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Abstract. Many macroalgal species potentially have distinctive spectral signatures detectable
using remote sensing. In order to map the spatial distribution of these species, their spectral
properties have to be quantified and statistical differences between species need to be assessed.
In the present study, we collected a spectral library of the key benthic macrophyte species in the
Baltic Sea area and presented the methodology that allows quantifying statistical differences
between their reflectance spectra. The results indicate that three broad groups of algae—
green, brown, and red algae—can be separated based on their optical signatures. In general,
the between-species differences are too small to allow easy recognition of benthic algae
based on their untransformed reflectance spectra. However, the distinctness of the studied spe-
cies and taxa improves if standardized reflectance values are used. The best indicative spectral
range was at 530 to 570 nm for the separation of species and of larger taxonomic units. © The
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1 Introduction

Marine macrophyte communities have high ecological and economic importance. They form
extensive habitats in near-coastal zones and are among the most productive habitats worldwide.
Consequently, they provide a range of ecological functions, such as protecting coastlines, sta-
bilizing sediments, attenuating waves, filtering land-derived nutrients, and binding carbon,
just to name a few. Nowadays, the patterns of species composition of marine macrophytes
are used to assess the state of coastal marine environments in sensu according to the EU
Water Framework Directive and the EU Marine Strategy Framework Directive. Although the
Marine Strategy Framework Directive require a seamless quantification of the cover of macro-
phyte beds over a range of seascapes, to date, the vast majority of studies have been performed on
limited spatial scales, i.e., the size of sampling units remained small and vast areas between
grains were left unstudied.1,2 Therefore, there is a strong need for methods that allow collecting
qualitative and quantitative information about these shallow-water benthic habitats over large
sea areas.

The use of remote sensing for improving ecological understanding, monitoring, and man-
aging of marine coastal areas has certain advantages: the method permits synoptic mapping of
large areas, allows mapping of inaccessible zones, and is often more cost-effective than conven-
tional methods, e.g., diving and grab sampling.3,4 Many macrophyte species potentially have
distinctive spectral signatures detectable using remote sensing. In order to map the spatial dis-
tribution of these species, their spectral properties have to be quantified.
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A basic assumption of mapping by remote sensing is that the features of interest in an image
reflect or emit light energy in different and often unique ways.5 Thus, only the spectrally different
features can be mapped. The spectral signatures of submerged benthic vegetation are principally
determined by their pigment composition. Earlier studies have demonstrated spectral dissimi-
larities between the three major groups of macroalgae—the green, brown, and red algae.6–9 All
these macroalgae contain chlorophyll a, but differ in the presence of other chlorophylls and
accessory pigments, such as carotenoids (carotenes, xanthophylls) and phycobilins (phycocya-
nin, phycoerythrin).10 Nevertheless, it is also plausible that within these broad taxonomic groups,
many macroalgal species have unique pigment combinations.

Spectral signatures are one of the most promising features of coastal aquatic systems that can
be exploited for both science and management applications of remote sensing.11–13 In such a
spectral library approach, remote sensing reflectance spectra (Rrs) of individual pixels in the
images are compared to measured/simulated Rrs spectra.12,14 Creating a modeled spectral library
requires measured values of bottom reflectance and data about inherent optical water proper-
ties.14 The advantages of spectral library approach are that there is no need of extensive
field surveys12 when the optical properties of benthic habitats are determined and possible vari-
ability in optical water properties can be estimated. There is no need to collect in situ data simul-
taneously at the time of image acquisition; it is easy to apply the methodology on data from
different sensors as the spectral library can be recalculated for spectral bands of each sensor.
There is also no need of depth data as the method resolves both depth and benthic habitat
type information simultaneously. However, high-quality atmospheric correction is required to
classify a remote sensing image using a modeled spectral library.

The spectral library approach requires a quantification of the range of signatures expected for
any species under natural conditions.14–17 In nature, however, there exists a considerable varia-
tion in pigment composition and quantity among broad taxonomic groups and even within spe-
cies. For example, the brown algae may range in color from beige to almost black.18 Such
differences may be related to species-specific character of pigment composition but also induced
by environmental factors, such as light, nutrients, and water flow.10 Moreover, the overall spec-
tral appearance of an alga cannot necessarily be inferred based only on the knowledge of the
pigments present. The morphology, thickness of thalli, and cellular architecture affect the rela-
tionship between pigment densities and absorption spectra19–21 and, consequently, affect the for-
mation of reflectance spectrum. At the other extreme, however, some authors have questioned
whether spectral signatures of individual plants are unique at all.15 This plethora of diversity
makes it very challenging to establish the typical ranges of reflectance spectra of macrophyte
species and assess significant differences among groups. To date, spectral signatures of the eco-
logical end-members have been published for some corals, macroalgae, and seagrasses.9,18,22,23–25

Nevertheless, these studies mainly concentrated on species growing in ocean waters. Moreover,
very few did account for the variability of spectral signal within and between species (e.g.,
Ref. 22). To assess a potential of remote sensing methods for monitoring macrophyte beds, how-
ever, ranges of spectral signal of macrophyte need to be quantified, and spectral regions that
consistently allow discrimination of species or taxa need to be defined.

The development of tools that allow distinguishing the reflectance spectra of different species
is often complicated by nonstandardness. Such variability largely degrades the performance of
any image processing tool. Standardizing may refer to many types of ratios, but usually this is
done by subtracting the mean of the particular spectrum from the raw reflectance values and
dividing by the standard deviation of the same raw reflectance values. Usually standardization
refers to a preprocessing step that aims to improve reflectance constancy by realigning intensity
distributions of images. However, a standardization algorithm can as well be applied for reflec-
tance spectra, i.e., instead of preprocessing pixels of images, reflectance values at different wave-
lengths are corrected by the properties of spectral signature over the whole spectral range.

Based on the above, the objectives of this study were (1) to quantify the spectral properties
and variability of the key benthic macrophyte species in the Baltic Sea area; (2) to demonstrate a
methodology that allows quantification of statistical differences between the reflectance spectra
of macrophyte species and broad taxa by utilizing both nonstandardized and standardized spec-
tra; and (3) to define which spectral regions contribute most to the observed statistical
differences.
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2 Material and Methods

2.1 Study Area

The Baltic Sea is an intracontinental shallow marine environment under a strong influence of
human activities and terrestrial material. Large discharge from rivers, limited exchange with
marine waters of the North Sea, and extensive shallow areas significantly influence the optical
properties of the Baltic Sea.26

The Baltic Sea hosts all three main groups of macroalgae (green, brown, and red macroalgae)
as well as higher plants. In this study, an array of macroalgae and higher plant species were
collected from the Estonian and Swedish waters (Fig. 1). The Vilsandi National Park is located
in the western coast of Saaremaa Island and it encompasses ∼160 islands and islets of different
sizes. Most of the area is <5 m deep although in a few locations water depth reaches 15 m.
Haapsalu Bay extends deeply into the land in the western part of Estonia. The bay is relatively
shallow with an average depth of 1.5 to 2 m and a maximum of 5 m. Vormsi Island is located
west of the Estonian mainland. Most of the study areas were <5 m deep. The island has extensive
shallows in the southern parts and steep and more exposed coasts in its northern parts. Gräsö
Island and the St. Anna archipelago are characterized by thousands of islets and bays. Water is
generally >10 m deep, i.e., the bottom signal is not detectable by remote sensing sensors.
Shallow areas occur only near coast and in small bays and channels between islets.

2.2 Field Survey

Altogether 531 taxa of benthic vegetation have been found in the Baltic Sea.27 It would be exces-
sively labor-intensive to collect reflectance spectra for each of these species.28 Moreover, such a
task would not be rational since a large number of taxa are rare, hidden in crevices, or spatially
imbricate over a few square centimeters.24 Moreover, due to similar pigmentation, the reflectance
spectra are likely similar for many of these species. Therefore, only the key macroalgae and
higher plants were collected for reflectance measurement. The samples included the green
algae Cladophora glomerata, Ulva intestinalis, Chara spp., Monostroma balticum; the higher
plants Potamogeton pectinatus, Myriophyllum spicatum, Zannichellia palustris; the red algae
Ceramium tenuicorne, Furcellaria lumbricalis, Polysiphonia fucoides; and the brown algae
Fucus vesiculosus, Pilayella littoralis, Chorda filum, and Dictyosiphon foeniculaceus
(Fig. 2). In addition, reflectance spectra of bare sand, pebble, limestone, and silt were measured
on different beaches.

Water molecules absorb light strongly in red to near-infrared part of the spectrum, i.e., in the
part of spectrum where the main differences between different benthic species occur.29 Just a few
centimeters of water between the sample and the sensor affect the measured reflectance signifi-
cantly. Determining the accurate distance between the sample and sensor is not practically

Fig. 1 Macrophyte sampling sites in the Baltic Sea.
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possible during in situ measurements as the water depth, where the measurements have to be
carried out, varies between a few centimeters to ∼10 m in the Baltic Sea. Therefore, obtaining
the true reflectance of different algae and plants without any impact of water column by means of
in situ measurements is practically impossible. Nevertheless, unlike terrestrial vegetation,30,31

leaf orientation and canopy geometry are not coupled with the reflectance spectra of aquatic
vegetation. Such specific characteristic of macrophytes is an unavoidable consequence of the
evergoing mobility of aquatic organisms under the wave exposure. Our long experience in carry-
ing out reflectance measurements in shallow waters suggests that differences in the geometry of
canopy do not practically change reflectance spectra, and variation in the canopy properties only
marginally contributes to the absolute reflectance values. These changes are likely smaller than
the potential uncertainties due to unrecorded distance between the sample and the sensor. Our
pilot study also indicated that only slight changes in true reflectance are expected if the macro-
phytes are removed from water (Fig. 3).

Due to the above-mentioned considerations, macrophytes were taken out from the water,
placed on a black plastic bag as piles, and then their reflectance spectra were immediately mea-
sured with Ramses hyperspectral radiometers, built by TriOS GmbH (Germany). The macro-
phytes were kept wet during the measurements. The plastic was mainly used to minimize
signal from the adjacent environment. However, the measurements were done in a way that
no plastic was seen by the sensor. Five to ten individual spectra were measured for each speci-
men. The measurements were performed over the entire plants and not only over the blades of the
plants in order to cover possible spectral variability within each specimen. Measurements were
conducted in the visible and near-infrared range of the spectrum (350 to 900 nm) with ∼3-nm
spectral interval. Downwelling light was measured by irradiance sensor and upwelling light by
radiance sensor above the sample. In most cases, we used a standard Trios cage while some
measurements were carried out holding upwelling radiance sensor by hand. This was needed
in order to be able to measure reflectance of different parts of specimens that had more complex
canopy structure and visible differences between different parts of the canopy (for example, in
the case of Fucus vesiculosus). In order to determine the reflectance spectra of each sample, the
upwelling radiance (Lu) was divided by the downwelling irradiance (Ed).

Fig. 2 Still photographs of the studied macrophyte species.
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2.3 Statistical Methods

Five to 10 reflectance spectra were measured of each individual specimen. Up to six different
specimens were sampled from each species (Table 1). The individual spectra were averaged to
get a reflectance spectrum representing each individual. Then all individual spectra were sep-
arately standardized by subtracting the mean of values at all measured wavelengths in the same
spectral signature from the averaged individual spectral values and dividing the difference by the

Fig. 3 A comparison of raw (a, b) and standardized spectra (c, d) of Fucus vesiculosus (a, c) and
Pilayella littoralis (b, d) in water and in air. The standardization was done by subtracting the mean
of the particular spectrum from the raw reflectance values and dividing by the standard deviation of
the same spectrum.

Table 1 The number of specimen and the total number of spectra measured for each plant
species.

Broad taxa Species Number of specimens Total spectra

Brown algae Chorda filum 1 10

Brown algae Dictyosiphon foeniculaceus 1 10

Brown algae Fucus vesiculosus 5 45

Brown algae Pilayella littoralis 3 30

Green algae Chara aspera 6 40

Green algae Cladophora glomerata 4 30

Green algae Monostroma balticum 1 10

Green algae Ulva intestinalis 2 15

Higher plants Myriophyllum spicatum 2 15

Higher plants Potamogeton pectinatus 2 15

Higher plants Zannihellia palustris 1 10

Red algae Ceramium tenuicorne 4 40

Red algae Furcellaria lumbricalis 1 10

Red algae Polysiphonia fucoides 1 10
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standard deviation of values in the same spectral signature. Standardization is a common pro-
cedure in data processing aimed to make distributions of values comparable. The distribution, in
this case, is formed by reflectance values at different wavelengths. The reflectance values were
standardized separately for each plant individual. The mean value of standardized spectra is
equal to zero, and the standardized reflectance intensity is presented in terms of standard devia-
tions of the raw values. Thus, standardization of reflectance values emphasizes the relative
differences in spectral variability. It is important to stress that we did not transform an image
of plants but the averaged spectral signature of a macrophyte individual.

A perfect discrimination between categories can easily be obtained from small samples even
by chance. Therefore, the overall distinction significance between multiple groups was tested by
the Kruskal-Wallis test and pairwise difference of the broader taxa by the two-tailed Mann-
Whitney U test;32,33 both using an online calculator.34 The Kruskal-Wallis test is a nonparametric
equivalent of the one-way analysis of variance for testing independence of more than two sam-
ples. It was applied on the broad taxonomic units (red, brown, and green algae and higher plants)
as well as on the species level, separately for every spectral interval using raw and standardized
spectral values. The U test is designed for comparison of the median values from two samples.

Both the Kruskal-Wallis test and U test assess a statistical significance of the difference
between the groups—how likely is it that the groups of values are merely random samples
from the same distribution. These statistical tests do not measure how clear or fuzzy the boun-
daries between distributions of values are, and where is the best-separating distinction line
between the groups. Therefore, for spectral regions where the samples of taxonomic groups
were different at p < 0.05, the optimal separating boundary between the taxa was calculated
using a simple iterative search relying on the Hanssen-Kuipers Skill Score—also called True
Skill Statistic (TSS)—as the objective function.35 The TSS value is calculated as the proportion
of true results in one category (T1) plus proportion of true results in the other category (T2)
minus one.

TSS ¼ T1þ T2 − 1:

The range of possible TSS values is þ1: : : − 1, zero being the expected value in case of
random decisions. The TSS is favorable as it does not depend on the proportion of categories.36,37

In order to find reflectance values, which enable separating plant taxa with a minimum pro-
portion of false results, an iterative search algorithm was designed. As the first step, median
values of the samples are calculated according to this algorithm. The algorithm is applicable
for any two sets of values. In this application, a sample is formed by reflectance values of a
certain wavelength measured from objects of one macrophyte taxon, and the other sample
includes reflectance values of the same wavelength measured from objects of another macro-
phyte taxon.

Then, the optimal boundary location is searched between the medians by placing a tentative
boundary at the midpoint between a value from one sample and a value from the other sample.
Then true and false recognition results are counted separately for both samples given this boun-
dary location imposed upon the data. The optimal boundary location is where the mean pro-
portion of false classification results in both categories is minimal. Such an exhaustive
robust search does not depend on the distribution of values in samples and yields optimal results
also in case of strongly asymmetrical distribution of values in one of the samples.

Pseudocode of the boundary search algorithm is as follows. The full code is freely available
from the above-mentioned online calculator.

1. Sort both samples in ascending order of values.
2. If the first value of one sample is larger than the last of the other, then the optimal boun-

dary is in the middle between these extreme values.
3. Else place tentative boundary between values that are less than the larger median (in one

sample) and larger than the smaller median (in the other sample).
4. Calculate TSS in every pair.
5. Final boundary is where the TSS is the largest.
6. Output values for the optimal boundary and TSS if this boundary value is applied.
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Classification tree model for separating the four broader taxa according to our data was con-
structed using Statsoft Statistica Standard classification and regression trees (CART) module.32

3 Results

Among green macroalgae,Ulva intestinaliswas the brightest species with the highest reflectance
values. Ulva was followed by Monostroma balticum, Cladophora glomerata, and Chara spp.
All green algal species showed a broad reflectance peak centered at 550 nm and reflectance
trough around 675 nm, which corresponds to the chlorophyll absorption peak [Fig. 4(a)].
Brown algal species had consistent shape in their reflectance spectra, i.e., reflectance peaks
at 600 and 650 nm and a shoulder at 580 m; however, the absolute reflectance values varied
among species. Dictyosiphon foeniculaceus showed the highest reflectance, reaching 4.5%
in the visible part of the spectrum. The reflectance values of dark brown Fucus vesiculosus
reached only 1% in the visible part of the spectrum. Red algae had two clear reflectance
peaks at 600 and 650 nm. Furcellaria lumbricalis was darker than Ceramium tenuicorne

Fig. 4 The reflectance values of the studied plant individuals: (a) raw data and (b) standardized
data.
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and Polysiphonia fucoides, showing the lowest reflectance value throughout the entire spectrum
of the red algae. Higher plant species had no specific spectral features of raw reflectances but a
high reflectivity over a broad wavelength range (550 to 640 nm). However, a standardization of
the reflectance spectra resulted in relative high reflectances at 675 nm.

The raw reflectance spectra of plant individuals were largely overlapping and did not enable a
reliable distinction of species and larger taxonomic groups [Fig. 4(a)]. The standardization led to
considerable improvement, first of all in the distinctness of green algae compared to the group of
brown and red algae [Fig. 4(b)]. The green algae had higher standardized reflectance values in
the spectral range of 510 to 582 nm, which corresponds approximately to the visible green light.
In most other spectral regions, the reflectance of red and brown algae exceeded the values of
green algae (recall that the mean of a standardized sample is always equal to zero).

The results of Kruskal-Wallis tests also indicated that difference in the distribution of stand-
ardized reflectance values of a particular spectral interval between broad taxonomic groups is
statistically significant (p < 0.05) in most spectral intervals, while the raw values differ signifi-
cantly only within a narrow spectral range between 530 and 580 nm. The best indicative spectral
range was observed between 530 and 570 nm if both species and larger taxonomic units were
considered. In general, difference between broad taxa was more significant than that of the stud-
ied species (Fig. 5).

Statistically significant, i.e., reliably not random, distinction between the major taxonomic
groups in our data is possible at certain spectral ranges only (Fig. 6). Distinction values in stand-
ardized reflectance spectra were found even for the generally similar red and brown algae.
According to our sample, a classification result, which is significantly better than expected
from random decisions, is possible at 558 to 582 nm. On average, the wavelength intervals
at 470 to 492, 520 to 582, 646 to 658, and 670 to 680 seem to be most indicative to distinguish
broader taxonomic groups of macrophytes, although the distinction is perfect only in case of
some intervals and between some groups, e.g., green and brown algae at 530 to 560 nm.

Although the differences between distribution spectral values are mostly statistical and not
perfect, there still exist a set of rules enabling perfect separation of broad taxonomic groups in
our sample (Fig. 7). Variability outside the study sample is expected to be much larger.

4 Discussion

The current paper is the first comprehensive investigation on the measured reflectance spectra of
the key macrophyte species in the Baltic Sea. These spectra can now serve as key inputs to the
spectral library approach in order to map the spatial and temporal patterns of coastal macrove-
getation in the Baltic Sea range. Although the measurements showed some clear-cut differences
between some macrophyte species, many species had still very similar reflectance values.

We also demonstrate a methodology that allows a statistically significant separation of spec-
tral signatures of different macrophyte species and broader taxonomic groups. In remote sensing,

Fig. 5 Statistical significance (p) according to the Kruskal-Wallis test of the difference in reflec-
tance values between the studied groups of plant individuals. Solid lines refer to raw signatures
and broken lines to standardized signatures.
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Fig. 6 Statistically significant distinction lines (thick black line) between the standardized signa-
tures of broad taxonomic units of benthic macrophytes (above) and the true skill statistic (TSS)
(below) when imposing the distinction values upon the studied sample. TSS ¼ 1 means perfect
distinction in the study sample. Distinction line is depicted in spectral regions where the classes
differ significantly according to the U-test.

Fig. 7 Classification tree for separating broad taxonomic units of benthic macrophytes using
standardized spectral values. Bold numbers mark wavelength in nanometers, and critical values
for decisions are in italics.
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a spectrum of macrophyte species is often defined as a static object, i.e., the values are averaged
over space and time.23–25 However, in nature, there exists a considerable variation in the com-
position and quantity of pigments within species induced by seasonality in light conditions,
nutrient availability, exposure to waves, just to name a few (e.g., Ref. 4). Thus, it becomes
rewarding and ecologically meaningful to quantify spatiotemporal variability in reflectance
within species/taxa and then seek statistical options for species separation taking into account
all this natural variability.

Our analyses showed that the shapes of reflectance spectra of red, green, and brown macro-
algae were consistent within each group due to the presence of characteristic pigments,8,25 and
the separation of these broad groups of algae by a shape of their reflectance spectra was possible.
Specifically, green algae had high reflectance in the green part of the spectrum from 500 to
650 nm with the highest reflectance centered at 550 nm. Characteristic green algal pigments—
chlorophyll a, chlorophyll b, and β-carotene—absorb strongly in the blue and red part of the
spectrum. The presence of those absorbing pigments provokes low values in the bands from 400
to 500 nm as well as from 650 to 680 nm. Chlorophyll a has absorption peaks at ∼435 and
675 nm,38 chlorophyll b absorbs at ∼480 and 650 nm (Ref. 27), and β-carotene at ∼425,
451, and 483 nm.39,40

The brown and red macroalgae had distinctly different signatures from one another and from
the green algae. Once again, a distinct absorption maximum near 675 nm is conditioned by
chlorophyll a absorption. Compared to green algae, the maximum reflectance values for
brown macroalgae were located at the 570- to 650-nm wavelengths. Brown algae showed
enhanced absorption at the 500- to 550-nm spectral region due to fucoxanthin absorption.41

Another characteristic pigment for brown algae is chlorophyll c, which absorbs around 460
and 633 nm.28 The shape of the brown algae reflectance spectra is analogous to other
brown algae and many corals (containing symbiotic brown algae) measured in different
parts of the world.17,25 The brown algae in the Baltic Sea showed broad reflectance peaks at
570, 600, and 650 nm corresponding to previous measurements in the world seas.6,7,9,12,42

Red algae were discernible from other algal groups by the presence of a dip in reflectance at
570 nm.10 In addition to chlorophyll a and carotenoids, the characteristic pigment in red algae is
phycoerythrin.38 Characteristic chlorophyll a absorption maxima were seen at 435 and 675 nm
just as in case of green and brown macroalgae. Low reflectance values appearing in shorter
wavelengths from 400 to 500 nm were conditioned by pigments β-carotene and α-carotene.43

Phycoerythrin absorbs strongly in the middle of the visible spectrum with absorption peaks near
495, 540, and 565 nm, depressing reflectance values in the green part of the spectrum and is,
thus, almost complementary to chlorophyll in its absorption.38 The presence of chlorophyll c was
also detectable by a small shoulder near 630 nm.43 The red algae had a common double-peak
pattern around 600 and 650 nm in their reflectance spectra, all this resembling the studies per-
formed in other parts of the world.6,7,12,42

When raw reflectance values were considered, the variability within each broad taxonomic
group was large and a statistical separation even among the broad macrophyte taxa was dif-
ficult. This is because the shapes of reflectance spectra of macrophyte species and taxa highly
resemble each other due to the similar pigment content and overlapping absorption features of
biochemical constituents. Standardized spectra partly resolved the issue; however, the sepa-
ration of species still posed a great challenge. Nevertheless, a standardization of reflectance
spectra was useful as it reduced noise due to natural variability of the pigment composition of
macrophytes.

Statistical discrimination models used in image preprocessing (both parametric and nonpara-
metric) need many samples in order to be trained and evaluated. However, the collection of large
numbers of samples is not normally feasible, and thereby, the traditional image-based analyses
do not yield to accurate discrimination models. On the other hand, the spectral library approach
requires much smaller data sets and, in case of availability of high-quality atmospheric correc-
tion, the method allows an efficient mapping of benthic macrophyte communities over a large
spatiotemporal range. Nevertheless, the existing spectral libraries often consist of averaged
reflectance values, ignoring spectral variability among individual and taxa. In order to quantify
ranges of variability, however, more empirical data are needed. Instead of providing just average
species-specific reflectances, the raw values (i.e., separate measurements of each individual) are
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of utmost importance. When such information is available, it becomes rewarding to seek the
optimal separating boundary between the taxa based on their statistical separation. Then,
this information is used to define a set of rules enabling perfect separation of the studied
taxa. Those rules represent the distinct parts of reflectance spectra where the overlap between
the taxa is statistically the smallest.

In the proposed method, the original observed spectra are standardized by subtracting the
mean of the spectral signature from spectral values and dividing the result by the standard
deviation of values within the spectrum of a plant individual. Then, the TSS is applied as a
decision basis to find the optimal separating boundary between the taxa, assuming that the
best separating boundary between the taxa should be between medians of the values of one
and another sample. The boundary can separate two samples either perfectly or statistically.
The statistical separation can be significant or nonsignificant according to a chance of Type
1 statistical error bound with the analysis.

Unfortunately, the optimal boundaries between all possible pairs of taxa are not easy to be
used for determination of a taxon from a remote sensing data. For recognition of categories, we
need rules on how to use similarity, separating values, or any other decision criteria. The option
to use similarity-based or case-based reasoning is effective, first of all, if the cases are compli-
cated, the number of variables is large, different types of variables are included, and the number
of cases is enormous and continuously increasing.44,45 For the present simpler case, we preferred
building a hierarchical set of rules as a CART model for recognizing the taxa from remote sens-
ing spectra. Such a classification tree enabled a perfect separation of the broad taxa in our data.
The CART algorithm has been widely used to obtain an adequate set of rules allowing the sep-
aration of various end-members.46,47 Similarly, in our study, we extracted the most rewarding
features for the discrimination of the studied macrophyte taxa. The key idea behind the method is
that it is difficult to separate taxa by relying only on one classifier computed at a single wave-
length. In addition, the CART analysis reduces the number of statistically significant bands
selected by the Kruskal-Wallis test and by the Mann-Whitney U test to fewer bands that
could optimally discriminate the macrophyte taxa under concern. It is still useful to preselect
and include only these spectral ranges where the separation between the taxa is significant
according to the statistical tests, since the CART-based methods may be quite sensitive to
data noise.48

We are fully aware that the current database consists of too few estimates at the species
level. Nevertheless, the presented methodology allows establishment of the robust criteria
in order to separate (at least some) macrophyte species in the Baltic Sea range if one
increases the number of macroalgal individuals used in the training data set and if the distinct
spectral features used to draw the borderline among species are maximized. Specifically, with an
increasing number of rules, the probability of discriminating macrophyte species notably
increases. This result encourages further evaluation of the methodology over a larger number
of species.

In simple environments, including the Baltic Sea basin, macrophyte communities consist of
limited numbers of species, and each broad taxon (e.g., green, brown, and red algae) is often
represented by single species.13,49 In such habitats, it is already satisfying to separate only broad
taxonomic groups in order to recapture the spatial distribution of coastal macrophyte commun-
ities. However, in more complex environments where biodiversity is higher and each species is
characterized by a large natural within-species variability in reflectance spectra either due to
genetic variation, seasonal cycles, or environmental conditions,43,50 mapping the macrophyte
communities at the species level may be impossible. To conclude, the potential of the spectral
library approach depends, on one hand, on the representativeness of training data set and, on
another hand, on the habitat complexity and associated biodiversity. The question remains, still,
how to discern species from multispecies assemblages using the spectral library classification
approach. In such complex habitats, macrophytes do not grow as monospecific stand but occur in
mixtures. The mixed assemblages are likely characterized by reflectances that are not necessarily
the sums of the reflectance spectra of individual species. Therefore, we need to evaluate the
validity of spectral standardization in future work by focusing on the reflectance spectra of
mixed assemblages.
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