Supporting Information

Tumour-homing chimeric polypeptide-conjugated polypyrrole nanoparticles for imaging-guided synergistic photothermal and chemical therapy of cancer

Mengmeng Sun,¹ Jianwen Guo,¹ Hanjun Hao,¹ Tong Tong,² Kun Wang² and Weiping Gao¹*

¹ Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

² Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

*Corresponding author: E-mail: gaoweiping@tsinghua.edu.cn

Supplementary Figure 1-24, Table 1-3

Figure S1. SDS-PAGE analyses of C-ELP (lane 2, 13.6 kDa) and C-ELP-F3 (lane 3, 16.9 kDa) purification by inverse transition cycling (ITC). Lane 1: molecular mass marker.

Figure S2. The temperature dependence of hydrodynamic radius (R_h) of C-ELP and C-ELP-F3 at the same concentration of 25 μ M in PBS.

Figure S3. Schematic illustration of the synthesis of PPy-ELP-F3 (A) and PPy-ELP (B) nanoparticles.

Figure S4. DLS profiles of PPy, PPy-ELP and DOX/PPy-ELP. D_h denotes hydrodynamic diameter.

Figure S5. The TEM images of PPy-ELP (A) and DOX/PPy-ELP (B) at 25 °C.

Figure S6. The absorption spectra of DOX, PPy, PPy-ELP and DOX/PPy-ELP at the same concentration of PPy in PBS at 25 $^{\circ}$ C.

Figure S7. The temperature dependence of hydrodynamic diameters (D_h) of DOX/PPy-ELP and PPy at the same concentration of PPy (500 mg/L). Error bars are based on standard deviations of triplicated samples.

Figure S8. Heating curves of PPy (A), PPy-ELP (B), PPy-ELP-F3 (C), DOX/PPy-ELP (D) and DOX/PPy-ELP-F3 (E) samples at different concentrations under 808 nm laser irradiation (1.5 W/cm², 5 min).

Figure S9. The PPy concentration dependence of temperatures of PPy, PPy-ELP and DOX/PPy-ELP solutions exposed to laser irradiation (808 nm, 1.5 W/cm², 5 min). Error bars are based on standard deviations of triplicated samples.

Figure S10. Photothermal transfer efficiency of DOX/PPy-ELP-F3 and PPy. (A) The photothermal response of DOX/PPy-ELP-F3 solution (100 mg/L) irradiated under an 808 nm laser at 1.5 W/cm² for 370 s, then the laser was turned off. (B) Linear relationship between time and ln θ obtained from the cooling period of (A). (C) The photothermal response of PPy solution (100 mg/L) irradiated under an 808 nm laser at 1.5 W/cm² for 380 s, then the laser was turned off. (D) Linear relationship between time and ln θ obtained from the cooling period of (C).

Figure S11. NIR-triggered DOX release from DOX/PPy-ELP under different pH. Arrows were the time points when NIR irradiation (808 nm, 1.0 W/cm²) was executed for 5 min. Error bars were based on standard deviations of triplicated samples.

Figure S12. Chemical and photothermal cytotoxicity of DOX/PPy-ELP against C8161 melanoma cancer cells. (A) Cell viability of C8161 cells after incubation with different samples for 4 h. (B) Cell viability of C8161 cells after incubation with different samples for 4 h and NIR irradiation (808 nm, 2.5 W/cm², 3 min). PPy-ELP: equivalent to PPy-ELP concentrations in DOX/PPy-ELP solution. Note: the weight ratio of DOX to PPy-ELP was set to be 1:5. **P* < 0.05, ***P* < 0.01, significant difference for DOX/PPy-ELP plus laser compared with DOX plus laser group.

Figure S13. Intracellular delivery of DOX into C8161 cells by DOX/PPy-ELP without (A) or with (B) laser irradiation. The cell nucleus was stained with Hoechst 33324 in blue; the cell membrane was green (GFP); DOX/PPy-ELP were shown in red.

Figure S14. The cellular uptake of DOX/PPy-ELP. (A) Fluorescence-activated cell sorting (FACS) analysis of C8161 cell uptake of DOX/PPy-ELP with or without laser irradiation. Laser irradiation: 808 nm, 1.0 W/cm², 2 min. (B) The mean fluorescence intensity of cells calculated from the FACS analysis. **P < 0.01, significant difference for DOX/PPy-ELP plus laser compared with other treatment groups.

Figure S15. Photothermal and chemical destruction of C8161 cells treated with laser only (i), PPy-ELP only (ii), DOX/PPy-ELP only (iii), PPy-ELP plus laser (iv), DOX/PPy-ELP plus laser (v). Laser irradiation: 808 nm, 2.5 W/cm², 3 min.

Figure S16. Biocompatibility of PPy-ELP-F3. Cell viability of murine fibroblasts L929 cells (A), human microvascular endothelial cells (HMECs) (B) and human mammary epithelial MCF-10A cells (C) after incubation with different concentrations of PPy-ELP-F3 and PPy-ELP for 48 h, as determined by MTS assay.

Figure S17. *In vivo* pharmacokinetics of DOX/PPy-ELP-F3 and DOX/PPy-ELP compared with free DOX. Plasma DOX concentrations were determined as a function of time post administration (n = 3).

Figure S18. Biodistribution of DOX from DOX/PPy-ELP-F3 and DOX/PPy-ELP in tissues at 2 h, 9 h and 24 h post administration. Data are shown as mean \pm standard deviation (n = 3).

Figure S19. Photoacoustic (PA) intensity of tumour tissue treated with DOX/PPy-ELP-F3 and DOX/PPy-ELP as a function of time.

Figure S20. (A) IR thermal images of C8161 tumour-bearing mice exposed to an 808 nm laser at a power density of 1.2 W/cm² for 5 min after intravenous injection of DOX/PPy-ELP and DOX/PPy-ELP-F3. (B) The injection time dependence of temperatures of DOX/PPy-ELP and DOX/PPy-ELP-F3 solutions exposed to laser irradiation.

Figure S21. Heat curves of tumours upon laser irradiation as a function of irradiation time.

Figure S22. The change of body weights of mice treated with free DOX (A), DOX/PPy-ELP (B) and DOX/PPy-ELP-F3 (C) in different DOX concentrations.

Figure S23. Digital pictures of C8161 tumour mice in different groups at 1 day, 6 days, 18 days and 24 days post treatment.

Figure S24. H&E staining of organs from different groups at 12 days post treatments.

Figure S25. The change of body weights of mice in different groups after the treatments.

Figure S26. Clinical biochemistry parameters for mouse post administration compared with normal mices. Liver function markers (A): ALT, alanine aminotransferase; AST, aspartate aminotransferase. Heart function markers (B): LDH, lactate dehydrogenase; CK-MB, creatine kinase isoenzymes. Kidney function markers (C): creatinine, CREA; UREA. Blood samples were collected at 12 days post different treatments.

Table S1. Zeta potentials of different samples in the same equivalent concentration of DOX (40 mg DOX/L and 200 mg PPy/L), dispersed in 50 mM PBS of pH 5.5 and pH 7.4.

рН	Zeta potential (mV)						
	РРу	PPy-MA	PPy-ELP-F3	DOX/PPy-ELP-F3	PPy-ELP	DOX/PPy-ELP	
pH 7.4	-5.49 ± 0.23	-9.56 ± 0.23	$\textbf{-6.74} \pm 0.59$	-4.70 ± 0.57	-6.69 ± 0.34	-5.11 ± 0.21	
pH 5.5	-4.65 ± 0.24	$\textbf{-8.88} \pm 0.60$	-5.62 ± 0.38	-4.28 ± 0.29	$\textbf{-6.02} \pm 0.25$	-5.09 ± 0.19	

Table S2. Important kinetic parameters of DOX/PPy-ELP-F3, DOX/PPy-ELP and DOX in blood circulation (n = 3).

Parameters	DOX/PPy-ELP-F3	DOX/PPy-ELP	DOX
Terminal half-life t1/2β (h)	20.58 ± 2.19	20.63 ± 3.16	5.26 ± 1.07
Area under curve $AUC(0-\infty)$ (uM/L×h)	40.18 ± 5.17	42.37 ± 9.58	5.82 ± 1.76

Table S3. Serum biochemistry analysis of normal mice, mice treated with PPy-ELP-F3 plus laser and DOX/PPy-ELP-F3 plus laser. Blood samples were collected at 12 days post different treatments.

Group	DOX/PPy-ELP-F3 + laser	PPy-ELP-F3 + laser	Normal mice
WBC (×10 ⁹ /L)	20.03 ± 1.21	21.82 ± 4.13	24.31 ± 5.36
RBC (×10 ¹² /L)	6.00 ± 0.27	6.10 ± 0.30	5.86 ± 0.44
HGB (g/L)	181.4 ± 8.5	178.5 ± 20.9	166.0 ± 17.4
HCT (%)	47.01 ± 1.18	31.22 ± 9.04	30.31 ± 6.05
MCV (f1)	39.24 ± 1.04	39.49 ± 0.85	39.28 ± 0.83
MCH (pg)	15.14 ± 0.10	15.13 ± 0.29	14.72 ± 0.56
MCHC (g/L)	385.7 ± 10.4	362.1 ± 12.3	348.7 ± 7.8
PLT (×10 ⁹ /L)	301.1 ± 27.5	319.4 ± 20.4	323.9 ± 24.1
RDW-CV (%)	20.04 ± 1.51	21.78 ± 3.25	20.34 ± 0.93
RDW-SD (f1)	28.17 ± 1.39	27.16 ± 2.41	26.12 ± 0.61
PDW (f1)	10.37 ± 1.39	10.21 ± 0.55	10.86 ± 1.15
MPV (fL)	8.03 ± 0.92	8.07 ±0.50	8.30 ± 0.24
PCT (%)	0.36 ± 0.11	0.29 ± 0.17	0.40 ± 0.12
P-LCR (%)	15.57 ± 0.94	14.10 ± 2.70	15.39 ± 1.47