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a 24-hour market, daily realised volatility based on five-minute underlying
returns is defined as the sum of the 288 intra-day squared five-minute re-
turns, taken day by day. Andersen & Bollerslev (1998) show that, under the
usual diffusion assumptions, realised volatility calculated from high-fre-
quency intra-day returns is effectively an error-free volatility measure.

As realised volatility is, in principle, error-free, it is natural to treat volatil-
ity as observable. Observable volatility creates entirely new opportunities:
we can analyse it, optimise it, use it and forecast it. This article exploits
this insight. We describe our recent attempts at understanding both the un-
conditional and conditional distributions of realised asset return volatility.
Second, we describe tools for optimising the construction of realised volatil-
ity measures. In the third section, we use realised volatilities to draw in-
ferences about the conditional distributions of asset returns. We then discuss
explicit modelling and forecasting of realised volatility.

Realised volatility and correlation
High-frequency data on Deutschmark and yen returns against the dollar
are used to construct model-free estimates of daily exchange rate volatili-
ty and correlation, spanning an entire decade (Andersen et al, 1999a). Pre-
liminary results indicate that the observed patterns apply more broadly to
other types of assets, including the 30 individual stocks in the Dow Jones
Industrial Average, as studied in Andersen et al (1999).

Figure 1 shows daily realised volatility for a representative asset return
series of 1,000 days. (Unless otherwise noted, all of the graphs shown here
are designed to be representative of daily returns.) It is clear that realised
volatility changes from day to day, as one expects. Furthermore, its fluc-
tuations display substantial persistence.

V
olatility is central to many applied issues in finance and
financial engineering, from asset pricing and asset al-
location to risk management. Hence financial econo-
mists have been intrigued by the very high precision
with which volatility can be estimated under the diffu-
sion assumption. Precise estimation of diffusion volatil-

ity does not require a long calendar span of data. Rather, volatility can be
estimated well from an arbitrarily short span of data, provided that returns
are sampled sufficiently frequently. This contrasts sharply with precise es-
timation of the drift, which generally requires a long calendar span of data,
regardless of the frequency with which returns are sampled.

Consequently, the volatility literature has steadily progressed toward
the use of higher-frequency data. This is true in the parametric autore-
gressive conditional heteroscedasticity (Arch) and stochastic volatility lit-
eratures (see Bollerslev, Engle & Nelson, 1994, for a review), as well as in
the more traditional empirical finance literature. For example, Officer (1973)
constructs annual volatilities from monthly returns on an equity index,
whereas Merton (1980) and French, Schwert & Stambaugh (1987) use daily
returns to estimate monthly volatilities. Even more recently, Schwert (1998)
relies on 15-minute returns for construction of daily stock market volatili-
ties, while Taylor & Xu (1997) and Andersen et al (1999a) exploit five-
minute returns in the measurement of daily exchange rate volatilities.

Recent work has clarified the comparative desirability of alternative
volatility estimators. This emerging theory emphasises the advantages of the
so-called realised volatility estimator. Construction of realised volatility is
trivial – one simply sums intra-period high-frequency squared returns (or
cross products, for realised covariance), period by period. For example, for
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Although not shown here, the distribution of the realised variance is
skewed, but transforming to realised standard deviation moves it toward
symmetry, and transforming to log standard deviations renders it approx-
imately Gaussian. 

Similarly, we find that realised covariance tends to be highly skewed,
but that a simple transformation to correlation delivers approximate nor-
mality (see figure 2). Realised correlation is almost always positive, often
strongly so, and it displays substantial variation. We also find that realised
correlation is itself highly correlated with realised volatility, which we call
the “volatility effect in correlation”. In particular, return correlations tend
to rise on high-volatility days, as we illustrate in figure 3.

We now move from unconditional to conditional aspects of the distrib-
utions of realised volatilities and correlations. Although correlograms of re-
alised volatilities tend to exhibit a slow hyperbolic decay, as shown in figure
4, we routinely and soundly reject the unit-root hypothesis. However, such
autocorrelation behaviour is also consistent with that of fractionally inte-
grated long-memory processes. In fact, there is strong evidence to suggest
that volatility is a long-memory process, an assertion we substantiate through
various analyses. First, we estimate the long-memory parameter directly.
The estimates tend to be about 0.4 for various realised volatility and corre-
lation series, and the associated standard error is very small, about 0.02.
Second, we verify that the degree of fractional integration is invariant to the
horizon, which is a well-known property of long-memory processes, due
to their self-similarity. Finally, we verify that our realised volatility and cor-
relation series follow scaling laws, such that the logs of the variance of par-
tial sums of the process are proportional to the logs of the horizon, which
is also a well-known characteristic of long-memory processes. 

Access to the high-frequency data necessary for constructing accurate
realised volatilities is increasing rapidly, but it is far from universal, and we
need simple and practical ways of characterising the measurement error
remaining in realised volatilities constructed from insufficiently frequently
sampled data. Moreover, even when high-frequency data is available, mi-
crostructure effects such as bid/ask bounce (occurring when transactions
are priced between the bid and ask prices) and asynchronous trading may
distort associated realised volatilities. We now turn to a tool for identify-
ing and mitigating such effects.

Optimisation
The appeal of realised volatility calculated from high-frequency data relies
at least partially on the assumption that log asset prices evolve as diffu-
sions. This assumption becomes progressively less tolerable as transaction
time is approached and market microstructure effects emerge. Hence, a
tension arises: the optimal sampling frequency will probably not be the
highest available, but rather some intermediate value, ideally high enough
to produce a volatility estimate with negligible sampling variation, yet low

enough to avoid microstructure bias. The choice of underlying return fre-
quency is therefore critical, but the literature currently offers little guidance
for making that decision.

We developed a tool designed to provide some guidance (Andersen et
al, 1999b). A key insight is that microstructure bias, if operative, will prob-
ably manifest itself as sampling frequency increases by distorting the av-
erage realised volatility. We construct a plot of average realised volatility
against sampling frequency, which we call the “volatility signature plot”.
This helps to reveal the severity of microstructure bias as sampling fre-
quency increases, and can be useful in guiding the selection of sampling
frequency. We can also use the volatility signature plots to characterise dif-
ferent market microstructures. Interestingly, it turns out that the volatility
signature has the same form as the variance-time function, which has been
extensively studied in finance. However, while there is no information in
the volatility signature that is not also present in high-frequency return au-
tocorrelations, the two are complements, not substitutes, as the informa-
tion relevant for construction and interpretation of realised volatilities is
more directly and transparently revealed in the volatility signature plot.

In figure 5, we show two representative volatility signature plots. The
integer k represents multiples of the smallest sampling interval in the data.
Thus, if we have a series for which the smallest available sampling inter-
val is one minute, for k = 1 we construct average realised volatility using
one-minute returns, for k = 2 we construct average realised volatility using
two-minute returns, and so forth. The left panel of figure 5 represents a
highly liquid asset for which the largest realised volatility estimates occur
at the highest sampling rates, corresponding to the smallest values of k.
This can be explained by negative serial correlation in the returns, most
likely induced by bid-ask bounce. At the smallest sampling intervals, the
volatility measures are very high, but as returns are aggregated across larg-
er and larger sampling intervals the oscillating swings in the returns series
tend to cancel, and overall volatility is lower. The volatility signature plot
stabilises at roughly k = 20 (in this case corresponding to a 20-minute re-
turn sampling interval). Although high-frequency microstructural effects
will also be small for sampling intervals larger than k = 20, realised volatil-
ity estimates constructed from larger return intervals will begin to suffer
from a higher sampling error. Thus, for this particular example, we would
recommend the use of a sampling interval of k = 20, which represents a
reasonable trade-off between minimising microstructural bias and min-
imising sampling error.

The right panel of figure 5 represents a less liquid asset, whose volatil-
ity signature is quite different from that of the asset in the top panel. In
this case, microstructural factors cause a positive serial correlation at high
frequencies, resulting in a smaller estimate of realised volatility, which does
not stabilise until the sampling interval reaches k = 15, or 15 minutes. In
this case, the microstructure bias is probably induced by inactive trading.
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to the multivariate setting, exploiting realised covariances as well as volatil-
ities, are straightforward.

In essence, forecasting return volatility is equivalent to forecasting re-
alised volatility (as long as high-quality intra-day return data are available).
Because realised volatility is effectively observed, it is amenable to direct
analysis via standard time-series methods. It is natural to assume that the
log-volatility process falls within the usual Gaussian autoregressive mov-
ing average (Arma) class of models. However, we have already noted the
long-memory characteristics of the realised volatility series. Consequently,
it is desirable to allow for fractional integration in the specification, lead-
ing to a so-called autoregressive fractionally integrated moving average
(Arfima) model.

First, one determines the degree of fractional integration, d, in the re-
alised log-volatility series. As noted above, the typical estimates suggest a
value of d around 0.4. Next, one obtains the fractionally differenced se-
ries, say, yt = (1 – L)d log σt. This involves calculating a long (in theory
infinite, in practice long, but truncated) distributed lag of the underlying
log-volatility series. This transformation ideally removes the long-run de-
pendence in the series. For illustration, we display such a fractionally dif-
ferenced log-volatility series in figure 7 and the associated correlogram in
figure 8. They provide remarkable contrasts to figures 1 and 4; any indi-
cation of long memory has been annihilated. The final step of the model-
ling procedure is to obtain a parsimonious Gaussian Arma representation
for this fractionally differenced (residual) series.

Standard Arfima procedures may now be applied to generate predic-
tions of future realised log-volatility. The result is a sequence of volatility
forecasts with associated prediction errors that are (approximately) log-
normally distributed. Moreover, because returns are normally distributed
conditional on realised volatility, one may readily calculate the fractiles of
the conditional return distribution in closed form from the standard log-
normal-normal mixture distribution.

The striking feature of this approach is that it builds directly on ob-
served time series and utilises only standard linear Gaussian modelling
and forecasting techniques. Hence, it is simple to assess in-sample per-
formance and evaluate model forecasts through well-established out-of-
sample procedures. It will be interesting in future work to investigate the
actual performance of such an approach relative to popular frameworks
such as Arch, stochastic volatility and RiskMetrics. Because our approach
exploits an arguably superior volatility measure along with more sound
distributional assumptions, it may outperform the standard procedures
currently in use.

Conclusion
Our findings have potentially wide-ranging implications for applied fi-
nance. The results on the unconditional and conditional distributions of

Again, much remains to be done. For example, the standard mi-
crostructural biases due to bid-ask bounce remain relevant in the multi-
variate case – and hence for estimation of correlation. Moreover, new
complications arise due, for example, to asynchronous trading (see Epps,
1979). Nevertheless, we feel confident that high-quality realised volatilities
and correlations can be constructed in liquid markets, and we are opti-
mistic regarding the potential for using volatility and correlation signature
plots to assist in the choice of underlying sampling frequency. We are also
interested in assessing various volatility estimators’ robustness to mi-
crostructural effects, particularly those based on the range, as in Alizadeh,
Brandt & Diebold (1999).

Use
Andersen et al (1999c) characterise the distribution and temporal depen-
dence of εt = rt/σt, which we call the σ-standardised return. (σ denotes
the realised standard deviation.)

There is a long tradition in the econometrics literature of needing and
allowing for a fat-tailed conditional distribution of εt, as in Bollerslev (1987).
But that literature typically works with returns standardised by volatilities
obtained from discrete-time Arch or stochastic volatility models, in which
day-t volatility depends only on information at day t – 1 and earlier. The
situation is different with realised volatility. Day-t realised volatility is based
on information within day t, and the theoretical predictions for distribu-
tions of returns standardised by realised volatility are unambiguous: under
the diffusion assumption they should be Gaussian.

This is, in fact, what we tend to find. The red points on figure 6 dis-
plays a representative QQ plot for unstandardised returns. Because the
points do not fall into a straight line, we conclude that the returns are not
distributed normally. The blue points on figure 6 displays a representative
QQ plot for σ-standardised returns. It is close to linear, indicating that the
σ-standardised returns are approximately Gaussian.

Much work remains to be done. It is, for example, of practical impor-
tance to examine the distribution of returns standardised by forecasts of
realised volatility, based on prior information only. On the theoretical side,
it will be interesting to develop more formal tests for the presence of jumps
from the distribution of the returns standardised by the realised volatility.

Forecasting
Our construction, optimisation and use of realised volatilities has helped
us reach two general conclusions: realised variances tend to be lognor-
mally distributed, and asset returns standardised by realised standard de-
viations tend to be normally distributed. In turn, this suggests that a
lognormal-normal mixture may be a good model for asset returns, an idea
that inspires a simple modelling and forecasting strategy. This section briefly
outlines an operational procedure for the univariate case, but extensions
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asset return volatility are relevant for pricing derivatives. In fact, with the
advent of volatility and covariance swaps, realised volatility itself is now
the underlying. Such swaps are useful for, among others, holders of op-
tions who wish to vega-hedge their holdings. Proper pricing of derivatives
on volatility depends critically on how volatility itself varies over time (“the
volatility of volatility”). Our methodology allows for a direct approach to
this issue through the construction and analysis of historical realised volatil-
ity series.

Improved volatility and correlation forecasts will also be useful for port-
folio allocation and management. Concrete indications that more tradi-
tional volatility forecasts can be of value in guiding portfolio allocation
decisions are provided by Fleming, Kirby & Ostdiek (1999). To the extent
that our procedures are able to improve on the volatility forecast perfor-
mance, the implied economic benefits could be high.

Finally, our forecasting procedures for realised volatility and correlation
lead directly to a characterisation of the conditional return distribution (ig-

noring significant short-term variation in the conditional mean). The eval-
uation of fractiles of the conditional return distribution is, of course, a crit-
ical input into any active financial risk management programme. Hence,
extensions of our methodology to a richer multi-asset setting should pro-
vide potentially valuable inputs for practical risk management. �
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