg cathode material) to cathode cradle-to-gate energy intensity of cathode inputs. (Data correspond to Figure 1 in the main text.) Values are full fuel cycle (not purchased) energy.

Input	NMC	LMR-	LCO	LCO	LFP	LFP	LMO
-		NMC	(SS)	(HT)	(HT)	(SS)	(SS)
NiO	62	30					
CoO	31	35	150	150			
MnO	3.7	3.0					
H ₂ SO ₄		0.23					0.02
NH ₃		6.9					
NaOH	29	2.4		66			
Lime							0.08
Alcohol							0.0071
Na ₂ CO ₃							3.7
Li Brine							0.68
Ni/Co/Mn	11	9.7					
precursor							
LiOH	13			13	14		
O ₂		1.1					
NMC	4.9						
Li ₂ CO ₃		24	17			11	2.9
LMR-NMC		3.5					
Co ₃ O ₄			0.71				
LiCoO ₂			2.8	38			
H ₂				5.0			0.04
Cl ₂				20.			0.14
HCl							0.23
CoCl ₂				0.70			
NaCl				0.36			0.05
NaClO ₃				17			
H ₃ PO ₄					1.6		
FeSO ₄							
LiFePO ₄					40.	6.5	
Fe ₃ O ₄						0.69	
$(NH_4)_2HPO_4$						16	
Mn ₂ O ₃							12
LiMn ₂ O ₄							14
Total	155	116	173	313	56	34	35

Table S8. Contribution of battery components to cradle-to-gate battery energy intensity (MJ/kg battery) (Data correspond to Figure 3 in the main text.) Values are full fuel cycle (not purchased) energy.

	LFP	LFP	NMC	LCO	LCO	LMO	LMR-	LMR-
	(SS)	(HT)		(SS)	(HT)		NMC:	NMC:
							Gr/Si	Gr
Cathode	8.3	14	44	49	91	14	28	23
material								
Graphite	6.5	6.5	7.9	8.0	8.0	6.3	2.4	8.7
Silicon	0	0	0	0	0	0	21	0
Wrought	32	32	31	31	31	30	39	35
Aluminum								
Copper	4.7	4.7	4.4	4.2	4.2	4.2	7.5	5.6
Battery	4.3	4.3	5.5	5.8	5.8	4.6	7.0	6.2
Management								
System								
Binder and	0.79	0.79	0.93	0.94	0.97	0.97	0.78	0.79
binder								
solvent								
Plastics	3.0	3.0	2.6	2.5	2.5	2.6	3.7	3.1
Insulation	0.07	0.07	0.07	0.08	0.08	0.07	0.08	0.08
Steel	0.82	0.82	0.75	0.76	0.76	0.75	0.65	0.75
Electrolyte	13	13	9.3	9.3	9.3	9.3	9.6	9.5
Glycol	0.39	0.39	0.41	0.42	0.42	0.38	0.50	0.44
Assembly	3.5	3.5	4.5	4.8	4.8	3.8	5.7	5.1
(nth plant)								
Assembly	610	610	780	830	830	660	990	890
(pioneer								
plant)								

Table S9. Contribution of energy sources to different grid mixes. (Totals may not add due to rounding)

	US Grid	California Grid	Northeast Power Coordinating
			Council (NPCC) Glid
Residual Oil	0.9%	0.5%	1.1%
Natural Gas	23%	48%	41%
Coal	46%	7.6%	10%
Nuclear Power	20%	17%	31%
Biomass	0.29%	1.3%	1.4%
Other ^a	9.8%	26%	16%

a. Includes hydroelectric, geothermal, wind, solar photovoltaic, and other sources

References

- 1. P. A. Nelson, K. G. Gallagher, I. Bloom, and D. W. Dees, *Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles*, Report number ANL-11/32, Argonne National Laboratory, 2011.
- 2. J. B. Dunn, C. James, L. Gaines, and K. Gallagher, *Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries*, Report number ANL/ESD/14/10, Argonne National Laboratory, 2014.
- 3. Argonne National Laboratory, BatPaC Model, 2011.