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Abstract 
Hydrogen energy became the most significant energy as the current demand 
gradually starts to increase. Hydrogen energy is an important key solution to 
tackle the global temperature rise. The key important factor of hydrogen pro-
duction is the hydrogen economy. Hydrogen production technologies are 
commercially available, while some of these technologies are still under devel-
opment. This paper reviews the hydrogen production technologies from both 
fossil and non-fossil fuels such as (steam reforming, partial oxidation, auto 
thermal, pyrolysis, and plasma technology). Additionally, water electrolysis 
technology was reviewed. Water electrolysis can be combined with the renewa-
ble energy to get eco-friendly technology. Currently, the maximum hydrogen 
fuel productions were registered from the steam reforming, gasification, and 
partial oxidation technologies using fossil fuels. These technologies have dif-
ferent challenges such as the total energy consumption and carbon emissions to 
the environment are still too high. A novel non-fossil fuel method [ammonia 
NH3] for hydrogen production using plasma technology was reviewed. Ammo-
nia decomposition using plasma technology without and with a catalyst to 
produce pure hydrogen was considered as compared case studies. It was 
showed that the efficiency of ammonia decomposition using the catalyst was 
higher than ammonia decomposition without the catalyst. The maximum hy-
drogen energy efficiency obtained from the developed ammonia decomposition 
system was 28.3% with a hydrogen purity of 99.99%. The development of am-
monia decomposition processes is continues for hydrogen production, and it 
will likely become commercial and be used as a pure hydrogen energy source. 
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1. Introduction 

Energy is the most important needs for the human life and development of the 
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worldwide. So, energy is the world key consideration in all discussions and 
meetings of the sustainable energy development. The renewable energy sources, 
such as solar energy, wind energy, waves, and tides energy are considered 
eco-friendly. It is expected that the hydrogen fuel and its demand will rise ra-
pidly over the next few decades [1] [2]. The hydrogen energy utilization, as an 
energy source and storage methods, has been reviewed [3]. The recycling of the 
waste materials to useful energy sources through waste-to-energy technologies 
such as hydrogen, biogas, etc., has been reviewed [4]. The importance of hydro-
gen fuel is known as alternative clean energy and to overcome the fossil fuels 
depletion due to the high extension usage. In addition, fossil fuels have a bad ef-
fect on the environment due to combustion product gases such as carbon oxides, 
nitrogen, sulfur, etc. which have the main responsibilities of the global warming 
[5]. Hydrogen fuel is considered the alternative clean energy fuel and it can be 
produced from eco-friendly sources. In the current state, it is investigated that 
too little quantity of hydrogen is produced from the renewable energy resources 
through water electrolysis and the highest quantity is still generated from fossil 
fuels [6] [7]. Due to the hydrogen fuel advantages and versatility, in the 
long-term hydrogen will be the alternative of hydrocarbons fuels [8]. Also, hy-
drogen fuel is considered the highest efficient and clean energy carrier which 
produced water only as a by-product of its combustion. The worldwide is ac-
cepted to use hydrogen fuel as an independent clean energy source and high 
energy content compared to the fossil fuels, Table 1 is shown the energy content 
of different fuels resources [9]. 

In different energy applications such as fuel cells, hydrogen energy can be uti-
lized as a clean energy source without CO2 products emission to the environ-
ment which water is the outlet combustion products. It has been investigated 
that the nitrogen oxides gases are produced in the high temperature hydrogen 
combustion, but these environmental pollutants can be removed at the low  

 
Table 1. Energy contents of different fuels [9]. 

Fuel Energy content (MJ/kg) 

Hydrogen 120 

Liquefied natural gas 54.4 

Propane 49.6 

Aviation gasoline 46.8 

Automotive gasoline 46.4 

Automotive diesel 45.6 

Ethanol 29.6 

Methanol 19.7 

Coke 27 

Wood(dry) 16.2 

Begasse 9.6 
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temperature usage such as fuel cells [10]. The power-to-gas pilot plants have 
been used to generate electricity from hydrogen fuel or feeding the hydrogen gas 
into the gas distribution system [11] [12]. Currently, this technology is used for 
storing power in some European countries as a hydrogen gas [13] [14] [15] [16] 
[17]. In most power-to-gas pilot plants in Germany, the wind energy, and solar 
energy is used to produce electricity [18]. Many studies have been developed to 
evaluate the challenges of transition of using the hydrogen economy [19]-[48]. 
The steps which involved the implementation of a hydrogen economy have been 
investigated [49] [50] [51] [52]. The hydrogen energy prospects have been de-
scribed to avoid the climate change-related problems [53]. The rationale of the 
hydrogen energy systems and technology has been studied including the present 
energy systems and their environmental impact [3] [54]-[63]. In this article, the 
hydrogen gas production technologies from the fossil and non-fossil fuels such 
as steam reforming process, water electrolysis process... etc. are reviewed. A 
novel hydrogen gas production method using ammonia decomposition by plas-
ma technology is reviewed. Ammonia decomposition using plasma technology 
without and with the catalyst to produce pure hydrogen is considered as com-
pared case studies. 

1.1. World Energy Consumption 

As global population increases and the urbanization trend continues, the energy 
consumers will become ever more and recently, the International Energy Agency 
report is predicted that the global energy demand will increase by 2030 to 50% 
[64]. Due to the fossil fuels limited nature and depletion, research and develop-
ment have extensively started on generating new alternative sources and study 
the efficiently use of the current fossil fuels. The percentage of the power con-
sumption of different humanities applications such as the building power con-
sumption was considered the main energy usage and acts 51% of the total energy 
consumption [65]. The world population is estimated that will be triple by 2030. 
The common Energy Gases begins with natural gas or methane which has only 
one carbon and four hydrogen atoms. The world has been started to convert 
energy from one energy form to another form. The transition of solids to liquids 
to gases has been illustrated in Figure 1 by GHK Company [66]. 

Before the mid of 19th century, the most reliance energy of the world was from 
wood. Coal has still remained the main reliable of the world energy in the 19th 
century. The energy usage was growing rapidly due to the high increase in world 
population, the world is directed toward oil fuel which overcomes the coal ener-
gy problems. But oil fuel is now facing environmental problems and the world is 
directed to use natural gas fuel. It has solved most of the environmental prob-
lems due to it is cleaner, lighter and more efficiently. Also, the distribution can 
be through a pipe network that is less conspicuous and more extensive than oil 
fuel. Nowadays, natural gas fuel became the first choice for generating electricity. 
The renewable energy ratio generated the electric energy and the renewable  
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Figure 1. Global energy system transition, from 1850-2150 [66]. 
 

energy development has been compared by Japan energy 2017 [67]. Firstly, the 
world energy consumption rate is investigated to show the importance of increas-
ing renewables energy through increasing energy efficiency and switching it to be 
clean, low carbon resources and economic growth is required. The increasing of 
fossil fuel usage the increasing of air pollution growing with a possibility of a 
highly serious economic and negative environmental effect [68] [69]. 

1.2. Environmental Impact 

Hydrogen is the highest clean energy carrier which it can be used in the most 
energy applications such as generates electricity and transportation. Hydrogen 
fuel energy is expected to be the highest energy carrier’s usage in the future; 
many advantages have been investigated that it can be used in transportation, 
long time storage and low environmental impact [70]. Figure 2 is presented the 
greenization factor (GF), the environmental impact factor (EIF) and the hydro-
gen content factor (HCF) of the different energy fuels (coal, oil, natural gas, and 
hydrogen) [71]. In order to take the hydrogen fuel advantages, the hydrogen 
economy is still the most important hydrogen production issue. So, the renewa-
ble energy sources should be used to produce hydrogen at low costs. The as-
sessment methodology for hydrogen production methods has been implemented 
to study the environmental impact [72] [73]. Hydrogen fuel has been considered 
that to be the highest clean and renewable future energy source [74]. A comparative 
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Figure 2. Hydrogen Content Factor (HCF), Greenization Factor (GF), and Environmen-
tal Impact Factor (EIF) of hydrogen and other fossil fuels [71]. 

 
study has been developed to reduce the total environmental emissions from the 
marine transportations by using hydrogen fuel [75] [76]. 

2. Hydrogen Production Technology 

Hydrogen gas became the most important fuel which can be used as an alterna-
tive feedstock in industrial application processes. As the utilization of hydrogen 
fuel grows as the global warming temperature still keeps rising, so, the hydrogen 
production should be on a large scale. The evaluation of hydrogen production 
methods has been studied in different reviews [56] [71] [77]-[89]. Currently, the 
main source of hydrogen production is based on the fossil fuels. It can be pre-
sented as a commercial mature technology which it can be applied at low costs 
and get high efficiencies [90]. The hydrogen production especially using the 
steam reforming process of methane can get the efficiency range of (65% - 75%). 
On the other hand, the efficiency of the partial oxidation process of methane is 
recorded about 50% [54]. Hydrogen gas can also produce from water using the 
water electrolysis method which acting about 95% of the total quantity of hy-
drogen produced [91]. In the next section of this article, we will present several 
methods of the hydrogen production technologies. Recently, Plasma technology 
is an important method to produce the hydrogen fuel using hydrocarbons or al-
cohols. Hydrogen production using ammonia decomposition is a novel method 
can be established to produce pure hydrogen by using the plasma membrane 
reactor. A comparison of two different ammonia decomposition methods using 
the plasma technology is developed. The hydrogen production technology can 
be divided into hydrocarbons reforming and non-hydrocarbons reforming 
technology [80]. Firstly, a brief review is conducted to describe the hydrogen 
production from non-hydrocarbons technology. 

2.1. Water Electrolysis 

It can be defined in the simplest form by using two electrodes in water and 
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passing the electrical current water is converted into hydrogen and oxygen. The 
water electrolysis method can be divided into three different types of the elec-
trolyte alkaline, proton exchange membrane (PEM), and solid oxide electrolysers 
(SOE) [92]. Table 2 has been listed the typical specifications of the water elec-
trolysis technologies methods. The commercial low temperature electrolysers 
were developed and have efficiencies of (56% - 73%) at conditions of (70.1 - 53.4 
kWh∙kg−1 H2 at 1 atm and 25˚C) [93]. The proton exchange membrane (PEM) 
electrolysis and solid oxide electrolysis (SOE) units have been studied [94] [95] 
[96]. Alkaline electrolysis systems are the most commonly compared to other 
water electrolysis methods. Solid oxide electrolysis (SOE) is the most electrically 
efficient but still are under development. Corrosion, seals, thermal cycling, and 
chrome migration are the major challenges faced by the SOE technology. The 
Proton exchange membrane (PEM) electrolysis systems are more efficient than 
alkaline electrolyser. Also, the corrosion and seals issues don’t exist as (SOE), but 
the cost of (PEM) is too high compared with alkaline electrolysers systems. Al-
kaline electrolyser systems have the lowest capital cost and have the lowest effi-
ciency so the electrical energy cost is too high. Recently, electrolysers are used 
for producing pure hydrogen and high pressure units have been developed [97]. 
The advantage of using the high pressure operation unit is to eliminate using 
expensive hydrogen compressors. The hydrogen production using the water 
electrolysis systems are showed the too high cost to generate hydrogen on large 
scale using the water electrolysis method. Additionally, the water electrolysis  

 
Table 2. The typical specifications of alkaline, PEM and SOE [103]. 

Specification Alkaline PEM SOE 

Technology maturity State of the art Demonstration R & D 

Cell temperature, ˚C 60 - 80 50 - 80 900 - 1000 

Cell pressure, bar <30 <30 <30 

Current density, A/cm2 0.2 - 0.4 0.6 - 2.0 0.3 - 1.0 

Cell voltage, V 1.8 - 2.4 1.8 - 2.2 0.95 - 1.3 

Power density, W/cm2 Up to 1.0 Up to 4.4 - 

Voltage efficiency, % 62 - 82 67 - 82 81 - 86 

Specific system energy consumption, 
kWh/Nm2 

4.5 - 7.0 4.5 - 7.5 2.5 - 3.5 

Partial load range,% 20 - 40 0 - 10 - 

Cell area, m2 <4 <300 - 

Hydrogen production, Nm2/hr <760 <30 - 

Stack lifetime, hr <90,000 <20,000 <40,000 

System lifetime, yr 20 - 30 10 - 20 - 

Hydrogen purity, % >99.8 99.999 - 

Cold start-up time, min 15 <15 >60 
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systems are utilized the non-renewable power generation source to produce 
electricity for the water electrolysis systems [98] [99] [100] [101] [102]. 

2.1.1. Alkaline Electrolyser 
This type is commonly used on the large-scale systems. Alkali solutions are di-
vided into two different electrolyte types. The first electrolyte type is potassium 
hydroxide (KOH) with a weight percent of (20% - 40%) [104]. Sodium hydrox-
ide (NaOH) and sodium chloride (NaCl) have been used as the other alkaline 
electrolyte types [105]. The separating diaphragm between the two electrodes is 
made of the asbestos material with a thickness of 3 mm and due to the usage of 
the asbestos materials the water electrolyser operation temperature is limited to 
be 80˚C [103]. Hydrogen and hydroxide are generated at the cathode part, then 
the hydroxide is moved to the anode part generating oxygen. The anode and ca-
thode part reactions can be expressed as follows: 
• Anode reaction: 

2 24OH O 2H O− → +                       (1) 

• Cathode reaction: 

2 22H O 2e H 2OH− −+ → +                     (2) 

• The overall equation is: 

1
2 2 2

1H O H O 288 kJ mol
2

H − → + ∆ = − ⋅             (3) 

The gas-liquid separation unit is used to separate the generated hydrogen gas 
outside the electrolyser [106]. The alkaline electrolysers process efficiencies have 
been registered in a range of (50% - 60%) at a current density of (100 - 300 
mA∙cm−2) and at the hydrogen gas lower heating value [93]. The corrosion 
problem is the main challenge of this method, according to using the alkali solu-
tion. So, new materials are also being developed to be used as an alternative di-
aphragm material. 

2.1.2. Proton Exchange Membrane Electrolyser 
To overcome the corrosion has happened from the alkaline electrolysers method, 
the solid polymer membrane has been investigated to use in the PEM fuel cells 
technology [107]. However, the deionized water with high purity has been re-
quired for the water electrolysis process [106]. The oxidation reaction of water is 
happened at the anode part generating oxygen, electrons, and protons. The elec-
trons and protons are moved to the cathode side through the PEM. The hydro-
gen gas is generated at the cathode part after the porotons reduced. The PEM 
reactions are expressed as follows: 

Anode reaction: 

2 22H O O 4H 4e+ −→ + +                     (4) 

Cathode reaction: 

24H 4e 2H+ −+ →                        (5) 
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The overall equation is same as the alkaline electrolyser Equation (3). The 
PEM electrolyser system has been investigated that it can be used with the fluc-
tuation power supply source, according to the portons transportation through 
the PEM membrane is so quickly [103]. The high manufacturing cost is the ma-
jor challenge of the PEM systems. 

2.1.3. Solid Oxide Electrolyser 
The solid oxide electrolyser (SOE) operation temperature can be reached at 
1000˚C compared with the PEM electrolyser. Figure 3 is illustrated that these 
systems typically are used the thermal energy instead of a part of the electrical 
energy [108]. It was investigated that the electrolyser efficiency is increased by 
increasing high temperature [108] [109]. Therefore, compared to alkaline and 
PEM processes the SOE process has a higher efficiency. In the SOE system, hy-
drogen is generated at the cathode part and the oxide anions are passed to the 
anode where oxygen will form through the solid electrolyte [107]. The following 
reactions are taking place in an SOE: 

At anode: 

2
2

1O O 2e
2

− −→ +
                      

 (6) 

At cathode: 
2

2 22H O 2e H O− −+ → +                      (7) 

This method is also used in fuel cells as a solid oxidation electrolysis cells (SOEC).  
 

 
Figure 3. Energy demand for water and steam electrolysis [108]. 
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SOEC systems are operated at a high temperature from nuclear reactors and can 
achieve efficiency up to 60% [102]-[115]. 

2.2. Thermolysis & Thermochemical Water Splitting 
2.2.1. Thermolysis 
In the thermolysis process water is directly split using thermal energy as the 
energy input or it can be split indirectly using some other chemical materials 
[113]. The following is the thermolysis chemical reaction equation: 

Heat
2 2 2

1H O H O
2

 +→                      (8) 

Thermolysis and thermochemical water decomposition methods can be 
seemed to be the same methods, regardless of the high temperature source. This 
means the thermochemical process deals with the chemical reactions and the 
heat transfer processes. It was investigated that if the temperature reached over 
2000˚C, water is started to decompose without using other chemical materials 
[113]. It was presented that the thermolysis process is a direct thermal splitting 
of water at too high temperature [92]. This means that the material selection is 
very difficult to be suited with the high temperature. Also, it has been investi-
gated that the main challenge of the thermolysis process is to develop an effec-
tive technique [92] [104] [116] [117]. 

2.2.2. Thermochemical Water Splitting 
In the thermochemical water splitting process, it was combining the thermolysis 
water splitting process and the chemical reactions to reduce the water decompo-
sition temperature to 900˚C [104]. The hydrogen production using the thermo-
chemical water splitting has been involved in different chemical reactions. Many 
studies have been developed to review the water splitting cycles [106] [118] [119]. 
Different thermochemical cycles have been studied [105] [120] such as cop-
per-chlorine, Zinc-zinc oxide, nickel-manganese ferrite and the sulfur-iodine 
process. For example, the sulfur-iodine process as follows: 

The first reaction is the sulfuric acid which is decomposed at 300˚C to 500˚C 
to release water without a catalyst, 

( ) ( ) ( )300 C - 500 C
2 4 2 3H SO aq H O g SO g +→               (9) 

Then, SO3 is separated at 800˚C to 900˚C to release oxygen, 

( ) ( )800 C - 900 C
3 2 2

1SO g SO g O
2

 +→                 (10) 

The next reaction is done at low temperature to produce the sulfuric acid, 

( ) ( ) ( ) ( ) ( )2 2 2 2 4SO g I g 2H O l 2HI g H SO aq+ + → +          (11) 

Finally, hydrogen is produced from iodine decomposition within a tempera-
ture range of 425˚C to 450˚C, 

( ) ( ) ( )425 C - 450 C
2 22HI g H g I g +→ 

               (12) 

The challenge is faced this technology, the efficiency has to be increased by 
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making scaling up [121]. 

2.3. Photonic 

Hydrogen is produced from the photonic process by using the photon energy. It 
can be divided into two methods the photocatalytic and the photoelectrolysis 
water splitting (photoelectrochemical water splitting). 

2.3.1. Photocatalytic Water Splitting 
The hydrogen production by the Photocatalytic water splitting process is a direct 
method to produce hydrogen from water using the ordinary light. The low effi-
ciency has been achieved by the photocatalytic method [122]. The main reac-
tions of this process are as follows [123]: 

2 2Photo-reduction 2H O 2e H 2OHhν− −+ +→           (13) 

( )2 2Photo-oxidation 2H O 4H 4e O ghν + −+ +→          (14) 

The titanium oxide (TiO2) is used in the photolysis reactions. Different re-
searches are interested in photocatalyst development [124]-[128]. 

2.3.2. Photoelectrolysis 
Photoelectrolysis has directly decomposed water into hydrogen and oxygen by 
using the sunlight. The photoelectrolysis systems are the same as the photovol-
taic systems, both technologies are used the semiconductor materials. In photo-
voltaic, p-type and n-type semiconductor materials are used [94]. The electric 
current is created, due to the forced movement in the opposite direction of the 
electron and hole [93] [129]. In photoelectrolysis process instead of generating 
the electric current water is decomposed into hydrogen and oxygen [93] [94] 
[100] [129]. The reaction of photoelectrolysis is illustrated as follows [123]: 

( ) ( )2 2 2
1H O H g O g
2

hν + →
                 

 (15) 

Different photo electrodes materials such as WO3, Fe2O3, and TiO2 have been 
investigated to use in photoelectrolysis method as a thin-film [114] [130] [131]. 
The photoelectrolysis systems performance is mainly based on the utilized mate-
rials of the photoelectrodes and the semiconductor. The hydrogen production 
efficiency has been studied by [93] [94] [100] [129]. It has been investigated that 
the achieved efficiency of a single band gap is 18.3%, dual-band gap systems over 
30% conversions [132]. 

2.4. Biomass 

Biomass energy is used to generate hydrogen fuel as a renewable energy source. 
Biomass energy sources such as agricultural wastes, animal wastes, municipal 
solid wastes…etc. have been investigated [133]-[151]. A comparison between the 
fossil fuels and biomass energy is illustrated in Table 3. The biomass technolo-
gies for hydrogen production can be divided into the gasification, pyrolysis 
which it was followed by the reforming process [149]. The basic reactions of 
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biomass gasification process are listed in Table 4. The hydrogen production 
yield of the biomass process has been affected with the biomass characteristics 
and compositions are affected with a number of process variables such as tem-
perature, heating rate, moisture content, particle size, reactor system…etc. [152] 
[153]. 

2.4.1. Biomass Gasification Process 
The Gasification process can be commonly used in the biomass and coal gasifi-
cation processes. It is commercially used in many processes and it has been 
based upon the partial oxidation process of the materials to get the mixture of 
hydrogen, carbon monoxide, methane...etc. [145]. Since the moisture has to be 
vaporized, the thermal efficiency of the gasification process is typically low [133]. 
Different studies have been presented for the gasification process with and 
without a catalyst using the fixed bed and the fluidized bed reactor [139] [144] 
[148] [155]. The recorded performance of the fluidized bed reactors is higher 
than the fixed bed type reactors [144]. Syngas is produced from steam reforming 
process when steam or oxygen is added to the gasification process, which it can 
be utilized for hydrogen production in the water gas shift (WGS) or the Fisch-
er-Tropsch reactor [144] [149]. Biomass is dried by using superheated steam at 
900˚C. The high hydrogen production yields can be achieved from the dried  

 
Table 3. Advantages and disadvantages of hydrogen production from biomass [154]. 

Advantages Disadvantages 

1) Mitigating CO2 emissions 1) Seasonal availability and high handling costs 

2) Crop residues conversion increases the 
value of agricultural output 

2) Non-total solid conversion and tars production 

3) Replacing fossil fuels with sustainable 
biomass fuel 

3) Fuel process limitations: corrosion, pressure, 
resistance and hydrogen aging. 

4) Cost of getting rid of municipal solid 
wastes 

 

 
Table 4. Basic reactions biomass gasification processes [152]. 

Reaction mode Reaction equation 

Pyrolysis 
6 10 5 2C H O 5CO 5H C→ + +  

6 10 5 2 4C H O 5CO 3H CH→ + +  

Partial oxidation 

6 10 5 2 2

1C H O O 6CO 5H
2

+ → +  

6 10 5 2 2 2C H O O 5CO 5H CO+ → + +  

6 10 5 2 2 2C H O 2O 3CO 5H 3CO+ → + +  

Steam reforming 

6 10 5 2 2C H O H O 6CO 6H+ → +  

6 10 5 2 2 2C H O 3H O 4CO 2CO 8H+ → + +  

6 10 5 2 2 2C H O 7H O 6CO 12H+ → +  
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biomass [133]. Based on the lower heating value, the achieved efficiencies of 
these reactors within range of (35% - 50%) [106] [118]. 

2.4.2. Biological Hydrogen Production Process 
Bio-hydrogen researches are increased last several years, as attention to sustain-
able development and waste minimization [156]-[186]. This is another biomass 
method to produce hydrogen gas fuel using the biological technologies. It has 
been investigated that it can be utilized the anaerobic bacteria which it is grown 
in the dark fermentation bioreactors or can be used algae in the light in the 
photo fermentative process [184]. The main processes include the photolytic 
process to produce hydrogen from water using the green algae, the hydrogen 
production using the dark-fermentative process of anaerobic digestion, the 
two-stage dark/fermentative process, the photo-fermentative processes and the 
WGS method for hydrogen production [160] [165] [185]. The biological me-
thods have been presented with a low environmental impact and high hydrogen 
production efficiency [78]. By using the anaerobic microorganisms the dark 
fermentation reaction is carried out to convert the carbohydrate to hydrogen 
and other final products [105] [186]. The following is the chemical reaction equ-
ation: 

6 12 6 2 3 2 2C H O 2H O 2CH COOH 2CO 4H+ → + +           (16) 

The low hydrogen production capacity compared with the unit capital in-
vestment has been investigated that it was the major challenge of the dark fer-
mentation method [187]. So, different extensive researches have been presented 
to get additional energy by adding and develop a new other two-stage system 
[188]. 

3. Hydrocarbons Reforming Technology 

The hydrogen production from hydrocarbon fuels using reforming technology is 
presented. The Steam reforming process of hydrocarbons is considered the 
manufacturing dominating process of hydrogen production especially, for refi-
neries. The hydrogen production technology using the hydrocarbon fuels can be 
divided into a steam reforming process, the partial oxidation process, and the 
auto-thermal reforming process (ATR). Table 5 is shown as a comparison  

 
Table 5. Comparison of reforming technologies [189]-[191]. 

Technology Advantages Disadvantages 

Steam reforming 
Most extensive industrial experience Oxygen not required 

Lowest process temperature 
Best H2/CO ratio for H2 production 

Highest air emission 

Auto-thermal 
Lower process temperature than POX 

Low methane slip 
Limited commercial experience 

Requires air or oxygen 

Partial oxidation 
Decreased desulfurization requirement 

No catalyst required 
Low methane slip 

Low H2/CO ratio 
Very high processing temperatures 

Soot formation/handling adds process complexity 
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between the reforming processes [189] [190] [191]. 
In the steam reforming process, hydrogen gas, carbon monoxide and carbon 

dioxide gases are primarily composed in the gas flow stream; it has been investi-
gated that by improving the operating conditions such as temperature, pressure, 
etc. in the fuel processing reactors will maximize the hydrogen production and 
minimize the carbon formation [192]-[199]. 

3.1. Steam Reforming 

The steam reforming process is known as the hydrocarbons conversion with 
steam into hydrogen, carbon oxides, methane, and unconverted steam mixture. 
The typical feedstock ranges from natural gas and LPG to liquid fuels including 
naphtha and in some cases kerosene. In recent years steam reforming is also seen 
as an option for converting the primary feed into a gas suitable for a fuel cell. 
Different steam reforming reactors types have been used for specific applications 
[194]. The steam reforming process is considered the preferred hydrogen pro-
duction process, the steam reforming process reactions are endothermic reac-
tions, the operating temperature is typically lower than the POX and ATR me-
thods while it can be produced a high H/CO ratio [192] [193] [194] [195] [196]. 
Table 6 shows the reactions of the steam reforming process. 

It was investigated that in the fuel processing, moderate temperatures higher 
than 180˚C is required [192]-[199]. The limitations of mass and heat transfer 
have been investigated to enable the kinetics of steam reforming by employing a 
micro-channel reactor [193] [200] [201] [202]. These systems have been utilized 
the noble Group VIII metals as alternatives catalysts such as Rh and Co-based 
catalyst [203] [204] [205]. It was showed a less coke formation and much higher 
activities compared with the nickel catalysts [200] [206] [207] [208]. The hydro-
gen production from methane using the steam reforming process is considered 
the common industrial method where it is given a high thermal efficiencies up to 
85% according to the higher heating values [209]. The hydrogen fuel storage and 
transportation are very difficult due to the hydrogen fuel have a low energy per 
weight, additionally is a gaseous fuel. Thus, different on-site studies have been 
developed for steam reforming of hydrocarbons [210]-[216]. 

 
Table 6. The key reactions of steam reforming process [200]. 

Reactions Reaction description 
Standard enthalpy of 
reactions [kJ∙mol−1] 

4 2 2CH H O CO 3H+ +  Steam reforming 206 R① 

2 2 2CO H O CO H+ +  WGS -41 R② 

4 2 2CH CO 2CO 2H+ +  CO2 reforming 247 R③ 

n m 2 2

mC H nH O nCO n H
2

 + + + 
 

  Higher hydrocarbons steam 
reforming 

1175* R④ 

*[Standard conditions at P = 1 atm, T = 298 K, for n-C7H16]. 
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3.2. Partial Oxidation 

The reaction of the partial oxidation (POX) method is an exothermic reaction 
and the reaction equation is presented in Equation (5). In the POX method the 
hydrogen produced is sent to the water-gas shift (WGS) reactor, and then is pu-
rified by using a suitable purification method. Compared with the steam re-
forming process, it has been investigated that the efficiency of the POX process 
is low; in addition, the operation cost is too high due to using high quantities of 
the pure oxygen [217]. The enthalpy of reactions for methane and isooctane are 
shown in Table 7. 

n m 2 2
n mC H O nCO H
2 2

+ → +                    (5) 

Example of the (POX) reaction: 

1
3 2 2 2

1CH OH O CO 2H 193.2 kJ mol
2

H − + → + ∆ = − ⋅         (6) 

The hydrogen production from the partial oxidation of hydrocarbon using 
catalysts has been utilized in commercial applications and automobile fuel cells 
[218] [219] [220] [221] [222]. The effect of addition ruthenium (Ru) on the mo-
lybdenum (Mo) catalysts has been investigated for the production of syngas 
from methane (CH4) via partial oxidation process [223]. The principles of (CPO) 
are illustrated in Figure 4. 

 

 
Figure 4. Catalytic partial oxidation principle [200]. 

 
Table 7. Standard enthalpies at (298 K, 1 atm), ∆H in [kJ/mol] [218]. 

 
Methane Isooctane 

Partial oxidation −36.1 −675.8 

Steam reforming 205.7 1258.8 

Dry CO2 reforming 246.9 1596.3 
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Several studies have been carried to study CPO at different space velocities 
(low or moderate) and residence time (from 1 s or above) [224]-[229]. The im-
portance of operating and design parameters has been investigated in another 
feature of the CPO process to prevent the explosions risk [230]. It is proved that 
the temperature is hard to be controlled due to the hot spot formation and the 
reactions nature is exothermic [219] [220] [221] [222]. The POX reactors effi-
ciencies have been recorded based on the higher heating values for methane fuel 
is 60% - 75% [209]. 

3.3. Auto-Thermal 

Auto thermal reforming process has been done at low pressure compared with 
the POX reforming process. The heat required in the catalytic zone to drive the 
steam reforming reactions has been generated using the POX process [199] [224] 
[231] [232]. Figure 5 is illustrated the auto-thermal reactor components. The 
combustion chamber reaction equations are shown in Table 8. 

Compared with the POX process, a significant advantage of the auto-thermal 
reaction process, it can be produced a large amount of hydrogen gas while the 
starting and stop are very rapidly. In the auto-thermal reaction process, it was 
considered that it must be controlled the temperature and preventing the coke 
formation by using the both of the steam to carbon ratio and the oxygen to fuel 
ratio [199] [224] [231]. 

 

 
Figure 5. Illustration of an auto-thermal reactor [233]. 

 
Table 8. Simplified reactions in the combustion chamber of ATR [194] 

Reactions Reaction description Standard enthalpy of reactions ∆H [kJ.mol−1] 

4 2 2CH 3 2O CO 2H O+ → +  Combustion −519 R⑦ 

4 2 2CH H O CO 3H+ +  Steam reforming 206 R① 

2 2 2CO H O CO H+ +  WGS −41 R② 
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3.4. Gasification 

The gasification process is presented to be a sequence of a thermochemical 
transformations taking place at high temperatures between the organic part such 
as coal and the gasifying agent, like oxygen, steam, air, carbon dioxide [234] [235] 
[236]. The heat needed for the gasification process has been made by using the 
carbonaceous material (so it is called autothermic gasification) [234]. The water 
gas shift (WGS) process has been used to separate hydrogen and converting 
carbon monoxide into the carbon dioxide [104]. The gasification process hete-
rogeneous and homogeneous reactions are summarized in Table 9 and Table 10 
respectively. 

The integrations of the coal gasification with other systems have been studied 
by different researches [239]-[249]. Thermodynamic evaluations using the first 
and second law of thermodynamics have been conducted on the integrated gasi-
fication systems in their analyses [242]-[250]. 

The hydrogen production from water decomposition using the Bryton cycle 
and a thermochemical copper-chlorine cycle have been investigated as a novel 
method to overcome the limitations of the hydrogen production from the coal 
composition and syngas hydrogen separation [251]. Koppers Totzek Coal gasi-
fication process can be produced pure hydrogen up to 97%, it has been investi-
gated that it has the ability in the near and midterm to keep the hydrogen pro-
duction from the fossil fuel in practice from the solar thermal processes and 
carbon sequestration application [252]-[261]. 

 
Table 9. Major heterogeneous reactions taking place in the gasifier [234] [235] [236] 
[237]. 

Reactions Reaction description Standard enthalpy of reactions[kJ/mol−1] 

2C CO 2CO+   Reverse boudouard 172.4 R⑧ 

2 2 22H O 2H O+    131.3 R⑨ 

2 4C 2H CH+   Methane formation −74.9 R⑩ 

22C O 2CO+   Oxidation of CO −221 R⑪ 

22C O 2CO+   Coke gasification −393.6 R⑫ 

 
Table 10. Major homogenous reactions taking place in the gasifier [234] [235] [236] 
[238]. 

Reactions Reaction description Standard enthalpy of reactions ∆H [kJ∙mol−1] 

2 22CO O CO+   Oxidation of CO −566 R⑬ 

2 2 22H O 2H O+   Oxidation of H2 −483.6 R⑭ 

2 2 2CO H O CO H+ +  WGS −41 R② 

2 4 2CO 3H CH H O+ +  Methanation/hydrogenation −206 R⑮ 

4 2 2 2CH 2O CO 2H O+ → +  Combustion −802.6 R⑯ 
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3.5. Pyrolysis 

The Pyrolysis process “can be defined as the decomposition of organic sub-
stances by heat” [262]. These decomposition reactions have been performed at 
350˚C to 400˚C depending on the coal properties [263]. The other hydrocarbons 
thermal decomposition have been occurred at high temperatures such as me-
thane thermal decomposition temperature is at 1400˚C or higher. Significantly, 
the temperature of the pyrolysis process can be reduced by using the transition 
metal catalyst like (Ni, Fe, Co). It has been investigated that the pyrolysis process 
can be used the organic material [148] [264] [265] [266], additionally, it can be 
used for the hydrocarbons production, carbon nanotubes and spheres [148] 
[266]-[278]. 

The chemical reaction of the pyrolysis process can be generally expressed as 
follows [269]: 

n m 2
1C H nC mH
2

→ +                      (17) 

The chemical decomposition equation of hydrocarbons using the pyrolysis 
process, it is showed that water and air aren’t used. Consequently, carbon oxides 
don’t appear in the reaction by-products. It was presented that the pyrolysis 
process has the flexibility to use any organic fuel, in addition to its compactness 
and the process by-product is carbon-free [152] [265] [266] [269]. Although the 
pyrolysis process advantages, there is a major potential fouling problem by the 
carbon formed and it can be reduced by using appropriate reactor design [152]. 

4. Hydrocarbons Reforming Assisted  
by Using Plasma Technology 

Plasma “is known as the fourth state of the material” and it can be defined as an 
ionized gas. This technology has the challenge to produce hydrogen with the 
best energetic efficiency. The plasma technology can be classified into thermal 
and non-thermal plasma (non-equilibrium plasma) based on the energy level 
(temperature, plasma state, and electronic density). The electrically heated fur-
naces, combustion, flames, electric discharges, and shocks have been considered 
the plasma different generated methods [270]. Table 11 is shown the different 
plasma systems classifications and properties. The gas components temperature 
is the major difference between thermal plasma and no-thermal plasma tech-
nology [271] [272]. The high energetic densities can be released from the plasma 
process, so, the hydrogen production from hydrocarbons reforming applications 
using plasma with and without catalyst case studies have been discussed, in ad-
dition, the hydrogen production from ammonia decomposition using 
non-thermal plasma reactor. The plasma torch (DC) direct current has been 
used in the first plasma-assisted reformers which it was thermal ones. A com-
parison between new and old plasmatron for methane and diesel fuels of H2 
yield for both kinds It has been shown in Figure 6 & Figure 7 respectively [273]. 
These figures are illustrated that the non-thermal plasma systems have a low 
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energy consumption compared with the thermal plasma systems. We will briefly 
describe thermal and non-thermal plasma methods. 

4.1. Thermal Plasma Technology 

Thermal plasma can be applied to different applications which required high 
temperature such as vehicles ignition systems, lighting applications, gasification  

 
Table 11. Classification and properties of various plasma [272]. 

Properties 
Thermal Plasma 

(quasi-equilibrium plasma) 
Non-thermal Plasma (Non equilibrium plasma) 

Temperature Te ≈ Ti ≈ Tg ≤ 2 × 104 K 
 

Te   Ti ≈ Tg ≤ 300 …. 103 K 
  

Density ≥1020 m−3 
 

 ̴̴1010 m−3 
  

Classification: Thermal arc plasma 
Gliding arc 
discharge 

Dielectric barrier  
discharge 

Corona 
discharge 

Glow discharge 
Atmospheric 

pressure plasma 
jet 

Excitation DC DC/AC AC/RF Pulsed DC DC/AC RF (13.5 MHz) 

Pressure, bar 0.1 - 100 ~1 ~1 - 3 ~1 <10 mbar ~1 

Electron energies, eV 1 - 10 1.4 - 2.1 1.0 - 30 ~5 2.0 - 8.0 
 

Electron density, 1015 - 1019 >1013 1012 - 1015 109 - 1013 109 - 1012 1011 - 1012 

cm−3 
      

Breakdown voltage, 10 - 100 0.5 - 4.0 5.0 -25 10.0 - 50.0 0.05 - 0.2 

kV 
      

Current, A 30 - 30,000 10-1-50 1.0 - 50 <10 - 5 10-5-1 
 

Tmac, K 5 × 103 - 104 1000 - 3000 ~300 ~400 ~700 ~400 

Carrier gas air, N2, O2, etc. N2, O2, Ar N2, O2, rare gas N2, O2, Ar N2, O2, Ar He, Ar 

“RF inductivity coupled discharge. Te, Ti and Tg refer to the temperature of electrons, ions, and neutral species (atoms, molecules, radicals and excited 
species) respectively. 
 

 
Figure 6. Comparisons of energy costs for non-thermal and thermal plasmas reforming 
of Methane [273]. 
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Figure 7. Comparisons of energy costs for non-thermal and thermal plasmas reforming 
of diesel [273]. 

 
of solid fuels. Due to the thermal plasma technology high temperature, it has 
been limited for some liquid fuels reforming due to the electrode erosion. It has 
been characterized that the thermal plasma technology has a highly degree of 
dissociation and a substantial ionization degree [274]. Thermal plasma has an 
important range of application that includes synthesis of Nanopowders, destruc-
tion, and treatment of hazardous waste, metallurgy application (smelting opera-
tions and re-melting application in large furnaces) surface modification and 
coating, chemical synthesis [275]. Thermal degradation (gasification) of the or-
ganic carbon-based materials have been carried out at a temperatures range of 
400˚C to 1500˚C [276]. It has been investigated that the thermal plasma tech-
nology can be used in waste treatment such as healthcare wastes, steel making 
waste….etc. [277]-[283]. The economic studies have been presented that the in-
sufficient control is the main disadvantages of the waste treatment using thermal 
plasma method [284]. In addition, the reforming process for alcohols using 
thermal plasma technology has been limited [285]. 

A high electric discharge over 1 kW has been used in hydrocarbons reforming 
process by using thermal plasma technology; also, the cooling power has been 
required to decrease the electrode temperature to stop the vaporization of metal 
[274] [276] [287]. Figure 8 is shown the methane conversion with the input 
power to the thermal plasma reactor [274]. The thermal plasma is usually used 
high temperature, it will increase the energy cost, in addition to unwanted cok-
ing and soot. Catalysts have been utilized to reduce the reaction temperature, 
additionally; the required activation energy of fuel conversion is reduced. 

4.2. Non-Thermal Plasma Technology 

The non-thermal plasma method is more suitable for the hydrocarbons reforming 
and producing syngas. According to the non-thermal plasma method, the chemi-
cal reactions have been happened at low input power and at low temperatures 
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[288]. In non-thermal plasma technology, the electron temperature can be 
reached (10,000 to 100,000 K) and at the same time, the gas temperature is at the 
room temperature [289] [290]. Different reactors have been used for applying 
the different plasma technologies like the dielectric barrier discharge (DBD) 
reactors [290] [291], gliding arc discharge [285] [292] [293] [294] [295], corona 
[290] and microwave [296] [297] [298]. It has been utilized in hydrocarbons re-
forming such as diesel, methane, and biofuels [274] [291] [299]-[305]. 

The non-thermal plasma process main effect parameter is the electron tem-
peratures which temperatures are raised higher than 5000 K [285] [286] [306]. 
Dielectric barrier discharge (DBD), gliding arc discharge plasma, corona dis-
charge and microwave plasma is the non-thermal plasma types [285] [306]-[315]. 
In the first three types, the dynamic discharge is used to create plasma. The main 
different parameters between non-thermal plasma types are the controlling me-
thod of the current and discharging power, additionally, reactor design, flow rate 
and the power supplies which have been described [285]. The gliding arc dis-
charge which has a good selectivity and high production rate will briefly describe 
in this article. Table 12 differentiates the efficiencies of the non-thermal plasma 
methods and it is shown that the gliding arc discharge has the highest non-thermal 
plasma efficiency. Figure 9 illustrates the gliding arc discharge which has two 

 

 
“Empty reactor: plasmatron air = 0.4 g/s, fuel = 0.27 g/s, additional air = 0.7 g/s. In the case of water addi-
tion, 0.2 - 0.5 g/s H2O added. Catalytic case: plasmatron air = 0.35 g/s, fuel = 0.25 - 0.5 g/s, additional air = 
0.5 - 1 g/s. In the case of water addition, 0.5 - 0.8 g/s water”. 

Figure 8. Methane conversion as a function of power input [274]. 
 
Table 12. Plasma reformer efficiencies [285]. 

Technology Fuel 
Experimental conditions Products (dry vol. %) Reformate  

Temperature [K] 
Efficiency 

Chemical Reaction Air Ratio S/C H2 CO CO2 CH4 

Gliding arc non-thermal Diesel ATR 0.4 1.8 23 17 6.2 1.2 1000 - 1300 85 

Corona discharge + catalyst Iso-octane ATR 0.28 1 46 16 16 - 900 - 1100 55 

Gliding arc thermal Iso-octane POX 0.25 - 22 15 2 3 1200 9 

Gliding arc thermal Diesel POX 0.25 - 23.5 23 0.1 0.03 1200 9 

Microwave Hexane SR - 2 66 25 4 - ? ? 
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Figure 9. Scheme of Gliding Arc reactor [312]. 
 

electrodes and a simple feeding electrical system [312]. The arc is formed while 
the gas enters the reactor and the high voltage is applied. The arc is pushed 
down by the gas along the reactor length and is turned off at the reactor end, and 
then the new arc is formed again at the reactor gas inlet. It has been investigated 
that the gliding arc discharge method can be used the DC or AC currents, in addi-
tion, a simple feeding power supply system compared with the other non-thermal 
plasma systems [285]. 

5. Hydrogen Production Using Ammonia [NH3] by Using 
Plasma Decomposition 

All efforts are made by researchers to provide the World with hydrogen fuel. In a 
different way, a new hydrogen production method from ammonia decomposi-
tion using plasma technology has been investigated. This plasma technology type 
has the ability to produce a 99.999% of pure hydrogen gas at normal tempera-
ture, atmospheric pressure and without using a catalyst. Prof. Shinji Kambara of 
Gifu University, Japan, Division of Environmental and Renewable Energy Systems 
is collaborated with Sawafuji Electric Co., Ltd and has been developed a novel hy-
drogen production method using ammonia decomposition by using a DBD plas-
ma reactor. The newly developed prototype can be applied to fuel cell. Also, it has 
Low-cost, low environmental impact and highly efficient hydrogen production 
equipment based on ammonia gas. The flowing ammonia gas is decomposed into 
hydrogen and diatomic nitrogen through the plasma field as follows: 

3 2 2
1 3NH e N H
2 2

−+ → +
                  

 (19) 
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This study confirmed that the power generation by using the hydrogen ob-
tained from the installation as a fuel cell. Hydrogen production equipment that 
can store and supply hydrogen. It is expected to spread for industrial and do-
mestic fuel. 

Ammonia decomposition case studies 
Hydrogen production from (NH3) using high electron energy obtained by at-

mospheric pressure plasma is a promising method for producing purified hy-
drogen from ammonia. A comparison between the two cases of ammonia de-
compositions has been investigated. Also, the influence of applied voltage, NH3 
concentration and NH3 gas residence time on H2 yield has been discussed. Ac-
cording to their study, the hydrogen yield increases as higher applied voltage, 
longer residence time and lower NH3 concentration [316]. A plasma membrane 
reactor has been designed as a novel plasma reactor combining H2 separation 
membrane [317]. 

5.1. [NH3] Decomposition Using a Cylindrical Plasma Reactor 
without Catalytic Materials 

The hydrogen production method from NH3 at atmospheric pressure plasma 
membrane reactor (PMR) by dielectric barrier discharge has been studied. 
Figure 10 shows the plasma reactor with the palladium alloy membrane, it is 
utilized to improve the efficiency of hydrogen production from ammonia de-
composition [318]. The PMR has been composed of a quartz glass tube and a 
palladium separation membrane which has a thickness of 20 μm thickness and 
welded inside a thin punched metal (SUS 304). The gap length was 1.5 mm. The 
gap volume is 51.6 cm3, respectively. Figure 11 & Figure 12 showed the PMR 
before and after firing plasma respectively. 

 

 
Figure 10. Experimental setup for hydrogen production by PMR [318]. 
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Figure 11. PMR before firing plasma. 

 

 
Figure 12. PMR after firing plasma. 

 
Performance analysis 
Firstly, the PMR has been examined using the pure hydrogen gas to check the 

hydrogen separation from the reactor. The hydrogen separation characteristics 
of the PMR via the induced pressure have been investigated [318]. It is known 
that the hydrogen permeation through the palladium membrane has been af-
fected by the partial pressure [319]. 

The first attempt of hydrogen production using a cylindrical plasma reactor 
(PR) has been presented that the hydrogen produced from ammonia flow rate 
higher than 60 L/h remained constant [318]. Figure 13 shows the hydrogen 
production flow rates with the increase in the ammonia gas flow rate. The 
maximum flow rate of the hydrogen production was 21.0 L/h at a flow rate 30 
L/h of the ammonia gas (NH3). The energy efficiency was 4.42 molH2/kWh 
which is based on the power supply to the plasma reactor. 

5.2. Ammonia Decomposition Using PMR Using Catalytic Materials 

In this case study, the catalyst has been used as the PMR reactor is continuously 
developed to produce hydrogen from ammonia gas with a high purity [320]. 
Figure 14 is presented the experiment layout of hydrogen production using a 
catalyst. The catalytic reactor consisted of a stainless tube (φ18 mm, SUS316), 
cylindrical ceramic fiber heater and inside the catalytic reactor, 10% Ni/Al2O3 
was packed as a pyrolysis catalyst for NH3. 

Performance analysis 
The development of a system for producing hydrogen from ammonia has 

been developed by combining a catalytic reaction and a plasma membrane reactor  
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Figure 13. Hydrogen production performance of the PMR and PR [318]. 

 

 
Figure 14. Experimental setup for hydrogen production using catalytic PMR [320]. 

 
[320]. The gap length between the glass quartz tube and the hydrogen separation 
membrane effect has been studied. Figure 15 is shown the gap length effect on 
the flow rate of the produced hydrogen gas. 

The maximum flow rate of hydrogen production was 120 L/h at ammonia gas 
flow rate 5.0 L/min and a supplied voltage 110 V. The catalytic reactor with 10%  
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Figure 15. The effect of gap length inside the PMR on hydrogen purification [320]. 

 
Ni/Al2O3, ammonia (NH3) has been completely decomposed at 700˚C. The 
maximum energy efficiency is obtained from the developed hydrogen produc-
tion system was 28.3%. A comparison between the hydrogen production from 
the non-catalytic plasma reactor and the catalytic plasma reactor has been pre-
sented in Figure 16. It was clear that the ammonia decomposition using catalytic 
material (10% Ni/Al2O3) has a higher efficiency than the PMR without using cat-
alyst materials. 

6. Conclusion 

Hydrogen fuel is believed that it will be a promising candidate to lead a new hy-
drogen economy. In this review paper, the hydrogen production key technolo-
gies are reviewed. The hydrogen production different technologies from both 
fossil and non-fossil fuels such as (water electrolysis, biomass, steam reforming, 
partial oxidation, auto thermal, pyrolysis, and plasma technology) are reviewed. 
The reforming and gasification technologies are the most mature hydrogen 
production technology. Water electrolysis can be combined with the renewable 
energy to get eco-friendly technology. Additionally, it is important to produce 
hydrogen from a wide range of feedstock. Currently, the maximum hydrogen 
fuel productions are registered from the steam reforming, gasification, and par-
tial oxidation technologies using fossil fuels. The hydrogen production technol-
ogy efficiencies are summarized in Table 13. These technologies still have chal-
lenges such as the total energy consumption and carbon emissions to the envi-
ronment are too high. Ammonia decomposition using plasma technology with-
out and with a catalyst to produce pure hydrogen is considered as a compared  
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Figure 16. Comparison between PMR without and with a catalyst. 

 
Table 13. Hydrogen Technology Efficiency summary table. 

Technology Feed stock Efficiency Maturity Reference 

Steam reforming Hydrocarbons 70% - 85% Commercial [209] 

Partial Oxidation Hydrocarbons 60% - 75% Commercial [209] 

Autothermal reforming Hydrocarbons 60% - 75% Near term [209] 

Plasma reforming Hydrocarbons 9% - 85% Long term [285] 

Aqueous phase reforming Carbohydrates 35% - 55% Med. Term [321] 

Ammonia decomposition Ammonia 28.3% Near Term [320] 

Biomass gasification Biomass 35% - 50% Commercial [106] [117] [322] 

Photolysis Sunlight + Water 0.5% Long term [323] 

Dark fermentation Biomass 60% - 80% Long term [117] [163] 

Photo fermentation Biomass +Sunlight 0.1% Long term [117] [322] 

Microbial electrolysis cells Biomass+ Electricity 78% Long term [323] 

Alkaline electrolyzer H2O + Electricity 50% - 60% Commercial [93] [322] 

PEM electrolyzer H2O + Electricity 55% - 70% Near term [93] [322] 

Solid oxide electrolysis cells H2O + Electricity+ Heat 40% - 60% Med term [106] 

Thermochemical water splitting H2O + Heat NA Long term ̶ 

Photo electrochemical water splitting H2O + Sunlight 12.4% Long term [93] [129] 
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case study. It is shown that the efficiency of ammonia decomposition using a 
catalyst is obtained 28.3% which is higher than ammonia decomposition without 
the catalyst. It is concluded that hydrogen production from ammonia decompo-
sition is a promising technology to produce 99.99% pure hydrogen. Hydrogen 
technologies still have different challenges which require a lot of cooperation 
between researchers and industrial side to increase the hydrogen production by 
using the developed technologies. 
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