
43

PerSeVerE: Persistency Semantics for Verification under Ext4

MICHALIS KOKOLOGIANNAKIS,MPI-SWS, Germany

ILYA KAYSIN, National Research University Higher School of Economics, JetBrains Research, Russia

AZALEA RAAD, Imperial College London, United Kingdom

VIKTOR VAFEIADIS,MPI-SWS, Germany

Although ubiquitous, modern filesystems have rather complex behaviours that are hardly understood by

programmers and lead to severe software bugs such as data corruption. As a first step to ensure correctness of

software performing file I/O, we formalize the semantics of the Linux ext4 filesystem, which we integrate with

the weak memory consistency semantics of C/C++. We further develop an effective model checking approach

for verifying programs that use the filesystem. In doing so, we discover and report bugs in commonly-used

text editors such as vim, emacs and nano.

CCS Concepts: • Theory of computation→ Program verification; Axiomatic semantics.

Additional Key Words and Phrases: File Systems; Persistency; Weak Consistency; Model Checking

ACM Reference Format:

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis. 2021. PerSeVerE: Persistency

Semantics for Verification under Ext4. Proc. ACM Program. Lang. 5, POPL, Article 43 (January 2021), 29 pages.

https://doi.org/10.1145/3434324

1 INTRODUCTION

File I/O is one of the most fundamental concepts in computer science. Almost all applications
interact with filesystems to store their configurations, while others (e.g., document editors) crucially
depend on them for their core functionality. As such, there is a large body of work on designing
and implementing filesystems; e.g., [Bonwick 2005; Park et al. 2017; Pillai et al. 2017; Rodeh et al.
2013; Son et al. 2017; Sweeney 1996]. Major deployments such as Linux’s ext4 [Ts’o et al. 2002] are
sophisticated designs that incorporate a number of optimizations for good performance.
Nevertheless, most programmers have a simplistic view of filesystems and assume that their

updates happen in the order specified by a program. For instance, if an application writes ‘A’ to
file a.txt and then ‘B’ to b.txt, they would assume that if the computer were to crash at some
point, it would not be possible for the ‘B’ update to have persisted without ‘A’ having also persisted.
However, this assumption is violated by all modern filesystems, and programmers must insert
system calls such as sync/fsync to ensure that updates on one file complete before those to another.

Due to programmer ignorance and the significant overhead of such system calls, programs often
invoke these calls incorrectly, leading to critical bugs that thrash the persistent state and render
the file/application useless. Despite their importance, these persistency bugs are hard to detect as
they occur very rarely in cases of software/hardware crashes which are difficult to emulate.

Authors’ addresses: Michalis Kokologiannakis, MPI-SWS, Saarland Informatics Campus, Germany, michalis@mpi-sws.org;

Ilya Kaysin, National Research University Higher School of Economics, JetBrains Research, Russia, ilya.s.kaysin@gmail.com;

Azalea Raad, Imperial College London, United Kingdom, azalea@imperial.ac.uk; Viktor Vafeiadis, MPI-SWS, Saarland

Informatics Campus, Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART43

https://doi.org/10.1145/3434324

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324

43:2 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

To ensure the correctness of file I/O programs, we make the following two contributions.

ext4 Formalization. As our first contribution, we formalize the semantics of the ext4 filesystem
and study its use by text editors. We focus on ext4 not only because it is the default filesystem in
Linux and thus underpins a plethora of software, but also because it admits a number of peculiar
program behaviours due to its optimizations.

Formalizing ext4 involves several challenges. First, the operations supported are typically deter-
mined by the POSIX standard described informally in prose, which is often unclear, ambiguous, and
occasionally even self-contradictory. Second, ext4 is not POSIX-compliant: although it supports the
POSIX operations, it does not always guarantee their POSIX-mandated semantics, and its documen-
tation often does not discuss the exact discrepancies. Third, the documentation typically does not
distinguish between the consistency and persistency behaviour of filesystems, where consistency
describes the order in which file operations are made visible to concurrent threads/processes, while
persistency describes the order in which they reach the disk and are observed upon crash recovery.
Fourth, one must account for the interaction between the filesystem semantics and the (weak)
consistency semantics of the underlying programming language or architecture.

To tackle these challenges, our formal model is based not only on our reading of the manuals and
discussions with filesystem developers, but also on carefully consulting the ext4 implementation
and thorough experimental evaluation. Our model follows the style of the formal persistency
models of architectures with non-volatile memory [Raad et al. 2018], which in turn follows the
style of axiomatic weak memory models [Alglave et al. 2014]. As such, our model is very flexible:
it is easy to integrate it into the existing (weak) memory models such as the C/C++ concurrency
model, to extend it with additional constructs, and to adapt it to other filesystems.

Effective Model Checking. As our second contribution, we design and implement an effective
model checking algorithm, PerSeVerE, for automatically verifying sequential or concurrent C/C++
programs that perform file I/O using the POSIX system calls. In essence, PerSeVerE enumerates
all possible consistent executions of a given program and all its possible post-crash persisted states,
and checks whether the supplied assertions/invariants hold. The novel major challenge in doing so
is to combat the state space explosion arising from the filesystem semantics.
To see this, consider a sequential program with 𝑁 independent file operations and no synchro-

nization calls. These operations may persist to disk in any order (i.e., 𝑁 ! ways) and any prefix of
such orders may have completed before a crash (i.e., 𝑁 × 𝑁 ! possible states). However, this naive
enumeration of persistency ordering is far from optimal. A much better way is not to enumerate
the orders in which operations persist, and instead to consider whether each of the 𝑁 operations
persisted before the crash (i.e., 2𝑁 states). Moreover, it is typically the case that only𝑀 ≪ 𝑁 of op-
erations are relevant for the invariant in question, so it suffices to enumerate 2𝑀 states. When there
are synchronization calls, persistency of one operation implies persistency of all prior operations
that are separated by a synchronization call, which further reduces the number of states.
Our key idea for exploring this vast state space efficiently is to model the assertions about the

persisted state as a recovery observer that runs in parallel to the main program P and whose accesses
are subject to different consistency axioms from those of P. By ensuring that our axioms do not
require a total persistency order, our model checker never enumerates this order explicitly and thus
significantly reduces the number of states to explore. Finally, following an axiomatic semantics
enables us to integrate our approach into existing efficient algorithms for enumerating the (weak)
behaviours of concurrent programs, thereby leveraging the state-of-the-art implementations.

Outline. The paper outline follows the aforementioned technical contributions of this work. We
start with an intuitive example-driven description of ext4 semantics in ğ2 and present its formal

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:3

File Descriptor

Table of Process A

flags file

...

File Descriptor

Table of Process B

flags file

...

Open File Table
lo
ck

fl
ag
s

off
se
t

. .
.

in
od
e

...

Inode Table

lo
ck

si
ze . .
.

...

Block #2

Block #1

block I/O

Page Cache

ext4

syscall

VF
S

Fig. 1. File descriptors, descriptions and inodes (left); different I/O layers until data reaches disk (right)

model in ğ3. In ğ4, we describe our model checking algorithm and subsequently evaluate it in ğ5
on models of common text editors. In ğ6, we conclude with a discussion of related work.

2 THE SEMANTICS OF EXT4: AN INTUITIVE ACCOUNT

In order to perform file I/O, applications invoke system calls such as open and read to access the
file data on disk. We describe the semantics of such system calls on Linux with the ext4 filesystem.
Wherever possible, we follow the naming conventions from the Linux man pages [2020] or the
kernel source code. We note that while most of the terminology stems from POSIX [2018], the
Linux/ext4 behaviour often diverges from the POSIX standard.

Assumptions. For simplicity, we assume that all files reside in one directory and that all threads
belong to the same process. We thus avoid modelling address translation and pathname lookup
studied in [R. Chen et al. 2016; Ntzik et al. 2015]. We further do not model I/O failures and the direct
memory access features of ext4 (e.g., O_DIRECT). We proceed with a description of file operations.

2.1 File Operations

Opening a File. Before accessing a file, a process must first open it. This can be done using the
open system call, which takes as arguments the file name as well as several flags describing how to
open the file: e.g., its access mode (O_RDONLY, O_WRONLY, O_RDRW), whether the file is to be created
(O_CREAT) or truncated (O_TRUNC), and whether subsequent I/O operations must use additional
synchronization. A call to open returns a file descriptor, a small non-negative integer index into
a per-process table maintained by the operating system. File descriptors may be duplicated (e.g.,
with dup) or shared with other processes (e.g., when passed through a socket or executing fork).

Each file descriptor is mapped to a file description entry in a system-wide table of open files, as
shown in Fig. 1 (left). A file description stores its lock, file flags (e.g., those above), the current offset
within the file (when reading/writing the file) and the file metadata (a.k.a. inode). This information
is per open call and not per file: multiple file descriptions may be associated with the same file.

Reading/Writing a File. Once a file is opened, its contents can be read and written using read and
write, respectively. These calls expect three arguments: a file descriptor referring to an open file, a
buffer to store the data read/written, and the number of bytes to read/write. Given a file descriptor
𝑑f , we write 𝑟 = read (𝑑f , count) to read count bytes from 𝑑f into buffer 𝑟 , and write (𝑑f , buf) to
write the whole buffer buf to 𝑑f . For readability, we omit the error handling code.

The read/write calls access the file at the offset specified in the file description. This offset is
initialized to 0 when the file is first opened, and is increased by the number of bytes read/written.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:4 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

𝑑f = open (łfoo.txtž, O_RDWR);
𝑟0 = read (𝑑f , 1); //reads łfž
𝑟1 = read (𝑑f , 2); //reads łoož

Fig. 2. Reading a file

For example, given the łfoo.txtž file containing the string
łfoož, the snippet in Fig. 2 reads the strings łfž and łoož into
𝑟0 and 𝑟1, and sets the offset to the end of the file (EOF).

POSIX also supports accessing a file at a given offset using
pread and pwrite. These calls take the absolute offset as an
additional argument, and do not change the offset stored in the file description. Attempting to read
beyond EOF results in reading 0 bytes, while writing beyond EOF extends the file size and fills the
gap between EOF and the offset where the new data is to be written with zeros1.

The Linux-kernel, however, is not fully POSIX-compliant. For example, suppose that łfoo.txtž
above were opened with the O_APPEND flag, which sets the initial offset in the file description to
EOF. The pwrite (𝑑f , łbarž, 0) call (at absolute offset 0) would then update łfoo.txtž to contain
the string łfoobarž rather than the expected string łbarž. This is only one example of non-POSIX-
compliant behaviour exhibited by the Linux kernel. In general, the Linux kernel exhibits multiple
other non-POSIX-compliant behaviours, which we strive to model precisely.

Seeking in a File. Given a file descriptor 𝑑f , the lseek (𝑑f , ...) system call updates the offset
associated with 𝑑f according to the given arguments: the offset may be set to an absolute value or to
a value relative to predefined locations in the file (e.g., the file size or the current location). Indeed,
lseek allows the offset to be set beyond EOF. Such a call does not alter the file size, but subsequent
writes to the file will write at the offset specified by lseek and therefore increase the file size.

Note that if a file is opened with O_APPEND, lseek is of little use since (as per the POSIX standard)
subsequent calls to write will reposition the offset to EOF before writing the data.

Closing a File. A file associated with a file descriptor 𝑑f may be closed by calling close (𝑑f), which
removes 𝑑f from the file descriptor table of the calling process. If 𝑑f is the only file descriptor
associated with an open file description, then its resources are freed; otherwise, the file description
is preserved so long as there are other file descriptors (in any process) associated with it.

Directory Operations. Several system calls, referred to as directory operations in our model, can be
used to manipulate the file inode and the directory containing the file. Examples of such operations
in our model are: (1) creat (nl), which creates a new file named nl (and is equivalent to open with
O_CREAT|O_WRONLY|O_TRUNC flags); (2) link (nlold , nlnew), which creates a new directory entry with
name nlnew (if such entry does not already exist) referring to nlold ’s inode; (3) unlink (nl), which
deletes the entry named nl ; and (4) rename (nlold , nlnew), which renames the entry named nlold
as nlnew . That is, rename (nlold , nlnew) is similar to link (nlold , nlnew) followed by unlink (nlold).

Such operations exhibit interesting behaviours when interacting with open file descriptions. To
see this, consider the following program, where łbar.txtž is unlinked immediately after creation:

𝑑f = creat (łbar.txtž); unlink (łbar.txtž);write (𝑑f , łbarž);

The question is whether the subsequent write is valid. When a file is unlinked, if the removed
entry is the last entry on the file, then the file must be deleted with its allocated space made available
for reuse. However, if the file is still open, then unlink does not delete it immediately; instead, it
returns an error, and the file is eventually deleted once all its associated file descriptions are closed.
As such, close and unlink may execute in either order with respect to one another, and processes
with open file descriptions on the file can read/write the file until they close their file descriptions.

Similar observations hold of the interaction of other directory operations with the I/O operations
described thus far. In general, directory operations on a file with open file descriptions do not

1Most modern filesystems store sparse files more compactly, which typically avoids writing these zeros to disk.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:5

hinder subsequent I/O calls that use these descriptions. They may, however, affect the outcome of
subsequent I/O calls: e.g., if we call creat on an open file, creat will truncate the file size to 0.

2.2 The I/O Stack in Linux

We next present the basics of the kernel’s I/O stack. We do not describe all aspects of the I/O stack;
rather, we present an overview of the basic layers through which disk-bound data travels.

VFS and Page Cache. In Linux, data goes through several layers before reaching the disk, as
shown in Fig. 1 (right). The first two layers are the Virtual File System (VFS) [Gooch 1999] and
the kernel page cache. VFS is an abstract software layer in the kernel that provides a common
API to different filesystem implementations; the page cache sits between VFS and the filesystem
implementation (in our case ext4), and its purpose is to cache disk data in memory. The page cache
comprises physical RAM pages, which in turn contain a number of disk blocks (see below).
In most cases, interacting with VFS/page cache does not imply interacting with the disk. For

instance, a call to write does not guarantee that the written data is persisted to disk prior to
returning, and a call to read does not necessarily fetch the desired data directly from the disk.
Instead, both I/O operations simply manipulate the page cache; in fact, with the page cache, the
VFS has to barely touch filesystem-specific code, if all the desired data is in the page cache already.

More concretely, upon a call to read, the kernel checks the page cache for the desired data, and
only if (part of) this data is absent from the page cache, does the kernel fetch it directly from the disk.
Similarly, upon a call to write, the kernel writes the data to the page cache and schedules the data to
be persisted to disk asynchronously (i.e., it is a write-back cache). That is, upon returning from write,
the written data may be pending to persist to disk. As such, to ensure that the written data reaches
the disk, one must use special flushing system calls (see ğ2.4.3) to commit the persist-pending data
to disk synchronously: simply closing the file does not commit the pending writes to disk.

Apart from being greatly beneficial for performance, the VFS and the page cache largely determine
ext4’s consistency semantics, as we describe in ğ2.3.

Filesystems and Block I/O. We next describe what happens when a process tries to read data
that is not in the page cache, or when a page in the page cache is to be written back to disk. VFS
cannot handle such cases as each filesystem stores data on disk in a specific format. Therefore,
filesystem-specific code is called in such cases to interact with the disk.
This interaction with the disk must account for the physical properties of the underlying hard-

ware; see Fig. 1 (right). These properties are important as they affect how data is transferred to disk.
The smallest addressable unit on a disk is a sector. It holds 4KiB in modern disks [Advanced Format
2020] and 512B in older disks. However, the filesystem communicates with the disk in logical units
called blocks, denoting contiguous disk sectors (typically 4KiB in Linux). For instance, to write a
page from the page cache to disk, the OS issues a sequence of I/O requests over a number of blocks.

In general, these requests go through additional layers in the kernel; the part of the kernel that
implements the interface between the filesystem and the hardware is called the block I/O layer.
The block I/O layer is important for persistency properties: it can merge or reorder writes before
passing them to lower layers; i.e., it affects the ext4 persistency semantics, as we discuss in ğ2.4.

2.3 Consistency of File Operations

We now discuss the consistency semantics of file operations, describing the order they become visible
to concurrent threads; we write c-atomic and c-ordering to refer to the atomicity and ordering
guarantees at the level of consistency. Although POSIX [2018] requires that file operations be
c-atomic, this is not honoured by the Linux kernel.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:6 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Writes. Linux provides strong c-atomicity guarantees for writes. Specifically, writing to a file
involves acquiring the file’s inode lock, ensuring that all writes to the same file are c-ordered with
respect to one another. As each file is associated with a unique inode lock, mutual exclusion is
guaranteed regardless of the file descriptor used to carry out the write. Moreover, a call to write (as
opposed to pwrite) also acquires the offset lock in the file description, making the combination of
the offset adjustment and the data write one big c-atomic step. For example, the pread operation in
the program below reads either łbarž or łquxž, since both pwrite operations acquire the inode lock:

pwrite (𝑑f , łbarž, 0); pwrite (𝑑f , łquxž, 0);

𝑟 = pread (𝑑f , 3, 0);

Reads and Overwrites. The c-atomicity guarantees of reads are more subtle: while read calls
acquire the offset lock in the file description, pread calls acquire no locks. Therefore, a read call is
c-ordered with respect to concurrent read/write calls on the same file description as they compete
to acquire the offset lock. By contrast, concurrent read calls on different file descriptions and pread

calls do not acquire a common lock and thus offer only byte-level c-atomicity. As such, if the file of
𝑑f initially contains łfoož, the pread call below may read łfoož, łbarž, łfarž, łfaož, and so forth.

pwrite (𝑑f , łbarž, 0); 𝑟 = pread (𝑑f , 3, 0);

Reads and Appends. When racing with a write appending to a file, reads have stronger c-atomicity
guarantees: reads consult the file size, which is modified by appends, resulting in stronger synchro-
nization. In general, appends increase the file size not at once but incrementally: they write cache
pages one at a time, increasing the file size after each page. Reads first read the file and then the
data, and may thus observe the incremental size increases, at the granularity of the page size.

For example, assuming that each page is 3 bytes and that łfoo.txtž containing łfoož is opened
with O_APPEND, the pread in the program below can read łfoož, łfoobarž or łfoobarquxž.

write (𝑑f , łbarquxž); 𝑟 = pread (𝑑f , 42, 0);

Note that when a read requests more data than available in the file, it reads as much data as it can.
This behaviour is also observable for lseek and appends: if one thread appends multiple pages to

a file and another concurrently seeks to EOF, lseek may set the offset to an intermediate file size.

Directory Operations. Directory operations provide strong consistency guarantees: they are c-
atomic against operations that manipulate the same inode (as they acquire the inode lock), as well
as against other directory operations on the same directory (as they acquire the directory’s inode
lock). This gives strong consistency guarantees to file creation, linking, unlinking, etc.

One interesting exception is the rename (nlold , nlnew) call when a file with name nlnew already
exists. Recall that rename is analogous to link followed by unlink. While the link part is c-atomic
in that nlnew always points to one of the two inodes, rename as a whole is not c-atomic because
there is a window in which both nlold and nlnew refer to the same inode [Linux man pages 2020].
Nevertheless, rename provides a mechanism for ensuring update c-atomicity as shown below:

𝑑𝑏 = creat (łfoo.tmpž);
write (𝑑𝑏, łbarž); close (𝑑𝑏);

rename (łfoo.tmpž, łfoo.txtž);

𝑑f = open (łfoo.txtž, O_RDONLY);
𝑟 = read (𝑑f , 3); //reads łfoož or łbarž

As before, suppose łfoo.txtž initially contains łfoož. Regardless of whether open sees the new
or the old version of łfoo.txtž, it can seamlessly read the data in the next step. Even if rename

happens in between the open and read calls, the right thread still reads łfoož as the file description
of 𝑑f still points to the same inode even after rename. This inode, albeit no longer accessible via
the łfoo.txtž name after the rename, will not be deleted until all references to it are deleted.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:7

2.4 Persistency of File Operations Under ext4

We next discuss the persistency semantics of file operations, describing the order their effects persist
to disk, thus determining the observable disk states upon recovery from a crash (e.g., power loss or
software crash). We write p-atomic and p-ordering to refer to the atomicity and ordering guarantees
at the level of persistency. Although similar effects can be observed in other filesystems, the
description here is ext4-specific. We proceed with a brief description of the journalling mechanism
in ext4, which maintains the filesystem in a consistent state in case of a crash.

Journalling in ext4. As a crash can occur at any time during the program execution, including
during a system call, a filesystem must guarantee data integrity. Such guarantees do not pre-empt
data loss, but merely ensure that the filesystem can be restored to a consistent state after a crash. For
example, when appending to a file, the file size update must not persist before the appended data:
if a crash occurs right after the size update persists, then invalid data can be read upon recovery.

To ensure data integrity, ext4 employs write-ahead logging or journalling [Tweedie 1998], which
uses a transaction to record the intended changes in a journal (a designated disk area) before
carrying out the changes. Once the transaction commits, the intended changes can be carried out in
place. This way, if a crash occurs while enacting the changes, upon recovery one can simply replay
the journal to bring the filesystem to a consistent state. By default, ext4 journals only metadata,
e.g., the on-disk file inode (see ğ2.5). As ext4 stores the file metadata in a different place on disk
than its data [Linux kernel 2020], this introduces dependencies between file data and metadata,
leading to interesting persistency behaviours discussed below.

2.4.1 Persistency of I/O Operations. We proceed with the persistency guarantees of I/O operations.
As file reads do not alter the persistent disk data2, persistency guarantees are only meaningful for
file writes and directory operations. The persistency guarantees of an ext4 file write depend on
whether it modifies the file size, and thus differ for overwrites and appends.

Overwrites. ext4 provides very weak persistency guarantees for overwrites. First, it does not
guarantee p-atomicity beyond what is provided by the underlying storage, which is typically
sector-level p-atomicity for hard drives, but may only be byte-level p-atomicity for other persistent
storage media (e.g., non-volatile memory). As such, many applications such as SQLite [SQLite 2020]
do not assume such sector-level p-atomicity [Atomic Commit In SQLite 2020]. For a filesystem to
guarantee p-atomicity e.g., at the block level, it must use techniques such as full data journalling
(see ğ2.5) or copy-on-write [Copy-on-write 2020], which are not employed by ext4 by default.

Second, even the order in which overwrites to different sectors are persisted is loosely constrained:
writes to sectors within a block persist in order, whereas writes to different blocks may persist in
an arbitrary order. That is, although a write issues I/O requests for writing blocks in order, these
writes may be freely reordered both by the block I/O layer of the kernel and the disk itself (e.g., to
minimize rotation), and by default ext4 does not prevent this reordering. For example, consider
the following overwrite on 𝑑f associated with file łfoo.txtž with initial contents łfoož:

pwrite (𝑑f , łbarž, 0); (ow-na)

Let us assume that the sector size is one byte and each block comprises 3 sectors. If a crash occurs
during ow-na, then only a prefix of łbarž may persist to disk before the crash, guaranteeing
sector-level p-atomicity. That is, in the post-crash disk state łfoo.txtž may contain łfoož, łboož,
łbaož or łbarž, but not łfaož or łfarž. This is because blocks are composed of contiguous sectors,
and sectors within a block are written in a linear order. If, however, each block contains only one
sector and a crash occurs, then outcomes such as łfaož and łfarž are also possible.

2We do not model metadata potentially affected by reads such as file access times.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:8 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

In our formal model, we keep the sector and block sizes as parameters; we treat sector writes as
p-atomic and assume that sectors constituting a block are written in a linear order.

Appends. ext4 offers stronger persistency guarantees for appends: it guarantees block-level
p-atomicity of append prefixes and that appends on the same file are p-ordered, as described below.

The block-level p-atomicity guarantees of appends are best seen with an example. Suppose that
a file occupies 𝑛 blocks on disk and a crash occurs while appending 𝑘 more blocks to it. In the
post-crash disk state the file may then contain 𝑛 + 𝑖 blocks, where 0 ≤ 𝑖 ≤ 𝑘 ; i.e., a (potentially
full) prefix of the appended blocks may persist to disk before the crash. For instance, had we
opened łfoo.txtž in ow-na with the O_APPEND flag, assuming that the block size is 3B, in the
post-crash disk state łfoo.txtž would contain either łfoož or łfoobarž ś recall from ğ2.1 that
opening łfoo.txtž with O_APPEND ignores the absolute offset of pwrite and simply appends to it.

At first glance, this may seem incompatible with the weak p-ordering guarantees of overwrites.
If block writes are not p-ordered, how does ext4 ensure that the size update persists after the
appended data? This is enabled by the journal: when ext4 journals the metadata updates of an
append (e.g., its size update), it binds the commit of the transaction containing the metadata, with
the persist of the associated data. That is, the size update transaction commits only once the
appended data persists. As such, if a crash occurs before the transaction commits, the file size on
disk will not have been updated, and thus the persisted append data (if any) will not be accessible.
Note that in some cases a transaction has to commit before all data is persisted (e.g., because it has
grown very large), thus allowing it to commit only with a prefix of the data persisted.

𝑏1 𝑏2 ... 𝑏𝑙

appended data

Before crash:

𝑏1 𝑏2 ... 𝑏𝑙 ‘0’

After crash:

Fig. 3. ext4 p-atomicity violation: delayed allocation

However, there is one notable case where
these p-atomicity guarantees do not apply:
when a file has preallocated blocks that are par-
tially filled. For example, suppose that file łfž
has its last block𝑏𝑙 already allocated on disk but
not completely filled, and a crash occurs while
a process performs an append to łfž. Upon re-
covery, it is then possible to observe a disk state
where the size of the file is partially increased (either to the end of 𝑏𝑙 or to the size dictated by the
append, whichever is smaller), but with ‘0’s appended to the end instead of the data written, as
shown in Fig. 3.

This is because, as part of an optimization, ext4 does not bind the data persist of the preallocated
blocks to the transaction commit. Before elaborating on this optimization, let us briefly discuss block
allocation under ext4. Recall that writes happen asynchronously under ext4. This is to ensure
that writes to the same page are merged, and that write blocks can be allocated more efficiently (a
process called delayed allocation). Block allocation for an inode, however, requires that the inode be
journalled to ensure filesystem consistency. Conversely, if a block is already preallocated when a
write is issued, then the inode need not be journalled.

Thus, when extending files with preallocated blocks, ext4 optimizes the number of times an inode
is journalled. Since the inode is already included in the transaction when a write to a preallocated
block is issued (as the inode contains other metadata that are journalled), ext4 journals the inode
with the updated size in the transaction, thus not journalling the same inode twice. However, it
does so without binding the transaction commit to the data persist to avoid stalling the transaction.
As such, this optimization decouples the on-disk size update from the data persist, thus allowing
the transaction to commit before the data persists, leading to the behaviour shown in Fig. 3.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:9

𝑑𝑎 = creat (ła.txtž);
𝑑𝑏 = creat (łb.txtž);
write (𝑑𝑎, ...);

write (𝑑𝑏, ...);

Fig. 4. (app-diff-files)

Finally, ext4 guarantees that appends to the same file are p-ordered.
This is because as discussed ext4 updates the on-disk file size only
after all earlier (i.e., c-ordered-before) writes have persisted to disk.
However, appends to different files may not persist in the order they
are issued. For instance, the append to łb.txtž in Fig. 4 may persist
before that to ła.txtž.

2.4.2 Persistency of Directory Operations. ext4 offers stronger persistency guarantees for directory
operations than file operations. Specifically, all directory operations are p-atomic (including rename)
and if a metadata-affecting operation persists, then all directory operations c-ordered before it
will have persisted too. Metadata-affecting operations comprise all operations but overwrites, as
overwrites do not affect the metadata we model (i.e., file size). Although not strictly a directory
operation, similar guarantees are provided for file truncations (e.g., open with O_TRUNC).

Intuitively, these guarantees are achieved because directory operations only affect the metadata
of the file inode (as well as the directory inode), and are thus synchronously journalled in the
current transaction. In turn, this enforces p-ordering between directory operations and subsequent
metadata-affecting operations, because any metadata-affecting operation that is c-ordered after a
directory operation is either in the same transaction as the directory operation, or in a subsequent
one (in contrast to overwrites, which are not bound to any transaction).

𝑑f = creat (łfoo.tmpž);
write (𝑑f , ...);

close (𝑑f);

rename (łfoo.tmpž, łfoo.txtž);

Fig. 5. (replace-via-rename)

These persistency guarantees have often been the source
of confusion and sparked many discussions among applica-
tion and filesystem developers (e.g., [Ext4 data loss 2009; ext4
corruption 2015]). A common such discussion involves the
łreplace-via-renamež pattern, shown in Fig. 5. Assuming that
łfoo.txtž already exists, this pattern is used to update the
contents of łfoo.txtž (e.g., if łfoo.txtž contains a log).
As the last instruction is responsible for renaming łfoo.tmpž (thus updating łfoo.txtž), de-

velopers commonly expect that upon crash recovery łfoo.txtž will contain either its old data or
the new data written by write. Unfortunately, however, this may not be the case. While directory
operations are p-ordered with respect to later operations, they are not p-ordered with respect to
earlier operations. As such, rename may persist before the write on łfoo.tmpž (recall that appends
happen asynchronously). Consequently, if a crash occurs after the rename persists but before the
write does, then the new content will be lost upon crash recovery, leading to a zero-sized łfoo.txtž.
Put differently, this is analogous to writing to different files: rename writes to the directory inode,
while write writes to the file inode. As discussed in ğ2.1, such writes are freely reordered under
ext4, and one must explicitly flush the data to disk by using special instructions (see ğ2.4.3).
When ext4 was first introduced in Linux distributions, many users experienced data loss due

to applications relying on this assumption [Ext4 data loss 2009]. This confusion has even led to
the creation of specific programs aiming at the correct (i.e., p-atomic) renaming of files [renameio
2020]. Even though such guarantees were never made by POSIX, ext4 or its predecessors (ext2 and
ext3), applications relied on ext2 and ext3 providing them, and inevitably suffered data loss when
ext4 became the default option in the kernel. This drove ext4 developers to employ heuristics that
detect patterns such as łreplace-via-renamež, which do minimize the chances of data loss but do
not eliminate it. Indeed, as we show in ğ5, relying on such heuristics may itself lead to data loss.

2.4.3 Enforcing P-ordering. To enforce a particular p-ordering, developers can use special disk-
flushing instructions or flags. Specifically, the sync and fsync system calls can be used to flush
persist-pending (data and metadata) writes to disk. Concretely, sync flushes all persist-pending
writes across the entire filesystem synchronously: it waits for I/O to complete before returning.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:10 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Analogously, given a file descriptor 𝑑f , a call to fsync (𝑑f) synchronously flushes all persist-pending
writes on 𝑑f . For instance, we can avoid data loss in Fig. 5 by inserting fsync (𝑑f) before close (𝑑f).

The effects of fsync can be emulated by opening a file with the O_SYNC flag. Using O_SYNC, all
blocks written to the file by a write/pwrite call are flushed immediately after the call. In practice,
the guarantees of O_SYNC are slightly stronger in that all c-ordered-earlier writes to the file are
flushed, including those of the write request. For instance, consider a scenario where a process A
opens a file łf.txtž without O_SYNC, while a concurrent process B opens łf.txtž with O_SYNC. If
first A and then B each write several blocks to łf.txtž, then all persist-pending blocks written to
łf.txtž up to and including those of process B are flushed to disk, including those of A.

2.5 Other Data Journalling Modes in ext4

The p-ordering guarantees described so far are those of the default journalling mode in ext4 (i.e.,
data=ordered). Additionally, ext4 offers two other journalling modes, prescribing how data and
metadata are written to disk, further complicating its persistency guarantees.

The first mode, data=journal, provides stronger guarantees than the default mode, but greatly
degrades system performance [ext4 benchmarks 2012; Prabhakaran et al. 2005]. It journals both the
data and the metadata of writes before writing them to their final disk locations (compare this with
data=ordered which only journals the metadata). As such, as everything goes through the journal
with data=journal, all c-ordered writes (overwrites and appends) are p-ordered and block writes
are also p-atomic. Writes in general, however, are not p-atomic. This is because the journal occupies
finite disk space, and a write/pwrite call may write more data than the journal can accommodate.
The second mode, data=writeback, provides weaker guarantees than data=ordered: it only

journals the metadata (as in data=ordered), but the metadata write is not bound to the data persist.
As such, data=writeback only guarantees that (1) directory operations are p-ordered with respect
to later metadata-affecting operations; and that (2) directory operations are p-atomic. This is because
directory operations only affect an inode’s metadata, and thus waiting on data is unnecessary.
However, data=writeback may observe stale data when, e.g., appending to a file: if the new file
size is written to the journal, the transaction commits, and then a crash occurs before the data
persists, stale data in the space between the old and the new size can be observed. Therefore, while
data=writeback offers better performance than data=ordered, it raises security concerns.

3 FORMAL MODEL

We now present our first contribution: a formal model of ext4’s semantics.

Programming Language. Our concurrent programming language is given in Fig. 6 (below). We
assume a finite set Val of values, a finite set Tid of thread identifiers and any standard interpreted
language for expressions, Exp, containing values. We use v as a metavariable for values, t for thread
identifiers, and e for expressions. We model a multi-threaded program P as a function mapping each
thread to its (sequential) program. We write P=C1 | | · · · | |C𝑛 when dom(P)={t1 · · · t𝑛} and P(t𝑖)=C𝑖 .
Sequential programs are described by the Comm grammar and include expressions (e) and system
calls (c), as well as the standard constructs of sequential composition, conditionals and loops.

File Representation: Memory versus Disk. As discussed in ğ2.2, the page cache stores (a part of) a
file in memory. As the page cache is written back to disk asynchronously (ğ2.3), at any point, there
are two representations of a file, one in memory and one on disk, that may not agree with one
another. Moreover, recall that under ext4 the file metadata (e.g., size) is stored in a different location
than its data (ğ2.4). We thus use the domains in Fig. 6 (above) to model the file representation.
Specifically, we define a set of on-disk file locations, Floc, storing one byte of file data: each file

location is a pair dl=(f , o), where f ∈ Inode is the file inode and o ∈ Offset is the offset, denoting

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:11

Disk Domains

Floc △

= Inode ×Offset file locations

nl ∈ Dnameloc △

= String file name locations on disk

dsf ∈ Dsizeloc file size locations on disk†

dl ∈Dloc △

= Floc ⊎Dnameloc ⊎Dsizeloc disk locations

Memory Domains

ml ∈ Mloc memory locations

𝑑f ∈ Fd file descriptors where f ∈ Inode

msf ∈ Mloc file size locations in memory†

ol𝑑f
∈ Mloc file offset locations in memory‡

General Domains

f ∈ Inode △

= N file inodes

id ∈ Id △

= N operation ids

t ∈ Tid △

= N thread ids

o ∈ Offset △

= N offsets

Loc △

= Mloc ∪Dloc locations

v ∈ Val byte values

lck ∈Lck △

= Inode ∪ Fd ∪ {dir} lockables

† : defined for all f ∈ Inode

‡ : defined for all 𝑑f ∈ Fd

Syscal ∋ c ::= sync () | fsync (𝑑f) | · · · (see Fig. 7 for a full list of system calls)

Comm ∋ C ::= e | c | C;C | if(e) then C1 else C2 | while(e) C Exp ∋ e ::= v | · · ·

Prog ∋ P ::= Tid
fin
→ Comm

Fig. 6. The PerSeVerE types and their metavariables (above); the PerSeVerE programming language (below)

that dl contains the oth byte of the f data. We define a set of on-disk size locations, Dsizeloc, and a
mapping from inodes to their on-disk size locations; for brevity, we omit this mapping and write
ds f for the on-disk size location of f . Recall that we assume a single-directory structure, which
we model by the designated dir directory. We thus define a set of on-disk file name locations,
Dnameloc △

= String, where each nl ∈ Dnameloc records the inode associated with the file name nl .
Similarly, we model the in-memory file representation via a set of memory locations, Mloc, and

define a mapping from inodes to their in-memory size locations; we omit this mapping and write
ms f for the in-memory size location of inode f . We further define a set of file descriptors, Fd, and a
mapping from file descriptors to their inodes; we omit this mapping and simply write 𝑑f to denote
that the descriptor 𝑑 is associated with inode f . We further assume a mapping from file descriptors
to their (in-memory) offset locations, and write ol𝑑f

for the offset location of file descriptor 𝑑f .

Disk Sectors and Blocks. To keep our formalism general, we do not define an explicit size for disk
sectors and blocks, as these are determined by the underlying filesystem. However, as discussed
in ğ2, ext4 provides certain guarantees on the same-sector/same-block accesses. To this end, we
assume the existence of two equivalence relations, ssec ⊆ Dloc × Dloc and sblk ⊆ Dloc × Dloc,
relating the disk locations on the same sector and the same block, respectively.

Execution Events. Recall from ğ 2.3 that different system calls provide different c-atomicity
guarantees, determined by the underlying synchronization mechanisms used (e.g., locks). That is,
each system call may comprise several fine-grained instructions such as acquiring a lock.

As is common in the literature of declarative concurrency models, we model the traces generated
by a program P as a set of execution graphs, where each graph node is an event corresponding to a
fine-grained instruction (e.g., lock acquisition) associated with a system call. We shortly describe the
mapping from system calls to their corresponding events (fine-grained instructions), and formally
define the notion of execution graphs. We proceed with the formal definition of events.

An event 𝑒 is a tuple of the form ⟨𝑛, t, id , 𝑙⟩, where𝑛 ∈ N is an event identifier uniquely identifying
𝑒 in an execution, t ∈ Tid denotes the thread associated with 𝑒 , id ∈ Id is an operation identifier
denoting the system call associated with 𝑒 , and 𝑙 is an event label, describing the event type as
defined below in Def. 3.1. Note that the operation identifier allows us to track all events associated
with a system call: all events corresponding to a system call c have the same operation identifier.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:12 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Definition 3.1 (Events). An event is a tuple ⟨𝑛, t, id , 𝑙⟩, where 𝑛 ∈ N, t ∈ Tid, id ∈ Id and 𝑙 is an
event label with one of the following forms: (1) MR(ml) for a memory read from ml ; (2) MW(ml , v)

for a memory write toml with value v ; (3) DR(dl) for a disk read from dl ; (4) DWm (dl , v) for a disk
write to dl with value v and mode m ∈ {norm, trunc, zero, rename}; (5) FS(f) for a file sync on f ;
(6) S() for a sync; (7) Open(𝑑f , f) for opening f and yielding 𝑑f ; (8) Close(𝑑f , f) for closing 𝑑f
associated with f ; (9) L(lck) for locking lck ; (10) U(lck) for releasing lck .

The modes denote the event origin; e.g., rename for a disk write generated by rename (see ğ3.1).
The set of memory reads is MR △

=
{
⟨𝑛, id , t, 𝑙⟩ 𝑙=MR(.)

}
. The sets of memory writes (MW), disk reads

(DR), disk writes (DW), syncs (S), file syncs (FS), locks (L) and unlocks (U), as well as the sets DWtrunc,
DWrename, DWzero and DWnorm are defined analogously. The sets of reads and writes are defined as
R

△

= MR ∪ DR and W △

= MW ∪ DW, respectively; the set of durable events is defined as D △

= DW ∪ S ∪ FS.
The set of all events is Events.

Notation. Given an event 𝑒=⟨𝑛, t, id , 𝑙⟩, we write eid(𝑒), tid(𝑒), id(𝑒) and lab(𝑒) to project its
components, respectively. Analogously, given a label 𝑙 , we write loc(𝑙), val(𝑙) and lck(𝑙), when
applicable. For instance, when 𝑙 = MW(ml , v) then loc(𝑙)=ml and val(𝑙)=v . We lift loc(.), val(.)
and lck(.) to events and write e.g., loc(𝑒) for loc(lab(𝑒)).

Given a relation 𝑟 , we write 𝑟? and 𝑟+ for the reflexive and transitive closures of 𝑟 , respectively.
We write 𝑟−1 for the inverse of 𝑟 , 𝑟 |𝐴 for 𝑟 ∩ (𝐴 ×𝐴), [𝐴] for the identity relation {(𝑎, 𝑎) | 𝑎 ∈𝐴},
and 𝑟1; 𝑟2 for the composition of 𝑟1 and 𝑟2: {(𝑎, 𝑏) | ∃𝑐. (𝑎, 𝑐) ∈ 𝑟1∧(𝑐, 𝑏) ∈ 𝑟2}. When 𝐴 is a set of
events, 𝑥 ∈Loc and 𝑋 ⊆Loc, we define 𝐴𝑥

△

= {𝑒 ∈𝐴 | loc(𝑒)=𝑥} and 𝐴𝑋
△

=
⋃

𝑥 ∈𝑋 𝐴𝑥 . We also define
𝑟𝑥

△

= 𝑟 |Events𝑥 and 𝑟𝑋
△

= 𝑟 |Events𝑋 .

3.1 Mapping System Calls to Events

We next describe the mapping from system calls to (sequences of) events. For clarity, we describe
this correspondence algorithmically in Fig. 7, where each system call is mapped to an eponymous
procedure that generates a (potentially singleton) sequence of events. In our algorithmic description
we use several helper functions (e.g., freshFD) that do not generate any events; as such, we omit
their algorithmic description and describe their behaviour intuitively, as necessary. Moreover, we
assume that the file descriptors supplied as arguments are valid and forgo their validity checks.
We write{ 𝑙 to denote generating an event 𝑒=⟨𝑛, t, id , 𝑙⟩ with label 𝑙 , and omit the associated

event, thread and operation identifiers. Instead, we assume that:
(1) events are generated with unique event identifiers in an increasing order;
(2) events corresponding to system calls by thread t are associated with t ; and
(3) all events corresponding to a given system call have the same operation identifier.

For brevity, we write{ 𝑙1; 𝑙2 as a shorthand for{ 𝑙1 followed by{ 𝑙2. Generating a read event 𝑟
additionally yields the value read by 𝑟 . We thus write{ 𝑙 in v to denote that 𝑙 reads value v .
For clarity and concision, we exclude several features discussed in ğ2 from our formalism here.

Specifically, (1) we exclude the O_SYNC and O_APPEND flags when opening a file; (2) we focus on the
default ext4 journalling mode (data=ordered) and exclude data=journal and data=writeback.
Nevertheless, we cover all these features in our implementation of PerSeVerE (ğ4).
We further assume that one page of the page cache accommodates exactly one block.

Open and Close. A call to open (nl , flags) comprises three parts: lookup (Line 2), open (Lines
3ś5) and truncate (Lines 6ś8). The lookup(nl , flags) routine returns the inode f associated with
nl (if any) and the (potentially updated) flags. The inode f returned is determined by the flags and
whether a file named nl exists. If O_CREAT is not specified in the flags, lookup reads the inode f
associated with nl (Line 3) and returns f and the unchanged flags (Line 13). If O_CREAT is specified
and nl does not exist, i.e., nl is not associated with an inode (Lines 6 and 7), then lookup creates a

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:13

1: procedure lookup(nl ,flags)

2: if O_CREAT ∉ flags then

3: { DR (nl) in f

4: else

5: { L (dir)

6: { DR (nl) in f

7: if f = ⊥ then

8: f ← freshINode()

9: flags ← flags \ O_TRUNC

10: { DWnorm (dsf , 0) ; MW (msf , 0)

11: { DWnorm (nl , f)

12: { U (dir)

13: return (f ,flags)

1: procedure open(nl ,flags)

2: (𝑓 ,flags) ← lookup(nl ,flags)

3: if f = ⊥ then return

4: 𝑑f ← freshFD(f)

5: { MW (ol𝑑f
, 0) ; Open (𝑑f , f)

6: if O_TRUNC ∈ flags then

7: { L (f) ; DWtrunc (dsf , 0)

8: { MW (msf , 0) ; U (f)

1: procedure lseek(𝑑f , o)

2: { L (𝑑f)

3: { MR (ol𝑑f
) in o ′

4: { MW (ol𝑑f
, o)

5: { U (𝑑f)

1: procedure link(nlold , nlnew)

2: { L (dir)

3: { DR (nlnew) in f ′ assert(f ′ = ⊥)

4: { DR (nlold) in f

5: { DWnorm (nlnew , f)

6: { U (dir)

1: procedure unlink(nl)

2: { L (dir) ; DWnorm (nl ,⊥) ; U (dir)

1: procedure rename(nlold , nlnew)

2: { L (dir)

3: { DR (nlold) in f

4: { DWrename (nlnew , f) ; DW
rename (nlold ,⊥)

5: { U (dir)

1: procedure close(𝑑f){ Close (𝑑f)

1: procedure sync () { S ()

1: procedure fsync(𝑑f){ FS (f)

1: procedure BufferRead(f , buf , count, o)

2: { MR (msf) in size

3: m ← min(count, size − o)

4: for 𝑖 = 0 tom − 1 do

5: { DR ((f , o + 𝑖)) in buf [𝑖]

1: procedure pread(𝑑f , buf , count, o)

2: BufferRead(f , buf , count, o)

1: procedure read(𝑑f , buf , count)

2: { L (𝑑f)

3: { MR (ol𝑑f
) in o

4: BufferRead(f , buf , count, o)

5: { MW (ol𝑑f
, o + count)

6: { U (𝑑f)

1: procedure BufferWrite(f , buf , count, o)

2: { L (f)

3: { MR (msf) in size

4: if isPreallocBlock(o, count, size) then

5: end ← min(count + o, getLastBlockEnd(f))

6: for 𝑖 = size to end − 1 do{ DWzero ((f , 𝑖), 0)

7: { DWzero (dsf , end)

8: size ← end

9: if o > size then

10: for 𝑖 = size to o − 1 do{ DWnorm ((f , 𝑖), 0)

11: for 𝑖 = 0 to count − 1 do

12: { DWnorm ((f , o + 𝑖), buf [𝑖])

13: if (isFstB(f, o+𝑖+1) ∨ 𝑖=count−1)) ∧ o+𝑖 > size

then

14: { DWnorm (dsf , o + 𝑖) ; MW (msf , o + 𝑖)

15: { U (f)

1: procedure pwrite(𝑑f , buf , count, o)

2: BufferWrite(f , buf , count, o)

1: procedure write(𝑑f , buf , count)

2: { L (𝑑f)

3: { MR (ol𝑑f
) in o

4: BufferWrite(f , buf , count, o)

5: { MW (ol𝑑f
, o + count)

6: { U (𝑑f)

Fig. 7. Algorithmic description of mapping system calls to events where{ 𝑙 generates an event with label 𝑙

fresh inode f (via freshINode), removes O_TRUNC from the flags as the file is just created, initializes
the f size both in memory and on disk, associates nl with f and returns f and the updated flags.
(Line 8śLine 13). If f (returned by lookup) is valid, the open part creates a fresh file descriptor 𝑑f
(via freshFD), initializes its offset and opens f with 𝑑f . Finally, the truncate part sets the file size to
zero (both in memory and on disk). A call to close (𝑑f) simply generates a single event to close 𝑑f .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:14 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Sync, FSync and LSeek. A sync (resp. fsync (𝑑f)) call simply corresponds to a single event with
label S() (resp. FS(𝑑f)). As for the lseek system call, recall that lseek (𝑑f , o) updates the offset of
the file descriptor 𝑑f to o. Moreover, as with all system calls modifying the file descriptor offset, it
does so by first acquiring its lock. As such, the associated algorithm generates a sequence of events
to lock 𝑑f , read the current offset o ′ of 𝑑f , update it to o, and finally release the lock on 𝑑f .

PRead and Read. A call to pread is handled by the BufferRead routine which reads the in-
memory file size (Line 2) and generates a sequence of DR events for reading𝑚 bytes of file data at
offset 𝑜 , one byte at a time (Line 5), where𝑚 is the minimum of count and size − 𝑜 . Recall that
the key difference between read and pread is that read updates the descriptor offset. As such, read
generates analogous events to those of pread, and further include events for updating the descriptor
offset (Lines 3 and 5) and thus acquiring/releasing its lock (Lines 2 and 6).

PWrite and Write. A call to pwrite (1) acquires the inode lock, (2) carries out the file data write
one byte at a time, (3) increases the file size if necessary (in the case of appends) and (4) releases
the inode lock. Analogously, the BufferWrite of pwrite generates the lock and unlock events in
steps (1) and (4) on Lines 2 and 15, respectively, the events of step (2) on Lines 11ś12, and those of
(3) on Lines 13ś14. Note that the size is updated both in memory and on disk (Line 14) after writing
a full block (or the last sub-block of the write), provided that the file size changes (increases).

A pwrite must additionally account for cases where a file with preallocated blocks is appended,
or the offset supplied is greater than the file size. The former case (see delayed allocation in ğ2.4)
is handled on Lines 4ś6, where the last file block is zeroed if it is preallocated (determined via
isPreallocBlock)Ðwe assume that a file has at most one preallocated block at the end that is not
filled. The on-disk (but not in-memory) file size is then updated accordingly (Line 7); this ensures
that the zeroed-out block is observable after recovery from a crash, but not by reads during the
execution. The latter case is handled on Lines 9ś10, where the bytes between size and o are zeroed.

Lastly, the events generated by write are analogous to those of pwrite and additionally generate
the events for updating the file descriptor offset as in read.

Link, Unlink and Rename. The link call acquires the lock on the (only) directory dir (Line 2) and
inspects the new name nlnew specified (Line 3), ensuring that it is not already taken, i.e., holds ⊥
(Line 3). It then determines the inode f associated with the old name (Line 4), updates the new
name location to point to f (Line 5) and finally releases the directory lock (Line 6). The unlink (nl)

call simply unlinks the name location nl from its associated inode by updating it to the designated
⊥ value. Finally, the events generated by rename are those of link and unlink combined, except that
unlike link, rename does not inspect the new name to check that it is available.

3.2 Executions

We next define the notion of an execution graph G , where its nodes are events and its edges denote
the sundry relations on events describing e.g., the values read via the ‘reads-from’ relation.

Definition 3.2 (Executions). An execution G ∈ Exec is a tuple of the form ⟨E, rf⟩, where:

• E is a set of events (Def. 3.1) comprising a set of initialization events, I ⊆ E, by a designated
thread t0 such that (1) I △

=
{
𝑒 ∈ E ∩ (W ∪ U) tid(𝑒) = t0

}
; (2) for eachml ∈ Mloc, the set I

contains a single event𝑤 ∈ MW on ml with value 0, i.e., loc(𝑤)=ml and val(𝑤)=0; (3) for
each nl ∈ Dnameloc, the set I contains a single event𝑤 ∈ DW on nl with value ⊥; and (4) for
each lck ∈ Lck, the set I contains a single unlock event 𝑢 on lck (i.e., lab(𝑢)=U (lck)).
• rf ⊆ (E×E)∩((W×R)∪(U×L)) is the reads-from relation such that (1) for all (𝑤, 𝑟) ∈ rf∩(W×R):
loc(𝑤)=loc(𝑟); (2) for all (𝑢, 𝑙) ∈ rf ∩ (U × L): lck(𝑢)=lck(𝑙); and (3) rf−1 is functional;

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:15

(4) rf is total on its range: for all 𝑎 ∈ E ∩ (R ∪ L), there exists a unique 𝑏 ∈ W ∪ U such that
(𝑏, 𝑎) ∈ rf; and (5) no two locks read from the same unlock: rf−1; [U]; rf ⊆ [L].

Given an execution G , we use the ‘G .’ prefix to project its various components (e.g., G .rf),
including its implicit components (e.g., G .I) and derived relations described below (e.g., G .po).
When the choice of G is clear from the context, we omit this prefix and simply write e.g., I.

Derived Relations. Given an execution G = ⟨E, rf⟩, we define the program-order relation as:

po
△

= I × (E \ I) ∪

{
⟨⟨𝑛1, t1, id1, 𝑙1⟩,

⟨𝑛2, t2, id2, 𝑙2⟩⟩

⟨𝑛1, t1, id1, 𝑙1⟩, ⟨𝑛2, t2, id2, 𝑙2⟩ ∈ E \ I

∧ t1 = t2 ∧ 𝑛1 < 𝑛2

}

relating initialization events to all others, and the events of each thread in increasing order.
We also define the same-operation equivalence relation, sid, on the events of the same operation:

sid
△

=
{
(𝑎, 𝑏) id(𝑎)=id(𝑏)

}
. The same-file, sf, equivalence relation is defined analogously,

relating the events on the same file (inode).
Finally, we lift ssec to events by defining (𝑎, 𝑏) ∈ ssec to hold iff (loc(𝑎), loc(𝑏)) ∈ ssec, and

define the block-sequence relation, bseq, prescribing the order in which a block is written as:

bseq
△

=
{
(𝑤1,𝑤2) lab(𝑤1) = DW(f ,o1) ∧ lab(𝑤1) = DW(f ,o2) ∧ (o1, o2) ∈ sblk ∧ o1 < o2

}

Memory-Model Consistency. Note that in this initial stage, executions are unrestricted in that there
are few constraints on rf. Such restrictions are determined by the set of memory-model-specific
consistent executions.
In order to keep our formalism general, we do not define a specific memory model and its

associated set of consistent executions. Rather, we define a general formal framework that is
parametric in the choice of the underlying memory model. We thus assume a consistency predicate,
consM (.), which determines whether an execution isM-consistent (i.e., consistent under theM
memory model). This way, our general framework can be instantiated for a desired memory model
M by supplying it with the consM (.) predicate.
M-consistency is typically constrained via a synchronizes-with relation, sw, prescribing the order

induced by synchronization mechanisms, e.g., locks. As we do not restrict our framework to an
explicit memory model, we accordingly keep its associated sw relation as a parameter, with the
proviso that sw includes the rf edges on disk locations as well as the synchronization induced by
lock acquisition. As is standard, we define the happens-before relation, hb, as the transitive closure
of po and sw. Intuitively, hb denotes c-ordering: the order events become visible to other threads.

Parameter 1 (M-consistency). Given an execution ⟨E, rf⟩, assume a synchronizes-with relation,
sw ⊆ E × E, denoting a strict partial order such that [DW]; rf; [DR] ⊆ sw and [U]; rf; [L] ⊆ sw.
Assume a consistency predicate, consM (.) :Exec→{true, false}, such that for all executions G ,

if consM (G) holds, then (1) hb △

= (po ∪ sw)+ is irreflexive; and (2) (po ∪ rf)+ is irreflexive.

The first requirement ensures that hb is a strict partial order; the second requirement precludes
‘out-of-thin-air’ behaviours [Lahav et al. 2017], and is required by GenMC [Kokologiannakis et al.
2019], the DPOR framework over which we build PerSeVerE (see ğ4).

Observe that all disk writes (in DW) generated by the Fig. 7 algorithms are issued while holding a
lock. As such, thanks to lock-induced synchronization (Parameter 1), all writes on the same disk
location are related by hb; i.e., whbdl is total for all dl ∈Dloc, where whb △

= [DW]; hb; [DW].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:16 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

We define the persists-before relation, pb ⊆ D × D, as the least transitive relation such that:

(I ∩ D) × (D \ I) ⊆ pb (pb-init)

[DW]; (hb ∩ ssec); [DW] ⊆ pb (pb-sector)

[DW]; (hb ∩ bseq); [DW] ⊆ pb (pb-block)

[DWFloc]; (hb ∩ sf); [DWDsizeloc] ⊆ pb (pb-meta)

[S ∪ FS]; hb; [D] ∪ [D]; hb; [S] ∪ [DW]; (hb ∩ sf); [FS] ⊆ pb (pb-sync)

[DWDnameloc ∪ DW
trunc]; hb; [D \ DWFloc] ⊆ pb (pb-dirops)

(atom; pb) ∪ (pb; atom) ⊆ pb (pb-atom)

where atom △

= ([DW \ DWzero]; (ssec ∩ sid); [DW \ DWzero]) ∪ ([DWrename]; sid; [DWrename]) .
Intuitively, pb denotes p-ordering: the order in which durable events (D) are persisted.
The pb-init axiom p-orders all initialization writes before all other durable events.
The pb-sector axiom captures the hardware p-ordering guarantees: same-sector writes persist

atomically and are never reordered. This ensures that pbdl = whbdl for each disk location dl , as
each disk location resides within one block. Note that as whbdl is total, so is pbdl for each dl .

The pb-block axiom models the assumption that sectors within a block are persisted in sequence.
As a result, c-ordered same-block writes are also p-ordered, as long as their offsets match the order
in which the block is written. Of course, this does not imply that same-block writes are p-ordered
in general. For instance, a call to write/pwrite to a sector 𝑠2 of a block 𝑏 is not guaranteed to persist
before a subsequent write/pwrite call to a previous sector 𝑠1 of the same block, as such writes may
be merged by the block I/O layer, and a crash may occur with only 𝑠1 having persisted.
The pb-meta axiom ensures that file data updates are p-ordered before their subsequent size

updates, as required by the data=ordered journalling mode. Intuitively, this relates the event(s)
on Line 6 of BufferWrite to that on Line 7, and those on Line 12 to that on Line 14.
The pb-sync axiom describes the p-ordering of sync/fsync: (1) all events that are hb-after a

sync/fsync are p-ordered after it; (2) all events that are hb-before a sync are p-ordered before it; and
(3) all disk writes to a file that are hb-before an fsync on the same file are p-ordered before it.

Recall from ğ2.4.2 that directory operations and file size updates due to truncation are p-ordered
before all subsequent operations except overwrites. This is captured by pb-dirops, where DWDnameloc

denotes directory events (i.e., those that write to a name location) and \DWFloc excludes overwrites.
Lastly, pb-atom ensures that renames and same-sector writes are p-atomic by requiring that pb

be closed under composition with atom. The atomic relation atom relates the DWrename events of the
same (rename) operation, as well as the same-sector DW \ DWzero events of the same (write/pwrite)
operation. Note that we exclude DWzero to model the (p-atomicity-violating) anomaly of delayed
allocation (ğ2.4.1), thus allowing zero writes to persist without the corresponding data writes.

Given a memory modelM, an execution is consistent iff it isM-consistent (Parameter 1) and its
persists-before relation is a strict partial order.

Definition 3.3 (Consistency). An execution𝐺 is consistent according to a memory modelM iff
consM (𝐺) holds and 𝐺.pb is irreflexive.

3.3 Post-Crash Observable States

To determine the disk state upon recovery from a crashing execution G , we define a p-snapshot,
P ⊆ G .D, as a set of durable events whose effects have reached the disk before the crash.

More concretely, (1) P must include the initialization writes on disk locations (I ∩ DW ⊆ P).
Moreover, as pb prescribes the order in which writes are persisted to disk (2) P must be down-
ward-closed with respect to pb: dom(pb; [P]) ⊆ P . That is, if the effects of an event 𝑒 have reached

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:17

the disk (and thus 𝑒 ∈ P), then the effects of all pb-earlier events must also have reached the disk.
Similarly to ensure the p-atomicity of rename and the p-atomicity of same-sector writes (3) P must
be downward-closed with respect to atom: dom(atom; [P]) ⊆ P .
Given a p-snapshot P of execution G , we define the frontier of P , written frontP , to contain

exactly one write for each disk location dl , corresponding to theG .pbdl -maximal write inP . That is,
whenP contains several writes on dl , its frontier contains the pbdl -latest write inP (max(pbdl |P)),
capturing the last persisted write on dl , and thus the value observable for dl upon recovery. Note
that as pbdl is total for each disk location dl , then max(pbdl |P) is uniquely defined.

Definition 3.4 (P-snapshot). A set P is a p-snapshot of an execution G iff (1) (I ∩ D) ⊆ P ⊆ D;
(2) dom(pb; [P]) ⊆ P ; and (3) dom(atom; [P]) ⊆ P .

Given a p-snapshot P of an execution G , the frontier of P is frontP
△

= 𝑁 ∪ 𝑆 ∪ 𝐹 where:

𝑁 △

=
{
max(G .pbdl |P) dl ∈Dnameloc

}
𝑆 △

=
{
max(G .pbds f |P) ∃𝑤 ∈ 𝑁 . lab(𝑤)=DW(nl f , f)

}

𝐹 △

=
{
max(G .pb(f ,o) |P) ∃𝑤1 ∈𝑁,𝑤2 ∈𝑆. lab(𝑤1)=DW(nl f , f) ∧ ∃𝑠 . lab(𝑤2)=DW(ds f , 𝑠) ∧ 𝑜 < 𝑠

}

Note that 𝑁 computes the p-snapshot for file name locations, while 𝑆 and 𝐹 do so for each file
size location ds f and data location (f , o) where f is accessible (mapped on to) by a file name written
in N and o is within the f size written in S . This excludes inaccessible ‘garbage’ from p-snapshots.

4 PERSEVERE: MODEL CHECKING UNDER EXT4

An effective technique for verifying the consistency guarantees of concurrent programs is Stateless
Model Checking (SMC) [Godefroid 1997; 2005; Musuvathi et al. 2008] coupled with Dynamic Partial
Order Reduction (DPOR) [Abdulla et al. 2014; Flanagan et al. 2005; Kokologiannakis et al. 2019]. We
next present our second key contribution: extending SMC and DPOR to verify persistency.

4.1 Effective Model Checking for Persistency

A key challenge of SMC is that a concurrent program may have a large number of executions
to explore, typically exponential in the program size. To address this, existing literature includes
several effective DPOR techniques that partition the executions into consistency equivalence classes
(c-classes), aiming to explore exactly one execution per c-class. That is, all executions in a c-class
have the same consistency guarantees, and thus it suffices to explore one execution from each.
However, although there exists a large body of work on different notions of c-classes and thus

effective model checking for consistency, there is little to no work on model checking persistency.
As such, to facilitate effective model checking for persistency, we develop several techniques to
partition executions into persistency equivalence classes (p-classes). In what follows we formally
describe our mechanisms for partitioning executions to p-classes and then present PerSeVerE.

Partial P-Ordering. The first partitioning mechanism we employ is representing p-ordering as
a partial rather than a total relation: our definition of execution consistency (Def. 3.3) does not
require the p-ordering relation pb to be total and admits partial pb orders. This is in contrast to the
existing literature on persistency [Raad et al. 2018; 2019a; b], which requires p-ordering to be a
total order. Modelling pb as a partial order is highly effective in that it significantly reduces the
number of executions to explore. To see this, consider the 3w+pb program below comprising three
parallel writes, writing a single byte to offset 0 of files ła.txtž, łb.txtž and łc.txtž, respectively:

𝑑f1 = open (ła.txtž);
pwrite (𝑑f1 , ‘1’, 0);

𝑑f2 = open (łb.txtž);
pwrite (𝑑f2 , ‘2’, 0);

𝑑f3 = open (łc.txtž);
pwrite (𝑑f3 , ‘3’, 0);

(3w+pb)

Let us assume that file sizes are greater than one byte and thus all three writes are overwrites.
Ignoring open, given the mapping in Fig. 7, each pwrite generates events for locking the respective

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:18 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

inode, reading its size, writing (one byte) at offset 0 and unlocking the inode. That is, ignoring the
non-disk events, if we assume that the inodes are respectively f1, f2 and f3, an execution of 3w+pb

comprises three disk-write events𝑤1,𝑤2 and𝑤3, with lab(𝑤𝑖)=DW((f𝑖 , 0), 𝑖) for 𝑖 =1 · · · 3.
Under representations that require a total p-ordering, there are six (3!) possible p-orderings,

i.e., the number of [𝑤1,𝑤2,𝑤3] permutations. Moreover, recall from our notion of p-snapshots
(Def. 3.4) that a prefix of each p-ordering may have persisted prior to the crash. As such, since each
p-ordering has three prefixes, the total number of explorations is 18 (3 × 3!).
On the other hand, our partial pb definition does not order the three writes, since they are

in different files; thus, when constructing our p-snapshot P , it suffices to consider whether (the
effect of) each write has persisted, i.e., P ∈ P({𝑤1,𝑤2,𝑤3}), thus yielding eight (23) explorations
corresponding to eight different p-snapshots. In the general case of 3w+pb with 𝑁 parallel writes,
this amounts to reducing the number of explorations from 𝑁 × 𝑁 ! to 2𝑁 .

Recovery Observer. Although keeping pb partial eliminates a significant number of explorations,
it nevertheless includes redundancies and can be further improved. Consider the rec-ob example
below where 3w+pb above runs in parallel with an independent write to łd.txtž with inode f ′

and crashes thereafter (E); upon recovery (to the right of E) the first byte of f ′ is read in 𝑏:

3w+pb
𝑑f ′ = open (łd.txtž);
pwrite (𝑑f ′, ‘4’, 0);

E 𝑑 ′
f ′
= open (łd.txtž);𝑏= pread (𝑑 ′

f ′
, 1, 0);

assert(𝑏 = ‘4’);
(rec-ob)

Since there are eight (23) possible p-snapshots for the locations dl 𝑖=(f𝑖 , 0) (for 𝑖 =1 · · · 3) and two
(21) p-snapshots for dl ′=(f ′, 0), this amounts to 16 (8×2) possible explorations. However, note that
although dl1, dl2 and dl3 are all written by 3w+pb, they are never read upon recovery. By contrast,
dl ′ is observed (read from) upon recovery, and we must therefore consider two explorations: one in
which the pre-crash write on dl ′ persists and one in which it does not. In other words, it suffices to
consider p-orderings only on those locations that are read from upon recovery.
We use this intuition to reduce the number of explorations further. More concretely, we model

observable p-snapshots through a recovery observer, a designated thread that runs in parallel with
the original program. This way, we can model observability by reads-from (rf) edges between the
events of the original program and those of the recovery observer. To this end, we instrument our
executions (Def. 3.2) to include recovery events, as we describe below.

Definition 4.1 (Instrumented execution). An instrumented execution is a tuple ⟨E, rf⟩ such that:

• ⟨E, rf⟩ is an execution (Def. 3.2); and
• the event set is partitioned, E = NREC⊎REC, into non-recovery events, NREC, and recovery events,
REC, comprising disk reads by a designated thread tr: REC

△

=
{
𝑒 ∈ E ∩ DR tid(𝑒) = tr

}
.

Note that instrumented executions are executions (Def. 3.2) that additionally include recovery
events comprising disk reads by the designated recovery thread tr. That is, we model programs
such as rec-ob, by having tr issuing recovery pread calls to inspect the disk after the crash, e.g., the
pread to the right of E in rec-ob. The mapping from a recovery pread call is that of pread in Fig. 7,
with the memory read on Line 2 of BufferRead replaced with an analogous disk read.

With instrumented executions in place, we no longer need a p-snapshot and its frontier to
determine the observable values upon recovery. Instead, we simply constrain the set of observable
values by requiring that the resulting instrumented execution be consistent, as defined below.

Definition 4.2 (Instrumented consistency). An instrumented execution G is consistent iff:

• ⟨NREC, rf|NREC⟩ is consistent according to Def. 3.3 (when G=⟨NREC ⊎ REC, rf⟩); and (con)

• [REC]; rb; atom?; pb?; rf; [REC] = ∅, where rb △

= ∪𝑥 ∈Loc rf
−1
𝑥 ; whb𝑥 (rec)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:19

NREC REC

𝑤 : DWnorm (dl ,−)

𝑤 ′′ : DWnorm (dl ,−)

𝑤 ′ : DWnorm (dl ′,−)

𝑟 : DR (dl)

𝑟 ′ : DR (dl ′)

rf

rf

whb

pb?
rb

Algorithm 1 Main exploration algorithm

1: procedure Verify(P, PR)

2: ⟨G, Γ⟩ ← ⟨𝐺0, Γ0⟩

3: do

4: VisitOne(P,G, Γ)

5: RunRecovery(PR,G, Γ)

6: while ⟨𝐺, Γ⟩ ← pop(Γ)

Fig. 8. An instrumented execution precluded by rec (left); the PerSeVerE main exploration algorithm (right)

The rec axiom equivalently enforces the conditions imposed by p-snapshots and frontiers, where
the reads-before relation, rb, relates each read 𝑟 to all writes that are hb-after the write 𝑟 reads from.
Specifically, rec pre-empts scenarios such as that in Fig. 8 (left), where a recovery read 𝑟 on dl

reads from 𝑤 which is later overwritten by 𝑤 ′′: (𝑤,𝑤 ′′) ∈ whbdl . As whb and pb agree for each
location, we also have (𝑤,𝑤 ′′) ∈pbdl . Moreover, as 𝑟 and 𝑟 ′ respectively read from𝑤 and𝑤 ′, then
𝑤,𝑤 ′ must have persisted prior to the crash, i.e., they are in the p-snapshot. As𝑤 ′′ is pb-before𝑤 ′,
for the p-snapshot to be pb-downward-closed,𝑤 ′′ must also be in the p-snapshot. As such, since
(𝑤,𝑤 ′′) ∈ pbdl and𝑤

′′ is in the p-snapshot, then𝑤 ′′ is the pbdl -maximal write in the p-snapshot
and not𝑤 , violating the pbdl -maximality condition of the p-snapshot frontier.

Finally, in the theorem below we show that the two characterizations of the observable states on
recovery are equivalent. We present the full proof in [Kokologiannakis et al. 2021].

Theorem 4.3 (Eqivalence). For all consistent instrumented executionsG , there exists a p-snapshot
P of 𝐺 such that dom(rf; [REC]) ⊆ frontP . For all consistent executions 𝐺=⟨E, rf⟩, p-snapshots P
of G , relations rf′ and recovery reads REC ⊆ DR by tr (∀𝑟 ∈ REC. tid(𝑟)=tr), if rng(rf

′)=REC and
dom(rf′) ⊆ frontP , then the instrumented execution ⟨E ⊎ REC, rf ⊎ rf′⟩ is consistent.

4.2 PerSeVerE: DPOR for Persistency

We next present PerSeVerE, our persistency model checking algorithm. PerSeVerE can be built by
extending any DPOR framework with persistency. For clarity, we build PerSeVerE as an extension
of GenMC [Kokologiannakis et al. 2019], as it is parametric in the choice of its underlying memory
model, thus allowing us to verify ext4’s persistency properties under differentM-consistency
models. We proceed with a brief description of the DPOR algorithm used by GenMC and then
describe how we extend it with persistency. As PerSeVerE is based on GenMC, it inherits its
correctness results. Specifically, PerSeVerE is sound (only explores consistent executions), complete
(explores all consistent executions) and optimal (explores each execution exactly once).

GenMC in a Nutshell. As with other DPOR techniques, GenMC verifies a program P by exploring
its executions one at a time, identifying alternative explorations on the fly and recording them in
an environment Γ. Once an execution is fully explored, an alternative option is picked from Γ for
further exploration. This high-level description is depicted in the Verify procedure of Algorithm 1.
Ignoring the RunRecovery function, Verify begins with an empty execution𝐺0 and environment
Γ0 (Line 2), and calls VisitOne to generate a full execution of P.

The crux of GenMC lies inVisitOne(P,G, Γ) (Algorithm 2), which extends the current execution
G to a full execution of P and extends Γ with alternative explorations along the way. To this end, at
each step it extends G by one event 𝑎 provided that G isM-consistent (consM (G) holds). If there
are no such events 𝑎 then G is a full execution and VisitOne returns. If 𝑎 denotes an error, then
the error is reported and VisitOne terminates (Line 3). Otherwise, 𝑎 is added to G (Line 4).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:20 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Algorithm 2 Exploration of one execution

1: procedure VisitOne(P,G, Γ)
2: while consM (G) ∧ 𝑎 ← nextP (G) do

3: if 𝑎 ∈ error then exit(łerrorž)

4: G .E← G .E++[𝑎]

5: if 𝑎 ∈ R then

6: 𝑊 ← G .E ∩ Wloc(𝑎)
7: let {𝑤0} ⊎𝑤𝑠 =𝑊

8: G ← SetRF(G,𝑤0, 𝑎)

9: 𝐴𝑠 ←
{
SetRF(G,𝑤, 𝑎) | 𝑤 ∈ 𝑤𝑠

}

10: Γ ← push(Γ, 𝐴𝑠)

11: if 𝑎 ∈ W then CalcRevisits(G, Γ, 𝑎)

Algorithm 3 Exploration of recovery routine

1: procedure RunRecovery(PR,G, Γ)
2: while cons(G) ∧ 𝑎 ← nextPR

(G) do

3: if 𝑎 ∈ error then exit(łerrorž)

4: G .E← G .E++[𝑎]

5: assert(𝑎 ∈ DR)
6: 𝑊 ← G .E ∩ Wloc(𝑎)
7: let {𝑤0} ⊎𝑤𝑠 =𝑊

8: G ← SetRF(G,𝑤0, 𝑎)

9: 𝐴𝑠 ←
{
SetRF(G,𝑤, 𝑎) | 𝑤 ∈ 𝑤𝑠

}

10: Γ ← push(Γ, 𝐴𝑠)

If 𝑎 is a read event, then the rf component of G must be accordingly extended for 𝑎. To this end,
the set of all possible reads-from options for 𝑎 (i.e., all write events in G on the same location) are
computed in𝑊 (Line 6) and one write𝑤0 is picked from𝑊 (Line 7) as the rf option for 𝑎 (Line 8).
Moreover, for each remaining write option in𝑤𝑠 , an alternative execution is constructed with the
corresponding rf edge (Line 9) and added to Γ as an alternative future exploration (Line 10).

If 𝑎 is a write event, then it may constitute an alternative reads-from option for existing reads in
G on the same location, thus inducing additional alternative explorations. This is computed by the
CalcRevisits function (Line 11) which extends Γ with such alternative explorations. We omit the
details of CalcRevisits and refer the reader to Kokologiannakis et al. [2019] for more details.

PerSeVerE. As discussed in ğ4.1, PerSeVerE determines the post-crash states of a program P

via a recovery observer program PR that is run in parallel with P. As such, after generating one
execution G of P through VisitOne, PerSeVerE extends G to a full execution of P| |PR by calling
RunRecovery on Line 5 of Verify, where PR denotes the recovery observer program.
The RunRecovery algorithm (Algorithm 3) is very similar to VisitOne: it extends the current

execution G with the events of PR towards a full execution, and extends the environment with
alternative explorations en route. Similarly, after each step RunRecovery ensures that the instru-
mented execution is consistent according to Def. 4.2, written cons(G), thereby checking both the
M-consistency axioms and the rec persistency axiom. That is, the consistency check used is that
of instrumented executions which encodes checking persistency as a single axiom rec.
In contrast to events added by VisitOne, all events added by RunRecovery are disk reads (cf.

REC of Def. 4.1). As explained in ğ4.1, this is ensured by having the recovery observer program
issue pread calls that read the file size with a disk read instead of a memory read. Therefore, unlike
VisitOne, RunRecovery never calls CalcRevisits.

In effect, the key idea behind PerSeVerE lies in how it explores the possible post-crash disk
states through a recovery observer. This encodes checking the persistency of an execution as
checking its consistency instead (on Line 2), which in turn enables us to use existing effective DPOR
techniques (e.g., GenMC). In particular, checking the consistency of an instrumented execution
(Def. 4.2) amounts to checking itsM-consistency which is standard, and checking its persistency
as encoded by the single axiom rec, which is similar in form to existingM-consistency axioms.

4.3 PerSeVerE: An Example

We next describe how PerSeVerE works through an example.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:21

[init]

open
{

[init]

open

DW(𝑒𝑥 [0], ‘1’)

{

[init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

{

[init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

Fig. 9. Exploration of the main program for rec-ww+rr.

Consider the program below manipulating the łex.txtž file which comprises multiple blocks of
the ‘0’ character on disk:

𝑑f = open (łex.txtž);
pwrite (𝑑f , ‘1’, 0);
pwrite (𝑑f , ‘2’, 𝑏);
close (𝑑f);

E

𝑑f ′ = open (łex.txtž);
𝑐1 = pread (𝑑f ′, 1, 𝑏);

𝑐2 = pread (𝑑f ′, 1, 0);

close (𝑑f ′);

assert(¬(𝑐1 = ‘2’ ∧ 𝑐2 = ‘0’));

(rec-ww+rr)

Let 𝑏 denote the starting offset of the file’s second block. As before, the code to the right of E
denotes the recovery observer, inquiring whether it is possible upon recovery to see the second
write but not the first; i.e., 𝑐1 = ‘2’ ∧ 𝑐2 = ‘0’. As discussed in ğ2.4.1, this is indeed possible; we
next show how PerSeVerE generates all possible outcomes of rec-ww+rr including one where
𝑐1 = ‘2’ ∧ 𝑐2 = ‘0’.

Let P denote the original program (to the left of E). Starting from the main exploration algorithm
(Algorithm 1), PerSeVerE generates a full execution of P by calling VisitOne (Line 4) which adds
the P events one at a time, as depicted in Fig. 9, where→ denote po edges. For brevity, we omit
the events of open/close and the lock/unlock events of pwrite (as there is only one thread in P). In
addition, note that both pwrite calls leave the file size unchanged as they are overwrites; we thus
omit the read event reading the in-memory file size and represent each pwrite with a disk write.

Observe that none of the events have an alternative option and thus no exploration is added to Γ

(Line 10, Algorithm 2), and no revisiting is performed (Line 11, Algorithm 2). Moreover, there is no
pb edge between the two DW events as they write to different disk blocks.

Continuing from Line 5 of Algorithm 1, PerSeVerE adds the recovery observer events as shown
in Fig. 10 (top), where denote rf edges. When the DR(𝑒𝑥 [𝑏]) event of 𝑐1 = pread (𝑑f ′, 1, 𝑏) is
added, it can read two different values: ‘2’ written by P or the initial data at 𝑏. PerSeVerE explores
both options, leading to executions 2 and 3 , respectively. However, these executions are not both
generated and stored in memory simultaneously. As described in ğ4.2, PerSeVerE continues with
one option (Algorithm 2, Line 8) and extends it to a full execution, and pushes the other option to
the environment (Algorithm 2, Line 10), and backtracks to it at a later time for further exploration.
Let us assume that PerSeVerE continues with 2 . PerSeVerE next adds the DR event corre-

sponding to 𝑐2 = pread (𝑑f ′, 1, 0), which can similarly read from two values: value ‘1’ written by P

or the initial value on disk. As before, PerSeVerE explores both options, leading to executions 21

and 22 depicted in Fig. 10 (middle). Assuming that PerSeVerE continues with 21 and that 22 is
pushed to the environment, PerSeVerE finally adds the close events (not depicted), at which point
the resulting execution is complete, thus concluding the first exploration.
PerSeVerE next explores an alternative execution (Algorithm 1, Line 6). As is standard with

DPOR techniques, PerSeVerE explores alternative executions in DFS-style, i.e., it considers the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:22 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

1 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

{




2 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])

3 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])





2 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏]) {





21 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])

DR(𝑒𝑥 [0])

22 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])

DR(𝑒𝑥 [0])





3 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏]) {





31 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])

DR(𝑒𝑥 [0])

32 [init]

open

DW(𝑒𝑥 [0], ‘1’)

DW(𝑒𝑥 [𝑏], ‘2’)

close

open

DR(𝑒𝑥 [𝑏])

DR(𝑒𝑥 [0])





Fig. 10. Exploration of the rec-ww+rr recovery observer: step 1 (top), step 2 (middle) and step 3 (bottom)

latest alternative. As such, it next backtracks to 22 to explore it further. Once again, after adding
the close events, the resulting execution is complete, thus concluding the second exploration.

Finally, since there are no more alternative reads-from options for DR(𝑒𝑥 [0]), PerSeVerE back-
tracks to execution 3 as shown in Fig. 10 (bottom), and explores it further in a similar manner to

the exploration starting from 2 : the exploration will continue with either one of 31 and 32 , and
eventually backtrack to the unexplored option, thus concluding the third and fourth explorations.

We conclude with an observation. Because of the absence of pb edges in execution 1 , the reads-
from options of the recovery observer of rec-ww+rr are unrestricted, and so four executions were
generated. This would be different if the two writes of P were to the same block (i.e., if 𝑏 pointed
to a disk location in the first block), as there would be a pb edge between the two writes because

of pb-block. Specifically, execution 22 where DR(𝑒𝑥 [0]) reads ‘0’ would be deemed inconsistent
as it would create an edge in [REC]; rb; pb; rf; [REC], thus violating rec. Intuitively, since blocks
are written linearly (see ğ2.4.1), writes to the same block are guaranteed to persist in order. So,
if the recovery thread observes a disk write to a certain block, it must also observe all previous,
smaller-offset writes to the same block.

5 EVALUATION

Implementation. We develop PerSeVerE on top of GenMC [Kokologiannakis et al. 2019], a
publicly available SMC tool for concurrent C programs. GenMC employs an effective DPOR
algorithm, and can verify programs under both RC11 [Lahav et al. 2017] and IMM [Podkopaev
et al. 2019] memory models. We build PerSeVerE by extending GenMC with the numerous I/O
system calls; this requires significant engineering effort. PerSeVerE can thus check the consistency
of programs that use I/O calls under both RC11 and IMM, without checking persistency.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:23

Table 1. Sequential benchmarks used to evaluate PerSeVerE

P-Total P-Partial PerSeVerE

Execs Time Execs Time Execs Time

pjnl-app-mfl � � 15 57.39 9 0.02

pjnl-crowr-ord 1323 7.84 18 0.04 6 0.02

pjnl-owr-at 36 0.03 5 0.02 5 0.02

pord-owr-N � � 243 308.26 2 0.02

pord-app-mbl 12 0.03 5 0.03 3 0.02

pord-app-sfl 900 1.90 13 0.03 3 0.02

pord-MP+fsync 8724 496.63 3 0.03 3 0.02

pord-trapp-dfl-ord 4044 47.22 5 0.03 3 0.02

pord-crapp-ooo 810 1.38 21 0.03 3 0.02

P-Total P-Partial PerSeVerE

Execs Time Execs Time Execs Time

pord-MP+osync 8724 596.20 3 0.03 3 0.02

pord-owrapp-ord 450 0.39 10 0.03 4 0.02

pord-owrapp-ord2 3780 26.69 21 0.03 5 0.02

pord-owr-sbl 592 0.26 25 0.02 6 0.02

pord-rnm-at2 696 0.14 9 0.06 5 0.02

pord-rnmtrapp-ord 3240 5.87 18 0.05 6 0.02

pord-app-N � � � � 5 0.03

nano-backup-old � � � � 46 0.08

nano-backup-fix � � � � 10 0.04

PerSeVerE also supports persistency and can be configured to fine-tune the ext4 behaviour.
Specifically, (1) the block size can be tuned as desired; (2) all journallingmodes of ext4 are supported;
and (3) under data=ordered, the user can decide whether delayed allocation is enabled (ğ2.4.1).

Methodology. We evaluate PerSeVerE in two ways. First, we run PerSeVerE on various litmus
tests to show the scalability of our approach (ğ 5.1). As a baseline, we implement two DPOR
algorithms for persistency: (1) P-Total, that checks all prefixes of all total extensions of pb, and
(2) P-Partial, that uses a partial p-ordering for pb that does not take into account which locations
are read upon recovery, as in ğ3.3. We show that PerSeVerE (using the approach in ğ4.1) explores
exponentially fewer executions than both approaches, and is thus exponentially faster.
Second, we study the persistency guarantees of several text editors (ğ 5.2). The purpose of

this study is twofold: (1) show that ensuring correct persistency is difficult as outlined in ğ1;
and (2) show how PerSeVerE can help developers when designing algorithms that interact with
persistent storage. As a result of this study, we found and confirmed bugs in commonly-used editors
such as nano [GNU Nano 2019], vim [Vim 2019] and emacs [GNU Emacs 2019] using both stress
testing and PerSeVerE. We reported these bugs to the developers and proposed fixes that are now
merged [Kokologiannakis 2020]. We validated our fixes using stress testing and PerSeVerE.

Experimental Setup. We ran all tests on a Dell PowerEdge M620 blade system with two Intel
Xeon E5-2667 v2 CPUs (8 cores @3.3 GHz) and 256GB of RAM, running a custom Debian-based
distribution. We used LLVM-7 for GenMC, and ran the tool under RC11. All reported times are in
seconds. We set the timeout limit to twenty minutes.

5.1 Litmus Tests

To evaluate PerSeVerE against the baseline implementations, we use both synthetic benchmarks
as well as benchmarks extracted from the code of the editors in ğ5.2. Our evaluation is split into
two parts: a comparison on sequential benchmarks (cf. Table 1) and a comparison on concurrent
benchmarks (cf. Table 2).

Sequential Benchmarks. Our results for sequential benchmarks are summarized in Table 1. We
note that all these benchmarks are simple litmus tests, with the exceptions of nano-backup-old and
nano-backup-fix, which are extracted directly from nano’s code base, and verify the persistency
guarantees of nano’s backup procedure (∼900LoC). However, as we discuss below, these simple
litmus tests provide us with a good intuition on how the different approaches scale.
We highlight two main points about the results of Table 1. First, PerSeVerE and P-Partial

explore exponentially fewer executions than P-Total, which unsurprisingly results in a runtime
difference: it takes PerSeVerE less than a second to run all tests of Table 1, while it takes P-Total
anywhere from less than a second to a few hours to run a single test. This is expected since
PerSeVerE and P-Partial both employ a partial p-ordering for pb. Additionally, PerSeVerE

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:24 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Table 2. Concurrent benchmarks used to evaluate PerSeVerE

P-Total P-Partial PerSeVerE

Execs Time Execs Time Execs Time

pord-wr+rdwr+fsync � � 206 0.30 6 0.03

pord-wr+wr-N � � � � 6240 2.13

pord-wr+wr-N-RR � � � � 17 0.72

pord-wr+wr-N-unord � � � � 22 680 27.74

P-Total P-Partial PerSeVerE

Execs Time Execs Time Execs Time

pord-wr+wr-N-join-main � � � � 216 1.19

pord-wr+wr-N-join-thr � � � � 2052 37.00

pord-rd-wr+wr-N-cont � � � � 12 888 61.99

pord-rd-wr+wr-N-join � � � � 216 3.76

depends solely on the recovery observer, namely the number of recovery reads and their locations,
and thus always explores fewer executions than the baseline approaches.

Second, P-Partial performs similarly to PerSeVerE in terms of executions for most benchmarks.
This is due to the nature of the benchmarks: most benchmarks in Table 1manipulate a part of a single
file and the recovery observer checks whether these changes persist. In these cases, PerSeVerE
does not gain much in terms of executions over P-Partial, since the recovery observer reads
from most disk locations. However, when more than one file is manipulated (e.g., pjnl-app-mfl,
nano-backup-fix), PerSeVerE greatly outperforms P-Partial. In the case of pjnl-app-mfl, even
though the two implementations explore a similar number of executions, PerSeVerE is much faster
as it does not calculate all valid p-snapshots of pb (O(2𝑁)), but rather checks for instrumented
consistency on-the-fly, as it runs the recovery observer.

Concurrent Benchmarks. Our results for concurrent benchmarks are summarized in Table 2. With
the exception of pord-wr+rdwr+fsync, these benchmarks aim to model realistic workloads where
many worker threads are used to concurrently process one or more files. Thus, in addition to
the persistency properties checked, these benchmarks also exercise the consistency aspect of our
semantics, and therefore all tools have to deal with a significantly larger state space.
The observations here are similar to the ones for Table 1. More specifically, only PerSeVerE

manages to terminate within the time limit for all of the benchmarks, as the state space quickly
becomes intractable for P-Total and P-Partial. This is expected as all these benchmarks, in addition
to the main and the recovery threads, involve 3 to 4 worker threads manipulating shared resources
and files. The only benchmark in which one of the baseline implementations (P-Partial) manages
to terminate within the time limit is pord-wr+rdwr+fsync, which is a simple message-passing
litmus test. Even for pord-wr+rdwr+fsync, however, P-Total times out, since it has to calculate
all total extensions of pb, a calculation that becomes extremely expensive when multiple files are
involved, even for simple benchmarks.

5.2 Text Editors

In this study we focus on emacs [GNU Emacs 2019], vim [Vim 2019], nano [GNU Nano 2019], and
joe [JOE 2018]. We chose emacs and vim as they are ubiquitous, and nano and joe because they
are commonly available, and often used for editing files over ssh. As we describe shortly, these
editors are not crash-safe under all circumstances.

Arguably, the most crucial functionality of editors lies in saving files. When a user edits a buffer,
regardless of whether it originates from an existing file, the contents of the buffer reside in memory.
Thus, saving the buffer contents is absolutely critical, especially when editing existing files, since
saving the buffer implies the p-atomic replacement of an existing file (or, at least, the intent of doing
so). We next describe the behaviour of the editors in our study when saving a buffer.

𝑑f = open (łf.txtž, O_WRONLY|O_CREAT|O_TRUNC);

write (𝑑f , BUF);

close (𝑑f);

Fig. 11. (editor-save-procedure)

nano and joe. The procedure followed by
nano and joe when saving an open buffer BUF
as łf.txtž is shown in Fig. 11: łf.txtž is first
truncated (if it exists), and then the contents of

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:25

BUF are written with one write system call. Surprisingly, however, there is no call to fsync after
write: the editor may claim that the file is saved and even exit (when the user exits after saving)
without the data persisted to disk. This is misleading from the point of view of users, who naturally
expect that saving a file implies persistency.
One then may wonder why the absence of fsync does not lead to frequent data loss in such

editors, especially given that writes happen asynchronously (ğ2.3). The reason is that this writing
pattern, known as łreplace-via-truncatež, is one of the heuristics (ğ2.4.2) that is detected by ext4

and remedied by flushing the data. Specifically, if (1) a file f is truncated (2) data is written to f and
(3) f is subsequently closed, then ext4 allocates and flushes all data written in step 2 after step 3.
However, there is a caveat: the flushing described above is not synchronous: close does not wait

for the data to be flushed before returning. This then allows a race window where it is possible to
see the truncated file without seeing the data that is subsequently written to it. This can happen, e.g.,
if the transaction containing the truncation commits before the data is flushed, and a crash occurs
after the commit but before the flush. Moreover, this flushing does not extend to the disk’s cache
(as it is very expensive); as such, a similar race could occur even if the flush were synchronous.

Such a race, although rare, is definitely possible. We managed to reproduce it systematically with
both litmus tests and PerSeVerE, and showed that data loss is possible in nano or joe under ext4.

Of course, data loss could occur even if fsync were used, since a crash could occur during fsync.
There are, however, two observations to note. First, users commonly expect a file to be safely
persisted to disk once the editor reports it as łsavedž. If a crash occurs during an fsync, i.e., while
saving, data will be lost, but the user would expect this as saving is incomplete. Having an editor
exiting gracefully, only to learn later that the file is corrupted is counter-intuitive, to say the least.

Second, to avoid data loss in such cases where crashes occur while saving, editors should make
temporary data backups. We thus investigated the backup strategy of nano and joe, and found
them both to be buggy, in that they are insufficient to prevent data loss. Indeed, nano does not even
create backups by default, unless the -B option is used when editing a file.

𝑑f = open (łf.txtž, O_RDONLY);

𝑑𝑏 = open (łf.txt∼ž, O_WRONLY|O_CREAT|O_TRUNC);

𝑏 = read (𝑑f);write (𝑑𝑏 , 𝑏);

close (𝑑𝑏); close (𝑑f);

Fig. 12. (unsafe-backup-strategy)

For both editors, the problem lies in how
they create and save the backup. As shown in
Fig. 12, they read the contents of the original
file (łf.txtž) and write them to a backup file
(łf.txt∼ž), which is truncated if it exists.

However, this backup strategy has the very
problem suffered by the save procedure: it follows łreplace-via-truncatež which does not guarantee
that data persists once a file is closed. Once again, without fsync the backup may not be safely
persisted to disk before the save procedure starts. It is therefore possible to obtain a corrupted file
and a corrupted backup. We have validated this behaviour using both litmus tests and PerSeVerE.
This backup procedure can be made crash-safe by adding an fsync after write. As such, if a crash
occurs while saving the original file, the backup copy would be available on disk. We reported
these bugs to the developers, and proposed fixes that are now merged [Kokologiannakis 2020].

emacs and vim. The save procedures of emacs and vim are as in Fig. 11 with an fsync after write,
ensuring that file data has safely persisted to disk once the save is complete. Moreover, they use a
different backup strategy that, for most cases, does not suffer from the problems discussed above.
Specifically, when a file is first modified in a session, emacs typically creates a backup as follows:

rename (łf.txtž, łf.txt∼ž);

vim follows a similar strategy and we omit it for brevity. The above procedure with a simple rename

call is crash-safe under ext4. More concretely, if a crash occurs before the rename commits, then

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

43:26 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

the original file will be intact. As the file truncation from save is c-ordered after rename (i.e., the
backup), it will also be p-ordered after it (pb-dirops, ğ3.2). Therefore, even if a crash occurs during
fsync leading to a truncated file, the backup will have persisted, thus avoiding data loss.
In certain cases, however, emacs follows a different backup strategy than the one mentioned

above. One such case is when the original file has incoming hard links, in which case renaming the
original file would undesirably direct the hard links to the backup’s name. As such, emacs copies
the original file instead, with a procedure similar to that of nano in Fig. 12. In particular, as the
emacs backup strategy in such cases does not use fsync, it is not crash-safe as discussed above.

We note that the editors in our study are old, and the problems discussed would not be observed
with older filesystems such as ext2 and ext3. Nevertheless, not observing such bugs does not make
these editors crash-safe, especially since neither ext2/ext3 nor POSIX ever offered any guarantees
of files persisting without the explicit use of fsync. Our study thus underlines the need for formal
semantics and tools that can help developers correctly implement applications handing user data.

6 RELATED AND FUTURE WORK

Formal specification and verification of filesystems is an active research area (e.g., [H. Chen et al.
2015; Joshi et al. 2007; Kang et al. 2008; Keller et al. 2013; Ridge et al. 2015; Schellhorn et al. 2014;
Sigurbjarnarson et al. 2016]). To our knowledge, PerSeVerE is the first project that encompasses
both consistency and persistency guarantees in one (axiomatic) framework, presenting the first
DPOR extension that can check persistency violations.
Several tools have been successful in finding persistency bugs in applications under different

filesystems (e.g., [Cui et al. 2013; Mohan et al. 2018; Pillai et al. 2014; Rubio-González et al. 2009;
Yang et al. 2006; Zheng et al. 2014]). The models used by these tools are products of empirical
studies and thorough testing. Unfortunately, however, they do not come with formal semantics. On
the other hand, such tools can be usually used under many different filesystems.

A notable exception to the above (and most closely related to our work) is the work of Bornholt
et al. [2016], providing a framework for specifying and synthesizing the persistency semantics of
different filesystems, as well as the Ferrite tool which exhaustively enumerates the persistency
behaviours of litmus tests against the models of different filesystems. In contrast to PerSeVerE, Fer-
rite leverages SMT techniques to execute litmus tests symbolically against filesystem specifications,
and may explore all prefixes of a given pb relation to check whether a given safety property holds.
Moreover, Ferrite does not model the consistency guarantees of different filesystems, and only
focuses on persistency. Among the filesystems they model is ext4, but their model is not precise
and it is not clear which aspects of ext4 are covered, e.g., data=writeback or data=ordered.

Finally, Raad et al. [2019a,b] use axiomatic semantics to model persistency guarantees of NVM.
We believe that PerSeVerE can be extended to verify the persistency guarantees of NVM programs.

Apart from NVM, we plan to extend our work in several directions in the future. First, we
will formalize the semantics of other filesystems such as zfs [Bonwick 2005] or btrfs [Rodeh
et al. 2013], and compare them with ext4. Second, we will formalize the consistency semantics
of pathname lookup in recent kernels, and study how it affects the ext4 consistency/persistency
guarantees. Finally, we will use PerSeVerE to verify the implementations of various applications
(e.g., databases), and check if they provide sufficient consistency and persistency guarantees.

ACKNOWLEDGMENTS

We thank Luc Maranget and the POPL 2021 reviewers for their valuable feedback. Ilya Kaysin was
supported by RFBR (grant number 18-01-00380). Azalea Raad was supported in part by a European
Research Council (ERC) Consolidator Grant for the project łRustBeltž, under the European Union
Horizon 2020 Framework Programme (grant agreement number 683289).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

PerSeVerE: Persistency Semantics for Verification under Ext4 43:27

REFERENCES

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas (2014). łOptimal dynamic partial order reduction.ž

In: POPL 2014. New York, NY, USA: ACM, pp. 373ś384. doi: 10.1145/2535838.2535845.

Advanced Format (2020). url: https://en.wikipedia.org/wiki/Advanced_Format (visited on May 20, 2020).

Jade Alglave, Luc Maranget, and Michael Tautschnig (July 2014). łHerding Cats: Modelling, Simulation, Testing, and Data

Mining for Weak Memory.ž In: ACM Trans. Program. Lang. Syst. 36.2, 7:1ś7:74. doi: 10.1145/2627752.

Jeff Bonwick (Oct. 2005). ZFS: The Last Word in Filesystems. Library Catalog: blogs.oracle.com. url: https://blogs.oracle.com/

bonwick/zfs%3A-the-last-word-in-filesystems (visited on June 17, 2020).

James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang (2016). łSpecifying and

Checking File System Crash-Consistency Models.ž In: ASPLOS 2016 44.2, pp. 83ś98. doi: 10.1145/2980024.2872406.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich (2015). łUsing Crash

Hoare logic for certifying the FSCQ file system.ž In: SOSP 2015. the 25th Symposium. Monterey, California: ACM Press,

pp. 18ś37. doi: 10.1145/2815400.2815402.

Ran Chen, Martin Clochard, and Claude Marché (2016). łA Formal Proof of a Unix Path Resolution Algorithm.ž In: HAL

hal-01406848. url: https://hal.inria.fr/hal-01406848/document (visited on Nov. 16, 2020).

Copy-on-write (2020). url: https://en.wikipedia.org/wiki/Copy-on-write (visited on May 20, 2020).

Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang (2013). łVerifying Systems Rules Using Rule-Directed Symbolic

Execution.ž In: ASPLOS 2013. Houston, Texas, USA: ACM, pp. 329ś342. doi: 10.1145/2451116.2451152.

GNU Emacs (2019). GNU Emacs: An extensible, customizable, free/libre text editor Ð and more. url: https://www.gnu.org/

software/emacs/ (visited on June 15, 2020).

ext4 benchmarks (2012). EXT4 File-System Tuning Benchmarks. url: https://www.phoronix.com/scan.php?page=article&

item=ext4_linux35_tuning&num=1 (visited on May 20, 2020).

Ext4 data loss (2009). url: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781 (visited on May 20, 2020).

ext4 Linux kernel (2020). ext4 Data Structures and Algorithms. url: https://www.kernel.org/doc/html/latest/filesystems/ext4/

index.html (visited on May 20, 2020).

ext4 corruption (2015). ext4: Filesystem corruption on panic. url: https://bugs.chromium.org/p/chromium/issues/detail?id=

502898 (visited on May 20, 2020).

Michalis Kokologiannakis (July 2020). files: improve the backup procedure to ensure no data is lost. url: https://git.savannah.

gnu.org/cgit/nano.git/commit/?id=a84cdaaa50a804a8b872f6d468412dadf105b3c5 (visited on July 9, 2020).

Cormac Flanagan and Patrice Godefroid (2005). łDynamic partial-order reduction for model checking software.ž In: POPL

2005. New York, NY, USA: ACM, pp. 110ś121. doi: 10.1145/1040305.1040315.

Patrice Godefroid (1997). łModel Checking for Programming Languages using VeriSoft.ž In: POPL 1997. Paris, France: ACM,

pp. 174ś186. doi: 10.1145/263699.263717.

Patrice Godefroid (Mar. 2005). łSoftware Model Checking: The VeriSoft Approach.ž In: Form. Meth. Syst. Des. 26.2, pp. 77ś101.

doi: 10.1007/s10703-005-1489-x.

JOE (2018). JOE - Joe’s Own Editor. url: https://joe-editor.sourceforge.io (visited on June 15, 2020).

Rajeev Joshi and Gerard Holzmann (June 11, 2007). łA Mini Challenge: Build a Verifiable Filesystem.ž In: Formal Asp. Comput.

19, pp. 269ś272. doi: 10.1007/s00165-006-0022-3.

Eunsuk Kang and Daniel Jackson (2008). łFormal Modeling and Analysis of a Flash Filesystem in Alloy.ž In: ABZ 2008.

Ed. by Egon Börger, Michael Butler, Jonathan P. Bowen, and Paul Boca. Vol. 5238. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 294ś308. doi: 10.1007/978-3-540-87603-8_23.

Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor, Zilin Chen, Leonid Ryzhyk, Gerwin Klein, and Gernot Heiser

(2013). łFile systems deserve verification too!ž In: PLOS 2013. Farmington, Pennsylvania: ACM Press, pp. 1ś7. doi:

10.1145/2525528.2525530.

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis (Jan. 2021). łPerSeVerE: Persistency Semantics for

Verification under Ext4 (Supplementary Material).ž In: url: https://plv.mpi-sws.org/persevere.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis (2019). łModel Checking for Weakly Consistent Libraries.ž In:

PLDI 2019. New York, NY, USA: ACM. doi: 10.1145/3314221.3314609.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer (2017). łRepairing Sequential Consistency in

C/C++11.ž In: PLDI 2017. Barcelona, Spain: ACM, pp. 618ś632. doi: 10.1145/3062341.3062352.

Linux man pages (2020). url: http://www.man7.org/linux/man-pages/index.html (visited on May 20, 2020).

Richard Gooch (1999). Overview of the Linux Virtual File System. url: https://www.kernel.org/doc/html/latest/filesystems/

vfs.html (visited on May 20, 2020).

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidambaram (2018). łFinding Crash-

Consistency Bugs with Bounded Black-Box Crash Testing.ž In: OSDI 2018. Carlsbad, CA, USA: USENIX Association,

pp. 33ś50. url: https://www.usenix.org/system/files/osdi18-mohan.pdf (visited on Nov. 16, 2020).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

https://doi.org/10.1145/2535838.2535845
https://en.wikipedia.org/wiki/Advanced_Format
https://doi.org/10.1145/2627752
https://blogs.oracle.com/bonwick/zfs%3A-the-last-word-in-filesystems
https://blogs.oracle.com/bonwick/zfs%3A-the-last-word-in-filesystems
https://doi.org/10.1145/2980024.2872406
https://doi.org/10.1145/2815400.2815402
https://hal.inria.fr/hal-01406848/document
https://en.wikipedia.org/wiki/Copy-on-write
https://doi.org/10.1145/2451116.2451152
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.phoronix.com/scan.php?page=article&item=ext4_linux35_tuning&num=1
https://www.phoronix.com/scan.php?page=article&item=ext4_linux35_tuning&num=1
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://bugs.chromium.org/p/chromium/issues/detail?id=502898
https://bugs.chromium.org/p/chromium/issues/detail?id=502898
https://git.savannah.gnu.org/cgit/nano.git/commit/?id=a84cdaaa50a804a8b872f6d468412dadf105b3c5
https://git.savannah.gnu.org/cgit/nano.git/commit/?id=a84cdaaa50a804a8b872f6d468412dadf105b3c5
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/s10703-005-1489-x
https://joe-editor.sourceforge.io
https://doi.org/10.1007/s00165-006-0022-3
https://doi.org/10.1007/978-3-540-87603-8_23
https://doi.org/10.1145/2525528.2525530
https://plv.mpi-sws.org/persevere
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3062341.3062352
http://www.man7.org/linux/man-pages/index.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.usenix.org/system/files/osdi18-mohan.pdf

43:28 Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu

(2008). łFinding and Reproducing Heisenbugs in Concurrent Programs.ž In: OSDI 2008. USENIX Association, pp. 267ś280.

url: https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf (visited on Nov. 16, 2020).

GNU Nano (2019). The GNU Nano homepage. url: https://nano-editor.org (visited on June 15, 2020).

Gian Ntzik and Philippa Gardner (Oct. 23, 2015). łReasoning about the POSIX file system: local update and global pathnames.ž

In: OOPSLA 2015. Pittsburgh, PA, USA: Association for Computing Machinery, pp. 201ś220. doi: 10.1145/2814270.2814306.

Daejun Park and Dongkun Shin (2017). łiJournaling: Fine-Grained Journaling for Improving the Latency of Fsync System

Call.ž In: pp. 787ś798. url: https://www.usenix.org/conference/atc17/technical-sessions/presentation/park.

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau (Oct. 27, 2017). łApplication Crash Consistency and Performance with CCFS.ž In: ACM

Trans. Storage 13.3, pp. 1ś29. doi: 10.1145/3119897.

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau (Oct. 2014). łAll File Systems Are Not Created Equal: On the Complexity

of Crafting Crash-Consistent Applications.ž In: OSDI 2014. Broomfield, CO: USENIX Association, pp. 433ś448. url:

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai.

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis (Jan. 2019). łBridging the Gap Between Programming Languages and

Hardware Weak Memory Models.ž In: Proc. ACM Program. Lang. 3.POPL, 69:1ś69:31. doi: 10.1145/3290382.

POSIX (2018). The Open Group Base Specifications Issue 7. url: https://pubs.opengroup.org/onlinepubs/9699919799/ (visited

on May 20, 2020).

Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau (2005). łAnalysis and Evolution of Journaling

File Systems.ž In: p. 16. url: https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/prabhakaran/

prabhakaran.pdf.

Azalea Raad and Viktor Vafeiadis (Oct. 2018). łPersistence Semantics for Weak Memory: Integrating Epoch Persistency with

the TSO Memory Model.ž In: Proc. ACM Program. Lang. 2.OOPSLA. doi: 10.1145/3276507.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis (Dec. 20, 2019a). łPersistency semantics of the Intel-x86

architecture.ž In: Proc. ACM Program. Lang. 4 (POPL), 11:1ś11:31. doi: 10.1145/3371079.

Azalea Raad, John Wickerson, and Viktor Vafeiadis (Oct. 10, 2019b). łWeak Persistency Semantics from the Ground Up.ž In:

Proc. ACM Program. Lang. 3 (OOPSLA), 135:1ś135:27. doi: 10.1145/3360561.

renameio (2020). url: https://github.com/google/renameio (visited on May 20, 2020).

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and Peter Sewell (2015). łSibylFS: formal

specification and oracle-based testing for POSIX and real-world file systems.ž In: SOSP 2015. Monterey, California: ACM

Press, pp. 38ś53. doi: 10.1145/2815400.2815411.

Ohad Rodeh, Josef Bacik, and Chris Mason (Aug. 1, 2013). łBTRFS: The Linux B-Tree Filesystem.ž In: ACM Trans. Storage 9.3,

9:1ś9:32. doi: 10.1145/2501620.2501623.

Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau (June 15,

2009). łError propagation analysis for file systems.ž In: SIGPLAN Not. 44.6, pp. 270ś280. doi: 10.1145/1543135.1542506.

Gerhard Schellhorn, Gidon Ernst, Jörg Pfähler, Dominik Haneberg, and Wolfgang Reif (2014). łDevelopment of a Verified

Flash File System.ž In: ABZ 2014. Vol. 8477. Berlin, Heidelberg, pp. 9ś24. doi: 10.1007/978-3-662-43652-3_2.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang (2016). łPush-Button Verification of File Systems via

Crash Refinement.ž In: OSDI 2016. Savannah, GA, USA: USENIX Association, pp. 1ś16. url: https://www.usenix.org/

system/files/conference/osdi16/osdi16-sigurbjarnarson.pdf.

Seongbae Son, Jinsoo Yoo, and Youjip Won (2017). łGuaranteeing the Metadata Update Atomicity in EXT4 File system.ž In:

APSys 2017, pp. 1ś8. doi: 10.1145/3124680.3124722.

SQLite (2020). url: https://sqlite.org/index.html (visited on May 20, 2020).

Atomic Commit In SQLite (2020). url: https://sqlite.org/atomiccommit.html (visited on May 20, 2020).

Adam Sweeney (1996). łScalability in the XFS file system.ž In: USENIX ATC 1996, pp. 1ś14. url: https://www.usenix.org/

legacy/publications/library/proceedings/sd96/sweeney.html.

Theodore Y Ts’o and Stephen Tweedie (2002). łPlanned Extensions to the Linux Ext2/Ext3 Filesystem.ž In: pp. 235ś243. url:

http://www.usenix.org/publications/library/proceedings/usenix02/tech/freenix/tso.html.

Stephen C Tweedie (1998). łJournaling the Linux ext2fs Filesystem.ž In: LinuxExpo 1998. url: http://e2fsprogs.sourceforge.

net/journal-design.pdf (visited on Nov. 16, 2020).

Vim (2019). Vim - the ubiquitous text editor. url: https://vim.org (visited on June 15, 2020).

Junfeng Yang, Can Sar, and Dawson Engler (Nov. 6, 2006). łEXPLODE: a lightweight, general system for finding serious

storage system errors.ž In: OSDI 2006. Seattle, Washington: USENIX Association, pp. 131ś146. url: https://www.usenix.

org/legacy/event/osdi06/tech/full_papers/yang_junfeng/yang_junfeng.pdf (visited on June 17, 2020).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://nano-editor.org
https://doi.org/10.1145/2814270.2814306
https://www.usenix.org/conference/atc17/technical-sessions/presentation/park
https://doi.org/10.1145/3119897
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai
https://doi.org/10.1145/3290382
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/legacy/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://github.com/google/renameio
https://doi.org/10.1145/2815400.2815411
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/1543135.1542506
https://doi.org/10.1007/978-3-662-43652-3_2
https://www.usenix.org/system/files/conference/osdi16/osdi16-sigurbjarnarson.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-sigurbjarnarson.pdf
https://doi.org/10.1145/3124680.3124722
https://sqlite.org/index.html
https://sqlite.org/atomiccommit.html
https://www.usenix.org/legacy/publications/library/proceedings/sd96/sweeney.html
https://www.usenix.org/legacy/publications/library/proceedings/sd96/sweeney.html
http://www.usenix.org/publications/library/proceedings/usenix02/tech/freenix/tso.html
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
https://vim.org
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/yang_junfeng/yang_junfeng.pdf
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/yang_junfeng/yang_junfeng.pdf

PerSeVerE: Persistency Semantics for Verification under Ext4 43:29

Mai Zheng, Joseph Tucek, Dachuan Huang, Elizabeth S Yang, Bill W Zhao, Feng Qin, Mark Lillibridge, and Shashank Singh

(2014). łTorturing Databases for Fun and Profit.ž In: OSDI 2014. Broomfield, CO: USENIX Association, pp. 449ś464. url:

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-zheng_mai.pdf (visited on Nov. 16, 2020).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 43. Publication date: January 2021.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-zheng_mai.pdf

	Abstract
	1 Introduction
	2 The Semantics of ext4: an Intuitive Account
	2.1 File Operations
	2.2 The I/O Stack in Linux
	2.3 Consistency of File Operations
	2.4 Persistency of File Operations Under ext4
	2.5 Other Data Journalling Modes in ext4

	3 Formal Model
	3.1 Mapping System Calls to Events
	3.2 Executions
	3.3 Post-Crash Observable States

	4 PerSeVerE: Model Checking under Ext4
	4.1 Effective Model Checking for Persistency
	4.2 PerSeVerE: DPOR for Persistency
	4.3 PerSeVerE: An Example

	5 Evaluation
	5.1 Litmus Tests
	5.2 Text Editors

	6 Related and Future Work
	Acknowledgments

