
Legionella longbeachae is the primary cause of legionel-
losis in Australasia and Southeast Asia and an emerging 
pathogen in Europe and the United States; however, our 
understanding of the population diversity of L. longbeachae 
from patient and environmental sources is limited. We ana-
lyzed the genomes of 64 L. longbeachae isolates, of which 
29 were from a cluster of legionellosis cases linked to com-
mercial growing media in Scotland in 2013 and 35 were 
non–outbreak-associated isolates from Scotland and other 
countries. We identified extensive genetic diversity across 
the L. longbeachae species, associated with intraspecies 
and interspecies gene flow, and a wide geographic distri-
bution of closely related genotypes. Of note, we observed 
a highly diverse pool of L. longbeachae genotypes within 
compost samples that precluded the genetic establishment 
of an infection source. These data represent a view of the 
genomic diversity of L. longbeachae that will inform strate-
gies for investigating future outbreaks.

Legionellosis presents as 2 clinically distinct forms: an 
influenza-like illness called Pontiac fever and a severe 

pneumonia known as Legionnaires’ disease (1). In Europe 
and the United States, most legionellosis cases are caused 
by Legionella pneumophila serogroup 1 (1,2); <5% of 
cases are caused by nonpneumophila Legionella spp. (3,4). 
In Australasia, New Zealand, and some countries in Asia, 
infections caused by L. longbeachae occur at comparable 
levels to infections caused by L. pneumophila (5–7). Unlike 
L. pneumophila infections, which are typically linked to ar-
tificial water systems, L. longbeachae infections are associ-
ated with exposure to soil, compost, and potting mixes (8).

The number of legionellosis cases caused by L. long-
beachae is increasing worldwide (7), with a notable rise re-
ported across Europe (9–11). Within the United Kingdom, 
most L. longbeachae infections have been identified in 

Scotland, where 6 cases were diagnosed during 2008–2012 
(12) and another 6 were diagnosed in the summer of 2013 
and represented a singular increased incidence or cluster 
with all patients requiring intensive care hospitalization 
(11). Epidemiologic investigation revealed that most pa-
tients from the 2013 cluster were avid gardeners, and L. 
longbeachae was isolated from respiratory secretions and 
from samples of the growing media they had used for gar-
dening before becoming ill (11,12). However, an investi-
gation into the provenance of the growing media did not 
reveal a single commercial or manufacturing source that 
would suggest a common origin for the L. longbeachae as-
sociated with the outbreak (11).

Molecular typing methods used to discriminate be-
tween L. longbeachae and other Legionella spp. and be-
tween the 2 L. longbeachae serogroups have limited effi-
cacy, and although considerable evidence supports growing 
media as a source for L. longbeachae infections (13,14), 
there is still a lack of genetic evidence for an epidemio-
logic link. Furthermore, a population genomic study in-
volving large numbers of L. pneumophila isolates has been 
conducted (15,16), but the same has not been done for L. 
longbeachae, so the diversity of environmental and patho-
genic genotypes and the relationship between them remains 
unknown for L. longbeachae. To examine the etiology of 
the 2013 cluster of legionellosis cases in Scotland in the 
context of L. longbeachae species diversity, we analyzed 
the genomes of 70 Legionella spp. isolates from 4 countries 
over 18 years.

Materials and Methods

Bacterial Isolates
We sequenced 65 isolates that had previously been iden-
tified as L. longbeachae. These isolates were obtained 
during 1996–2014 from several patients, growing media 
samples (including compost and soil), and a hot water sup-
ply. Of these isolates, 55 were from Scotland (29 from the 
2013 cluster of infections and 26 from other clinical and 
environmental samples) and 10 were from patients and 

Population Genomics of  
Legionella longbeachae and  

Hidden Complexities of  
Infection Source Attribution

Rodrigo Bacigalupe, Diane Lindsay, Giles Edwards, J. Ross Fitzgerald

750	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 5, May 2017

Author affiliations: The Roslin Institute, University of Edinburgh, 
Midlothian, Scotland, UK (R. Bacigalupe, J.R. Fitzgerald); 
Glasgow Royal Infirmary, Glasgow, Scotland, UK (D. Lindsay,  
G. Edwards)

DOI: http://dx.doi.org/10.3201/eid2305.161165



 L. longbeachae and Infection Source Attribution

environmental compost samples in New Zealand (online 
Technical Appendix Table, https://wwwnc.cdc.gov/EID/
article/23/5/16-1165-Techapp1.pdf). 

In our analysis, we also included all publicly avail-
able genome sequences for L. longbeachae: L. long-
beachae NSW150 (serogroup 1) and L. longbeachae 
C-4E7 (serogroup 2) isolated from patients in Australia; 
and L. longbeachae D-4968 (serogroup 1), L. longbeachae 
ATCC39642 (serogroup 1), and L. longbeachae 98072 (se-
rogroup 2) isolated from patients in the United States (17–
19). We sequenced multiple isolates (n = 2 to 5) for each 
of 3 patients and their linked growing media samples from 
the 2013 outbreak in Scotland and for 2 additional compost 
samples. The species of all isolates had been determined 
by serotyping or macrophage infectivity potentiator (mip) 
gene sequencing (20,21).

Bacterial Culture, Genomic DNA Isolation, and  
Whole-Genome Sequencing
We cultured Legionella spp. isolates in a microaerophilic and 
humid environment at 37°C on BCYE (buffered charcoal 
yeast extract) agar plates for 48 h. We then picked individual 
colonies from the plates and grew them in ACES-buffered 
yeast extract broth containing Legionella BCYE Growth 
Supplement (Oxoid Ltd., Basingstoke, UK) with shaking at 
37°C for 24–48 h. We extracted genomic DNA from fresh 
cultures by using the QIAGEN DNeasy Blood and Tissue 
Kit (QIAGEN Benelux B.V., Venlo, the Netherlands).

We prepared sequencing libraries by using the Nextera 
XT kit for MiSeq or HiSeq (all from Illumina, San Diego, 
CA, USA) sequencing at Edinburgh Genomics, University 
of Edinburgh (Edinburgh, Scotland, UK). For each isolate, 
one 2 × 250–bp or two 2 × 200–bp paired-end sequencing 
runs were carried out using the MiSeq and HiSeq technolo-
gies, respectively. Raw reads were quality checked using 
FastQC v0.10.1 (22), and primers were trimmed by using 
Cutadapt (23). We used wgsim software (24) to simulate 
sequence reads for publicly available, complete whole-ge-
nome sequences.

Bioinformatic Analysis and Data Deposition
A detailed description of the bioinformatic analyses is 
available in the online Technical Appendix. The sequence 
data for the 65 genomes of Legionella spp. sequenced in 
this study were deposited in the SRA database (accession 
no. PRJEB14754).

Results

Limitations of Current Typing Approaches for  
Legionella spp. Identification
We sequenced 65 isolates obtained from several patients 
and environmental samples over 18 years in different 

countries and previously identified as L. longbeachae. To 
confirm the species identity of the Legionella isolates, we 
constructed a phylogenetic tree that included all Legionella 
type strains for which cultures are available, based on the 
16S rRNA gene sequence (25). We also built phylogenetic 
trees based on the whole-genome content and core-genome 
diversity. For each approach, 64 of the 70 isolates examined 
co-segregated within the L. longbeachae–specific clade, 4 
isolates clustered with Legionella anisa, and 2 belonged to 
a separate clade that was distinct from all known Legio-
nella spp. (Figure 1; online Technical Appendix Figures 1, 
2). The species identities were further supported by deter-
mination of the average nucleotide identity values (online 
Technical Appendix Figure 3), a widely used method for 
bacterial species delineation based on genomic related-
ness (26). Of note, L. anisa is the most common nonpneu-
mophila Legionella spp. in Europe (27–29). In addition, 
L. longbeachae isolates 13.8642 (from a compost sample 
from Scotland) and 13.8295 (from a patient in New Zea-
land) belong to a putative novel Legionella spp. Overall, 
the data indicate that current serotyping methods and mip 
gene sequencing are limited in their capacity to identify L. 
longbeachae to the species level.

To investigate the genetic relatedness of L. long-
beachae strains associated with the 2013 outbreak to tem-
porally and geographically distinct isolates, we constructed 
a core genome–based neighbor-joining tree of the 64 con-
firmed L. longbeachae isolates obtained from 4 countries 
over 18 years (online Technical Appendix Figure 4). This 
phylogenetic tree presents a comet-like pattern, with 2 dis-
tinct clades separated by 9,911 single-nucleotide polymor-
phisms, representing the major serogroups (serogroups 1 
and 2) previously identified for L. longbeachae (20), each 
containing isolates from patient and environmental sam-
ples from different years. In contrast with findings from 
a previous analysis of 2 isolates of L. longbeachae sero-
group 1 (20), we observed a higher diversity among the 
56 isolates within serogroup 1 (online Technical Appendix 
Figures 1, 4); this finding is not unexpected, given the dif-
ference in the number of genomes examined. Nevertheless, 
compared with isolates from the same serogroup in other 
Legionella spp., such as L. pneumophila serogroup 1 (2% 
polymorphism) (20), L. longbeachae serogroup 1 exhibits 
a lower diversity (<0.1% polymorphism). Although se-
rogroup 1 and 2 clades contained isolates from Scotland, 
Australasia, and the United States, 96% of the isolates 
from Scotland (including all of the 2013 outbreak isolates) 
belonged to serogroup 1, suggesting that serogroup 1 may 
be more clinically relevant in Scotland than in some oth-
er countries where L. longbeachae is a more established 
cause of legionellosis. However, analysis of more isolates 
from different countries would be required to investigate 
this observation further.
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Effect of Recombination on L. longbeachae Serogroup 1  
Population Structure
It is established that recombination has played a key role 
in shaping the evolutionary history of L. pneumophila, 
but its effect on L. longbeachae population structure is 
unknown (22,30). This knowledge is critical because for 
highly recombinant bacteria, recombination networks may 
represent evolutionary relationships more explicitly than 
traditional phylogenetic trees. Therefore, we constructed a 
recombination network of all serogroup 1 isolates by using 
the neighbor-net algorithm of SplitsTree4 (31). The resul-
tant network displayed a reticulate topology with an exten-
sive reticulated background from which clusters of isolates 
emerge, supporting an evolutionary history involving re-
combination (p< 0.01 by φ test) (32), followed by clon-
al expansion and subsequent additional recombination 

events among some lineages (online Technical Appendix 
Figure 5). Using BratNextGen (33), we identified a total 
of 94 predicted recombination events affecting more than 
half of the core genome (1.74 Mb of 3.36 Mb) and repre-
senting recent and ancient recombination events of differ-
ent sizes (range 1,350 bp–350 Kbp) distributed across the 
phylogeny (online Technical Appendix Figure 6). Given 
the reported limitation in sensitivity of BratNextGen for 
the identification of all recombination events (34), we also 
used ClonalFrameML (35), an algorithm that uses maxi-
mum likelihood inference to simultaneously detect recom-
bination in bacterial genomes and account for it in phy-
logenetic reconstruction. The estimated average length of 
the recombined fragments was 8,047 bp, and the ratio of 
recombination to mutation was 1.42, indicating a greater 
role for recombination over mutation in the diversification 
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Figure 1. 16S rRNA gene–
based phylogenetic tree of the 
sequenced genomes and all the 
cultured and type Legionella spp. 
strains available in the  
ribosomal database project 
(http://rdp.cme.msu.edu/), as 
accessed in May 2015. Scale 
bar indicates the mean number 
of nucleotide substitutions  
per site.
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of L. longbeachae. This estimate is in accordance with 
early estimates for L. pneumophila based on multiple gene 
sequence data (36), but it is low compared with recent esti-
mates based on whole-genome sequence data [recombina-
tion to mutation ratios of 16.8 (30) or 47.93 (37)]. Differ-
ences in the clonal diversity of Legionella spp. sequence 
datasets used to determine recombination rates could af-
fect the estimates. Reconstruction of the phylogeny after 
removal of all predicted recombinant sequences resulted in 
a tree with largely similar clusters of isolates but with re-
duced branch lengths and variation in the position of nodes 
deep in the phylogeny (Figure 2).

Accessory Genome Analysis Indicates Extensive  
Interspecies and Intraspecies Gene Flow
The extent to which horizontal gene transfer occurs among 
L. longbeachae isolates and between L. longbeachae  

and other Legionella spp. is unknown. In our study, the 
pangenome of L. longbeachae represented by the 56 
serogroup 1 isolates was 6,890 genes, including a core 
genome of 2,574 genes; the average gene content was 
3,558 genes per strain. The accessory genome, which 
included only strain-dependent genes varied from 809 
to 1,155 genes, depending on the strain. A parsimony 
clustering analysis based on the presence or absence of 
all genes classified the isolates in a manner distinct from 
that in a core genome–based maximum-likelihood tree, 
suggesting extensive horizontal gene transfer among L. 
longbeachae isolates (online Technical Appendix Fig-
ures 1, 2). BLAST (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) analysis of all assembled contigs was used to filter 
for plasmid-related homologous sequences, revealed 2 
major plasmids: pLLO, described previously in L. long-
beachae NSW150 (20), and pLELO, originally identified  
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Figure 2. Core genome–based maximum-likelihood phylogeny of Legionella longbeachae serogroup 1 isolates corrected for 
recombination; source, country, year of isolation, relatedness and plasmid carriage are indicated. Related isolates are shown in the 
same color; those from the 2013 outbreak are indicated by gray. Isolates from the same patient are clustered together but do not co-
segregate with cognate compost samples. Scale bar indicates the mean number of nucleotide substitutions per site.
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in L. pneumophila subsp. pneumophila (22). Of the 55 se-
rogroup 1 isolates, 36 contained sequences for the pLLO 
and pLELO plasmids. Of note, the distribution of these 
plasmids among the L. longbeachae isolates correlated 
with the gene content–based clustering, whereas the dis-
tribution of plasmids in the core genome–based tree was 
independent of the phylogeny (Figure 2). In addition, 11 
isolates appeared to contain plasmids with sequences ho-
mologous to those for pLLO and pLELO, which is in-
dicative of recombinant forms of the plasmid. Further 
examination of plasmid diversity using a modified ver-
sion of PLACNET (38), a program enabling reconstruc-
tion of plasmids from whole-genome sequence datasets, 
confirmed that some plasmids consisted of a mosaic of 
recombinant fragments homologous to pLELO, pLLO, or 
other unknown plasmids (Figure 3). Overall, these data 
indicate the high prevalence of specific plasmids among 
L. longbeachae isolates and reveal extensive recombina-
tion and horizontal gene transfer among different Legi-
onella spp (39). The high prevalence of plasmids in L. 
longbeachae is notable, considering these elements may 
be less common in L. pneumophila (30).

To examine the possibility that clinical and envi-
ronmental isolates of L. longbeachae contained genomic  

differences reflecting their distinct origins, we compared 
their accessory genome content. For isolates obtained from 
a single patient sample, the accessory genome was highly 
conserved compared with those for environmental isolates 
from a single compost sample or closely related environ-
mental isolates from distinct compost samples (Figure 4, 
panel A). In addition, considering the average gene content 
of all sequenced isolates (28 clinical and 27 environmen-
tal), the gene content for L. longbeachae from growing 
media samples (3,586 genes) was significantly higher than 
that for isolates from patients (3,533 genes; 2-sample t-test, 
t = 2.5213; d.f. = 53; p = 0.01474) (Figure 4, panel B). The 
data imply that gene loss occurs during human infection or 
that L. longbeachae strains with reduced gene content have 
enhanced human infectivity. However, we did not identify 
a specific enriched gene or functional category in clinical or 
environmental samples (data not shown).

Source Attribution Confounded by Complex  
Serogroup 1 Populations within Environmental Samples
Having accounted for the influence of recombination on the 
phylogeny of L. longbeachae, we investigated the diversity  
of isolates associated with 5 patients and their linked 
compost samples obtained during 2008–2014, including  
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Figure 3. Legionella longbeachae plasmid analysis: contigs networks reconstructions for 6 representative L. longbeachae types of 
plasmid content. The networks of the contigs representing the main chromosome and plasmids comprising the genome obtained by 
using PLACNET (38), a program enabling reconstruction of plasmids from whole-genome sequence datasets. The sizes of the contig 
nodes (in gray) are proportional to their lengths; continuous lines correspond to scaffold links. Dashed lines represent BLAST  
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) hits to the L. longbeachae (blue) or L. pneumophila (red) strains; intensity of the line is 
proportional to the hit (white indicates low, black indicates high). Green lines correspond to plasmid contigs. Background colors indicate 
species relatedness for the main chromosome and plasmids (blue for L. longbeachae, red for L. pneumophila, pink for a combination of 
both, and yellow for previously unidentified genomic content).
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3 patients from the 2013 outbreak in Scotland. Of note, 
isolates from the 2013 outbreak were distributed across 
several subclades of the tree, indicating that the infec-
tions were caused by different strains (Figure 2). How-
ever, all isolates from a single patient clustered together, 
consistent with a monoclonal etiology of each infec-
tion. Of note, for all 5 patients, clinical isolates were 
not closely allied to the environmental isolates obtained 
from linked compost samples, and therefore a genetic 
link between patient and compost samples could not be 
established. Most subclades included isolates of diverse 
geographic origin, consistent with a wide distribution 
for L. longbeachae strains; however, 3 L. longbeachae 
isolates originating from Australasia (strains 13.8294, 
13.8293, and NSW150) belonged to their own region-
specific cluster (Figure 2).

We hypothesized that the lack of genetic relatedness 
between L. longbeachae isolates from patients and linked 
compost samples could be explained by a highly diverse 
population of L. longbeachae in growing media samples 
compounded by a sampling strategy consisting of a sin-
gle sequenced isolate. All 5 compost samples for which 
we had >1 isolate contained isolates distributed across  
multiple clades in the phylogenetic tree. In particular, 5 iso-
lates from the same growing media sample linked to a pa-
tient infected in Edinburgh in 2014 were distributed across 
4 distinct clades, demonstrating that within a single envi-
ronmental sample, considerable species diversity may be 
represented (Figure 2). Taken together, these data suggest 
that for future outbreak investigations, extensive sampling 
of environmental samples may be required to identify gen-
otypes responsible for episodes of legionellosis infection, if 
indeed they are present.

Discussion
Our findings reveal the population genomic structure for 
L. longbeachae, an emerging pathogen in Europe and 

the United States, and includes a genome-scale investi-
gation into an outbreak of L. longbeachae legionellosis. 
We provide evidence for extensive recombination and lat-
eral gene transfer among L. longbeachae, including the 
presence of widely distributed mosaic plasmids that have 
likely recombined with plasmids from other Legionella 
spp., suggesting an ecologic overlap or shared habitat. 
Our analysis highlights the need to account for recombi-
nation events when determining the genetic relatedness of 
L. longbeachae isolates.

Our application of whole-genome sequencing for di-
agnostic purposes revealed the misidentification, using 
current serotyping methods, of several L. anisa isolates as 
L. longbeachae and led to the identification of a putative 
novel Legionella sp. linked to legionellosis. These findings 
highlight the limitations of current typing methods for dif-
ferentiation of Legionella spp. and accurate identification 
of legionellosis etiology.

We used whole-genome sequencing to attempt to 
establish a genetic link between legionellosis infections 
and associated compost samples. Our inability to estab-
lish a link probably reflects the traditional strategy of 
single isolate sampling, which when applied to a highly 
diverse pool of L. longbeachae genotypes fails to detect 
the infecting genotype. We suggest that the approach 
to investigating the source of future legionellosis cases 
linked to growing media will require a radical revision 
of sampling protocols to maximize the chances of isolat-
ing the infecting strain, if present. Taken together, our 
findings provide a view of the population structure of 
L. longbeachae and highlight the complexities of trac-
ing the origin of legionellosis associated with growing 
media. Overall, our findings demonstrate the resolution 
afforded by whole-genome sequencing for understand-
ing the biology underpinning legionellosis and provide 
information that should be considered for future epide-
miologic investigations.
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Figure 4. Variation in 
gene content between 
environmental and patient 
Legionella longbeachae 
samples. A) Increase in 
pangenome size with every 
addition of a L. longbeachae 
genome. Environmental 
isolates pangenomes (green) 
are larger and continue 
increasing after the addition 
of 5 genomes, consistent with 
an open pangenome, but the 
within-patient pangenome 
plateaus quickly, consistent 
with a more closed pangenome. B) Average gene content of environmental isolates is significantly higher than that of clinical 
isolates (p = 0.01474).
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April 2015: Emerging Viruses
• �Reappearance of 

Chikungunya, Formerly 
Called Dengue, in the 
Americas

• �Hantavirus Pulmonary 
Syndrome, Southern 
Chile, 1995–2012

• �Animal-Associated 
Exposure to Rabies Virus 
among Travelers,  
1997–2012

• �Evolution of Ebola Virus 
Disease from Exotic 
Infection to Global 
Health Priority, Liberia, 
Mid-2014

• �Population Structure and 
Antimicrobial Resistance 
of Invasive Serotype IV 
Group B Streptococcus, 
Toronto, Ontario, Canada

• �Sequence Variability and 
Geographic Distribution 
of Lassa Virus,  
Sierra Leone

• �Norovirus Genotype 
Profiles Associated with 
Foodborne Transmission,  
1999–2012

• �Deaths Associated with 
Respiratory Syncytial and 
Influenza Viruses among 
Persons >5 Years of Age 
in HIV-Prevalent Area, 
South Africa, 1998–2009

• �Influenza A(H7N9) Virus 
Transmission between 
Finches and Poultry

• �Highly Pathogenic Avian 
Influenza A(H5N1) Virus 
Infection among Workers 
at Live Bird Markets, 
Bangladesh, 2009–2010

• �Increased Risk for Group 
B Streptococcus Sepsis in 
Young Infants Exposed to 
HIV, Soweto, South Africa, 
2004–2008

• �La Crosse Virus in Aedes 
japonicus japonicus 
Mosquitoes in the 
Appalachian Region, 
United States 

• �Multidrug-Resistant 
Salmonella enterica 
Serotype Typhi, Gulf of 
Guinea Region, Africa 

• �Reassortant Avian 
Influenza A(H9N2) 
Viruses in Chickens in 
Retail Poultry Shops, 
Pakistan, 2009–2010  

• �Candidate New Rotavirus 
Species in Sheltered 
Dogs, Hungary

• �Severity of Influenza 
A(H1N1) Illness and 
Emergence of D225G 
Variant, 2013–14 
Influenza Season, 
Florida, USA

• �Close Relationship of 
Ruminant Pestiviruses  
and Classical Swine 
Fever Virus  

• �Peste des Petits Ruminants 
Virus in Heilongjiang 
Province, China, 2014  

• �Enterovirus 71 
Subgenotype B5,  
France, 2013

• �West Nile Virus Infection 
Incidence Based on 
Donated Blood Samples 
and Neuroinvasive 
Disease Reports, 
Northern Texas,  
USA, 2012 

• �Influenza A(H10N7) Virus 
in Dead Harbor Seals, 
Denmark  
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