Electronic Supplementary Information (ESI) for:

Colorimetric "Naked eye" detection of CN⁻, F⁻, CH₃COO⁻ and H₂PO₄⁻ ions by highly nonplanar electron deficient perhaloporphyrins

Nivedita Chaudhri and Muniappan Sankar*

Contents

Fig. S1. UV-Vis absorption spectra of 1 and 3 and the emission spectra of 1-4 in toluene at 298 K.

Fig. S2. ¹H NMR spectra of 1 (top) and 2 (bottom) in CDCl₃ at 298K.

Fig. S3. Imino proton region of 1-4 in CDCl₃ at 298K.

Fig. S4. Negative ion mode ESI Mass spectrum of $H_2TPPNO_2Cl_7(1)$ in CH_3CN .

Fig. S5. The ORTEP diagrams showing top (a) and side (b) views of 2,3,7,8,12,13,17,18-Octachloro*-meso*-tetraphenylporphyrin (**2**).

Fig. S6. B3LYP/6-311G (d,p) optimised geometries showing top (a) as well as side (b) views of 1.

Fig. S7. Pictorial representation of frontier orbitals of 2-nitro-3,7,8,12,13,17,18-heptachloro-*meso*-tetraphenylporphyrin (1).

Fig. S8. CVs and DPVs of 1-4 in CH_2Cl_2 containing 0.1 M TBAPF₆at 298 K. Representation of

HOMO-LUMO gap of 1-4 obtained from electrochemical studies.

Fig. S9. UV-Vis spectral titrations of 2-4 with TFA (protonation studies) in toluene at 298 K.

Fig. S10. UV-Vis spectral titrations of 2-4 with TBAOH (deprotonation studies) in toluene at 298 K.

Fig. S11. Colorimetric responses of 2-4 while adding of excess of anions in toluene at 298 K.

Fig. S12. UV-Vis spectral titrations of **2-4** while increasing [CN⁻] in toluene at 298 K. Insets show the corresponding Hill plots.

Fig. S13. UV-Vis spectral titrations of **1-4** while increasing [F⁻] in toluene at 298K. Insets show the corresponding Hill plots.

Fig. S14. UV-Vis spectral titrations of **1-4** while increasing [OAc⁻] in toluene at 298K. Insets show the corresponding Hill plots.

Fig. S15. UV-Vis spectral titrations of 1-4 while increasing $[H_2PO_4^-]$ in toluene at 298K. Insets show the corresponding Hill plots.

Fig. S16. Plots of ΔA at $\lambda_{max}vs$ [CN⁻] or [OAc⁻] or [H₂PO₄⁻] for 1-4 showing sigmoidal curve indicating the positive cooperative behavior.

Fig. S17. Fluorescence spectral titrations (FL quenching) of **1-4** while increasing [F⁻] in toluene at 298 K.

Fig. S18. (a) ¹H NMR spectral changes of **1** while [F⁻] in CDCl₃ at 298K. (b) Disappearance of NH protons of **1**upon increasing the aliquots of 0.05 M fluoride ion solution in CDCl₃ at 298K.

Fig. S19. DPV traces of **1-4** in absence and presence of excess [F-] in CH₂Cl₂ containing 0.1 M TBAPF₆ at 298K.

Fig. S20. DPV titrations of **2-4** while increasing the concentration of F^- ion in CH₂Cl₂ containing 0.1 M TBAPF₆ at 298K.

Fig. S21. UV-Visible spectral titrations of planar porphyrins (H_2TPP and $H_2TPP(Ph)_4$) and nonplanar porphyrins (H_2TPPBr_4 and $H_2TPP(Ph)_8$) while increasing [F-] in toluene at 298 K.

Fig. S22. Overlayed UV-Visible Spectra of 1-4 with excess of *p*-toluene sulphonic acid, piperidine and fluoride ion in toluene at 298 K.

Fig. S23. (a) UV-Vis spectral titrations of **3** with TBACl (0.008 M) in toluene at 298 K. Inset shows the change in Soret region from 460-495 nm; (b) Hill plot $\log(A_i-A_0/A_f-A_i)$ Vs log [Cl⁻] showing 1:1 stoichiometry indicated by slope 1.

Fig. S24. (a) Treatment of $1 \cdot 2CN^{-1}$ complex with aliquots of 1 mM solution TFA at 298 K. (b) Reusability test of regenerated 1 with aliquots of 8 mM solution of CN^{-1} ions in toluene at 298 K.

Fig. S25. (a) Treatment of 2•2CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for reversibility and reusability test.

Fig. S26. (a) Treatment of **3**•2CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for reversibility and reusability test.

Fig. S27. (a) Treatment of **4**•**2**CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for the reversibility and reusability test.

Table 1. UV-Vis absorption spectra data of 1 and 3 and fluorescence spectra of 1-4 in toluene at 298 K.**Table 2.** Crystal structure data of 2,3,7,8,12,13,17,18-Octachloro-*meso*-tetraphenylporphyrin (2).

 Table 3. Selected average bond lengths and bond angles of 2,3,7,8,12,13,17,18-Octachloro-meso-tetraphenylporphyrin (2).

Table 4. Selected average bond lengths and bond angles of 2-nitro-3,7,8,12,13,17,18-heptachloro-*meso*-tetraphenylporphyrin (1).

Table 5. Electrochemical redox potentials of 1-4 in CH₂Cl₂ at 298 K.

Table 6. Electronic absorption spectral data of 1-4 in presence of excess TFA, TBAOH and various anions in CH_2Cl_2 at 298 K.

Table 7. The detection limits (LOD) and quantification limits (LOQ) of anions by 1-4 in toluene.

Figure S1. UV-Vis absorption spectra of 1 and 3 and fluorescence spectra of 1-4 in toluene at 298 K.

1 363(26.91), 461(190.5) 559(10.23), 612(9.54), 730(7.58) 809 2 356(24.54), 455(204.1) 552(11.48), 601(11.75), 718(6.17) 762 3 371(33.85), 473(239.9) 574(9.55), 628(13.49), 747(9.12) 816 4 264(21.62) 460(257.0) 570(11.49) 622(16.09) 730(7.58) 809	Porphyrin B (Bands)		Q (Bands)	λ_{em} , nm
2 356(24.54), 455(204.1) 552(11.48), 601(11.75), 718(6.17) 762 3 371(33.85), 473(239.9) 574(9.55), 628(13.49), 747(9.12) 816 4 264(21.62), 469(257.0) 570(11.49), 622(16.09), 720(0.70) 780	1	363(26.91), 461(190.5)	559(10.23), 612(9.54), 730(7.58)	809
3 371(33.85), 473(239.9) 574(9.55), 628(13.49), 747(9.12) 816	2	356(24.54), 455(204.1)	552(11.48), 601(11.75), 718(6.17)	762
	3	371(33.85), 473(239.9)	574(9.55), 628(13.49), 747(9.12)	816
- 4 364(31.62), 469(257.0) 570(11.48), 623(16.98), 739(8.70) 789	4	364(31.62), 469(257.0)	570(11.48), 623(16.98), 739(8.70)	789

Table S1. UV-Visible and fluorescence spectral data of 1-4 in toluene at 298 K.

The values in parentheses refer to $\varepsilon \times 10^{-3}$ L mol⁻¹ cm⁻¹

Figure S2. ¹H NMR spectra of 1 (top) and 2 (bottom) in CDCl₃ at 298K.

Figure S3. Imino protons region of **1-4** in CDCl₃ at 298K

Figure S4. Negative ion mode ESI Mass spectrum of H_2 TPPNO₂Cl₇(1) in CH₃CN.

2
C ₄₈ H ₃₀ N ₆ Cl ₈ O ₂
1006.38
Tetragonal
$I 4_1/a$
19.880(3)
19.880(4)
13.1460(15)
90
5195.5(13)
4
1.287
0.71073
293 K
1781
1483
0.0113
0.3293
1033576

Table S2. Crystal structure data	of 2,3,7,8,12,13,17,18-Octachloro-	-meso-tetraphenylporphyrin (2).
----------------------------------	------------------------------------	---------------------------------

Figure S5. The ORTEP diagrams showing top (a) and side (b) views of 2,3,7,8,12,13,17,18-Octachloro-*meso*-tetraphenylporphyrin (2).

Table S3. Selected average bond lengths and bond angles of 2,3,7,8,12,13,17,18-Octachloro-*meso*-tetraphenylporphyrin (2).

Bond	length (Å)	Bond angle (°)		
N-H	0.822(8)	$N-C_{\alpha}-C_{m}$	123.9(7)	
N-C _a	1.355(10)	$N-C_{\alpha}-C_{\beta}$	107.2(6)	
C_{α} - C_{β}	1.432(10)	$C_{\alpha}-C_{\beta}-C_{\beta}$	107.5(6)	
$C_{\beta}-C_{\beta}$	1.345(11)	$C_{\beta}-C_{\alpha}-C_{m}$	128.5(7)	
C_{α} - C_{m}	1.411(10)	C_{α} - C_{m} - C_{α}	120.6(6)	
$\Delta C_{\beta}(A)$	1.2095	C_{α} -N- C_{α}	110.0(6)	
Δ 24(Å)	0.5695			

^a ΔC_{β} refers mean plane deviation of β -carbon atoms, ^b $\Delta 24$ refers mean plane deviation of 24 core atoms

Figure S6. B3LYP/6-311G(d,p) optimised geometries showing top (a) as well as side (b) views of 1.

Table S4. Selected average bond lengths and bond angles of 2-nitro-3,7,8,12,13,17,18-heptachloro-*meso*-tetraphenylporphyrin (1).

CI, CI	Bond ler	ıgth (Å)	Bond angle (°)	
	N'- H	1.011	N- C_{α} - C_m	124.025
$C_{\alpha} = \begin{pmatrix} \beta \\ \beta$	N-C _a	1.360	$N-C_{\alpha}'-C_m$	124.623
$C_{\rm m}$	N'- $C_{\alpha'}$	1.374	$N-C_{\alpha}-C_{\beta}$	109.335
$O_2 N C_{\alpha'}$ $N C_{\alpha'}$ $C_{\alpha'}$	C_{α} - C_{β}	1.462	$N-C_{\alpha}'-C_{\beta}'$	105.068
$C_{\beta'}$	$C_{\alpha}' - C_{\beta}'$	1.440	$C_{\beta}-C_{\alpha}-C_{m}$	126.323
$C_{\beta'}$ N' N' $C_{\beta'}$	$C_{\beta}-C_{\beta}$	1.360	C_{β} '- C_{α} '- C_{m}	130.183
$C_{\alpha'}$ $C_{\alpha'}$ $C_{\alpha'}$	$C_{\beta}'-C_{\beta}'$	1.376	C_{α} - C_m - C_{α}	122.755
	C_{α} - C_{m}	1.416	C_{α} - C_{β} - C_{β}	106.635
C_{α} C_{α} C_{m}	C_{α}' - C_m	1.407	C_{α} - C_{β} '- C_{β} '	108.440
$\sum_{C_{\alpha}} C_{\beta}$	$\Delta C_{\beta}(A)^{a}$	1.212	C_{α} -N- C_{α}	107.725
CI CI	$\Delta 24(\text{\AA})^{b}$	0.515	C_{α}' -N- C_{α}'	112.685
1				

 $^{a}\Delta C_{\beta}$ refers mean plane deviation of β -carbon atoms, $^{b}\Delta 24$ refers mean plane deviation of 24 core atoms.

Figure S7. Pictorial representation of frontier orbitals of 2-nitro-3,7,8,12,13,17,18-heptachloro-*meso*-tetraphenylporphyrin (1).

Figure S8. CVs and DPVs of 1-4 in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K (top). Representation of HOMO-LUMO gap of 1-4 obtained from electrochemical studies (bottom).

Porphyrin	Oxidatio	on (Volts)	Reduction(Volts)			$\Delta E_{1/2} (I_{ox}-I_{red})$ (Volts)
	Ι	II	Ι	II	III	
1	1.11	1.34	-0.54	-0.94	-1.23	1.65
2	1.05	1.30	-0.75	-1.15	-	1.80
3	1.02	1.28	-0.56	-0.95	-1.27	1.58
4	0.96	1.21*	-0.74	-1.16	-	1.70

Table S5. Electrochemical redox potentials^a of 1-4 in CH_2Cl_2 at 298K.

^avs Ag/AgCl, ^{*}data obtained from DPV, all are irreversible potentials.

Figure S9. UV-Vis spectral titrations of 2-4 with TFA (protonation studies) in toluene at 298 K.

Figure S10. UV-Vis spectral titrations of 2-4 with TBAOH (deprotonation studies) in toluene at 298 K.

Figure S11. Colorimetric responses of 2-4 while adding of excess of anions in toluene at 298 K.

Porphyrin	B band(s)	Q band	
[1•2H] ²⁺	491 (94.16)	754 (11.95)	
[2•2H] ²⁺	415(22.14), 483 (151.99)	734 (24.90)	
[3•2H] ²⁺	501 (93.75)	768 (7.99)	
[4•2H] ²⁺	425(18.95), 495 (149.03)	750 (22.03)	
Deprotonation			
[1-2H] ²⁻	409(17.69), 506 (47.81)	726 (4.01)	
[2-2H] ²⁻	492 (87.13)	713(7.25)	
[3-2H] ²⁻	414(15.94), 516 (50.21)	743(2.92)	
[4-2H] ²⁻	401(15.55), 505 (88.66)	735 (6.11)	
Cyanide			
[1+2CN ⁻]	412(19.24), 506 (52.04)	720 (4.26)	
[2+2CN ⁻]	414(22.17), 492 (109.75)	713 (8.84)	
[3+2CN ⁻]	414(17.19), 514 (53.06)	740 (3.41)	
[4+2CN ⁻]	444(31.98), 503 (94.52)	723 (6.79)	
Fluoride			
[1+2F ⁻]	490(20.57), 506 (55.65)	721 (4.91)	
[2+2F ⁻]	492 (104.11)	710 (8.59)	
[3+2F ⁻]	414(1.35), 516 (56.87)	739 (3.75)	
[4+2F ⁻]	398(17.56), 504 (98.41)	731 (7.34)	
Acetate			
[1+2CH ₃ COO ⁻]	410(22.07), 506 (58.50)	719 (5.22)	
[2+2CH ₃ COO ⁻]	492 (77.95)	714 (7.04)	
[3+2CH ₃ COO ⁻]	414(18.35), 516 (59.79)	737 (3.90)	
[4+2CH ₃ COO ⁻]	472(53.79), 504 (88.60)	734 (6.76)	
Dihydrogenphosphate			
$[1+2H_2PO_4^-]$	411(22.98), 506 (59.51)	721 (5.38)	
$[2+2H_2PO_4]$	358(19.97), 456(73.95),492 (80.46)	716 (8.01)	
[3+2H ₂ PO ₄ ⁻]	416(19.93), 516 (60.79)	741 (4.03)	
[4+2H ₂ PO ₄ -]	471(57.90), 504 (90.30)	734 (7.22)	

Table S6. Electronic absorption spectral data of 1-4 in presence of excess TFA, TBAOH and various anions in CH_2Cl_2 at 298K.

Values in parentheses represent $\epsilon \times 10^{-3} L \text{ mol}^{-1} \text{ cm}^{-1}$

Figure S12. UV-Vis spectral titrations of **2-4** while increasing [CN-] in toluene at 298K. Insets show the corresponding Hill plots.

Figure S13. UV-Vis spectral titrations of **1-4** while increasing [F-] in toluene at 298K. Insets show the corresponding Hill plots.

Figurre S14. UV-Vis spectral titrations of **1-4** while increasing [OAc⁻] in toluene at 298K. Insets show the corresponding Hill plots.

Figure S15. UV-Vis spectral titrations of **1-4** while increasing $[H_2PO_4^-]$ in toluene at 298K. Insets show the corresponding Hill plots.

Figure S16. Plots of ΔA at λ_{max} vs [OAc⁻] or [H₂PO₄⁻] or [CN⁻] for **1-4** showing sigmoidal curve indicating the positive cooperative behavior.

Por	CN-		F-		CH ₃ COO-		H ₂ PO ₄ -	
	LOD	LOQ nM	LOD	LOQ	LOD	LOQ	LOD	LOQ
	nM	(ppb)	nM	nM (ppb)	nM ppb)	nM (ppb)	nM (ppb)	nM (ppb)
	(ppb)		(ppb)					
1	7.3(0.19)	22.3(0.87)	6.0(0.11)	18.2(0.34)	8.2(0.48)	24.7(1.45)	7.7(0.75)	23.4(2.26)
2	9.5(0.24)	28.7(0.75)	8.4(0.16)	25.4(0.48)	9.7(0.57)	29.4(1.73)	9.6(0.93)	29.2(2.83)
3	8.6(0.22)	26.1(0.68)	7.4(0.14)	22.3(0.42)	10.0(0.59)	30.3(1.78)	10.3(1.00)	31.3(3.04)
4	8.3(0.21)	25.3(0.66)	8.4(0.16)	25.3(0.48)	8.7(0.51)	26.2(1.55)	8.6(0.83)	26.0(2.52)

Table S7. The detection limits (LOD) and quantification limits (LOQ) of anions by **1-4** in toluene at 298K.

nM and ppb represent nanomolar and parts per billion respectively

Figure S17. Fluorescence spectral titrations (FL quenching) of **1-4**while increasing [F⁻] in toluene at 298K.

Figure 18. (a) ¹H NMR spectral changes of **1** while [F-] in CDCl₃ at 298K. (b) Disappearance of NH protons of **1**upon increasing the aliquots of 0.05 M fluoride ion solution in CDCl₃ at 298K.

Figure S19. DPV traces of **1-4** in absence and presence of excess [F⁻] in CH₂Cl₂ containing 0.1 M TBAPF₆ at 298K.

Figure S20. DPV titrations of **2-4** while increasing the concentration of F- ion in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298K.

Figure S21: UV-Visible spectral titrations of planar porphyrins (*meso*-tetraphenylporphyrin (H₂TPP) and 2,3,5,10,15,17,18,20-octaphenylporphyrin (H₂TPP(Ph)₄) and nonplanar porphyrins (2,3,12,13-tetrabromo-*meso*-tetraphenylporphyrin (H₂TPPBr₄) and 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (H₂TPP(Ph)₈)) while increasing [F⁻] in toluene at 298 K.

Figure S22. Overlayed UV-Visible Spectra of **1-4** with excess of *p*-toluenesulphonic acid (PTSA), piperidine and fluoride ions in toluene 298 K. Herein, piperidine forms 1:1 host:guest complex with **1-4** in 1,2-dichloroethane as reported in literature (Ref. P. Bhyrappa and P. Bhavana, *Chem. Phys. Lett.* 2002, **357**, 108).

Figure S23. (a) UV-Vis spectral titrations of **3** with TBACl (0.008 M) in toluene at 298 K. Inset shows the absorbance changes in the Soret region; (b) Hill plot $\log(A_i-A_0/A_f-A_i)$ vs. \log [Cl⁻] showing 1:1 stoichiometry indicated by slope 1.

Figure S24. (a) Treatment of 1•2CN⁻ complex with aliquots of 1 mM solution TFA at 298 K. (b) Reusability test of regenerated 1 with aliquots of 8 mM solution of CN⁻ ions in toluene at 298 K.

Figure S25. (a) Treatment of **2**•2CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for reversibility and reusability test.

Figure S26. (a) Treatment of **3**•2CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for reversibility and reusability test.

Figure S27. (a) Treatment of **4**•**2**CN⁻ complex with sufficient amount of TFA and (b) the colorimetric response for the reversibility and reusability test.