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Differential Regulation of Interleukin (IL)–4, IL-5, and IL-10 during Measles
in Zambian Children
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To determine the effect of measles virus infection on cytokine production in children from
sub-Saharan Africa, temporal changes in cytokine production in vivo were analyzed and the
T cell sources of type 1 and type 2 cytokines were identified in Zambian children with measles.
The immune response during measles involved early type 1 responses, with production of
interferon-g by CD8+ T cells and of interleukin (IL)–2 by CD4+ T cells. Subsequently, more-
prolonged increases were observed in the type 2 cytokines IL-4 and IL-13, both produced by
CD4+ T cells. IL-5 was regulated differently from IL-4 and IL-13: levels were low compared
with levels in control children and were reflected in lower eosinophil counts during measles.
Immunoglobulin E was lower in children with measles, despite high levels of IL-4 and IL-13.
Plasma levels of IL-10 were elevated for weeks, potentially contributing to impaired cellular
immunity and depressed hypersensitivity responses following measles.

Measles remains an important cause of child mortality, par-
ticularly in Africa and the Asian subcontinent [1], and most
deaths are due to secondary infections resulting from the ac-
companying immunosuppression [2–4]. For several weeks after
measles, delayed-type hypersensitivity skin test responses to re-
call antigens are depressed [4, 5], and there is an increased
susceptibility to other infections and autoimmune encephalo-
myelitis [6]. In vitro, lymphoproliferative responses to mitogens
are diminished [7, 8]. Despite these immunologic abnormalities,
measles virus is cleared, and a long-term protective immune
response is established.

An appropriate immune response to viral infection involves
recognition of the pathogen by the innate immune system,
expansion of antigen-specific T and B cells important for
pathogen clearance, and subsequent termination of the in-
flammatory process. Activation and regulation of these im-
mune responses requires complex interactions between many
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cell types and soluble factors. Cytokines play an important
role in the development and control of the immune response
and function as immune effectors and regulators. In mice, T
cells can be subdivided into type 1 cells, which produce in-
terleukin (IL)–2, interferon (IFN)–g, and lymphotoxin, and
type 2 cells, which produce IL-4, IL-5, and IL-13. This seg-
regation correlates well with the effector functions of type 1
T cells in delayed-type hypersensitivity and cell-mediated im-
munity and of type 2 T cells in providing help to B cells for
antibody production. Type 1 and type 2 cells are cross-reg-
ulatory, and murine models show that the type of immune
response induced by infection is often an important deter-
minant of susceptibility or resistance [9]. In humans, the array
of cytokines produced and their effects are similar to those
in mice, but the type 1/type 2 T cell paradigm is less clear.

Measles virus infects monocytes/macrophages, epithelial cells,
and endothelial cells [10, 11], all potential cellular participants
in the innate response and early sources of cytokines. Measles
virus directly down-regulates monocyte and dendritic cell pro-
duction of IL-12, an important cytokine for differentiation of
type 1 T cells [12, 13]. Nevertheless, measles virus–specific CD4�

and CD8� T cells with capacities for cytotoxicity, proliferation,
and production of multiple cytokines are stimulated and ex-
panded in lymphoid tissue, appear in the blood, and infiltrate
sites of viral replication [14–17]. B cells are stimulated to produce
IgM and maintain levels of high-titer, high-affinity measles vi-
rus–specific IgG. Characterization of the plasma cytokine profiles
of US and Peruvian children with measles has shown that IFN-
g and IL-2 are produced during the rash [18], but the cellular
sources of these type 1 cytokines are not known. As virus is
cleared and the rash fades, IL-4 becomes elevated, suggesting a
shift toward cytokines that provide B cell help important for
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Table 1. Plasma levels of interferon (IFN)–g and soluble interleukin-2 receptor (sIL-2R), in children with measles and
in control children without measles..

Group, time point

IFN-g sIL-2R

No. of
children

Mean,
pg/mL (SD)

Median,
pg/mL (IQR) Pa

No. of
children

Mean,
U/mL (SD)

Median,
U/mL (IQR) Pa

�3 days after rash onset 25 127 (155) 76 (40–128) .02 44 3885 (2143) 3569 (2453–4510) .0001
4–7 days after rash onset 33 84 (199) 30 (10–48) .2 53 3403 (1776) 3014 (2307–4163) .0001
8–14 days after rash onset 7 37 (17) 26 (25–56) .1 21 3175 (1324) 3118 (2451–3478) .001
1–month follow-up 31 63 (84) 29 (21–55) .1 38 1713 (822) 1378 (1151–2198) .2
Control children 23 117 (170) 10 (10–266) 27 1987 (944) 1757 (1274–2274)

NOTE. HIV, human immunodeficiency virus; IQR, interquartile range.
a Comparison with HIV-uninfected control children.

Figure 1. Intracellular cytokine staining of lymphocyte subsets in children with measles. IFN, interferon; IL, interleukin.

antibody production. One hypothesis for measles virus–induced
immunosuppression is that IL-4, and perhaps other type 2 cy-
tokines important for B cell maturation and differentiation, sup-
presses monocyte/macrophage responses to subsequent patho-
gens, resulting in the increased susceptibility to secondary in-
fection after measles [19].

Immune responses to measles virus can be influenced by nu-
tritional deficiencies and by ongoing immune responses to cur-

rent and past infections, both likely to be problems in devel-
oping countries, where measles is most prevalent. To determine
the effect of measles virus infection on cytokine production in
children from sub-Saharan Africa and to expand our knowl-
edge of the process of immunoregulation during measles, we
analyzed the temporal changes in plasma cytokine levels and
identified the T cell sources of representative type 1 and type
2 cytokines in Zambian children with measles.
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Table 2. Plasma levels of type 2 cytokines, IgE, and eotaxin, in children with measles and in control children without measles.

Parameter, time point

IL-4 IL-13 IgE Eotaxin

No. of

children

Mean,

pg/mL

(SD)

Median,

pg/mL

(IQR) Pa
No. of

children

Mean,

pg/mL

(SD)

Median,

pg/mL

(IQR) Pa
No. of

children

Mean,

IU/mL

(SD)

Median,

IU/mL

(IQR) Pa
No. of

children

Mean,

pg/mL

(SD)

Median,

pg/mL

(IQR) Pa

�3 days after rash onset 29 32 (41) 15 (15–31) .06 42 65 (60) 42 (15–105) .06 20 89 (170) 13 (5–126) .1 32 22 (11) 20 (14–28) .005

4–7 days after rash onset 35 115 (392) 15 (15–50) .001 50 61 (51) 45 (15–85) .02 35 56 (99) 11 (5–64) .04 31 25 (18) 19 (15–35) .003

8–14 days after rash onset 17 30 (37) 15 (15–36) .09 18 54 (46) 40 (15–73) .1 15 53 (87) 5 (5–54) .08 10 17 (8) 15 (13–18) .1

1-month follow-up 37 53 (94) 15 (15–48) .002 51 54 (50) 42 (15–66) .1 29 94 (226) 25 (5–50) .1 24 20 (19) 15 (12–22) .1

Control children 52 16 (7) 15 (15–15) 36 47 (56) 15 (15–56) 19 154 (226) 118 (5–226) .1 17 16 (8) 12 (12–12)

NOTE. HIV, human immunodeficiency virus; IL, interleukin; IQR, interquartile range.
a Comparison with HIV-uninfected control children.

Table 3. Plasma levels of interleukin (IL)–5 and eosinophil counts, in children with measles and in control children without
measles.

Parameter, time point

Eosinophil count IL-5

No. of
children

Mean,
cells/mm3 (SD)

Median,
cells/mm3 (IQR) Pa

No. of
children

Mean,
pg/mL (SD)

Median,
pg/mL (IQR) Pa

�3 days after rash onset 84 30 (107) 0 (0–0) .0001 44 145 (174) 15 (15–243) .01
4-7 days after rash onset 84 128 (278) 0 (0–138) .001 51 179 (184) 157 (15–280) .1
8-14 days after rash onset 35 120 (208) 46 (0–130) .04 19 66 (142) 15 (15–15) .0001
1-month follow-up 68 177 (214) 114 (0–268) .7 34 155 (189) 15 (15–293) .03
Control children 65 226 (324) 124 (0–270) 32 220 (167) 190 (76–321)

NOTE. HIV, human immunodeficiency virus; IQR, interquartile range.
a Comparison with HIV-uninfected control children.

Subjects and Methods

Subjects. We studied children hospitalized at the University
Teaching Hospital, Lusaka, Zambia, between January 1998 and Oc-
tober 2000 who had a clinical diagnosis of measles (fever and maculo-
papular rash with conjunctivitis, rhinorrhea, or cough). Children who
were severely ill or who died within hours of admission were less
likely to be enrolled. In addition, the number of children enrolled
per day was limited by the laboratory’s capacity for processing spec-
imens. Parents or guardians were asked to return with the child 1
month after discharge, but active tracing of children who failed to
return was not done. A blood specimen and clinical information
were collected at hospital admission, discharge, and a 1-month fol-
low-up visit. Human immunodeficiency virus (HIV)–uninfected chil-
dren with measles were compared with a group of HIV-uninfected
children without acute illness, who were recruited from a well-child
clinic or local school and confirmed to be negative for IgM antibody
to measles virus.

Specimen collection and processing. Blood specimens were col-
lected in EDTA tubes and transported to the laboratory. Aliquots
of whole blood were removed for white blood cell counts and
monoclonal antibody staining for flow cytometry. White blood cell
counts and differential white blood cell counts were determined
manually. Plasma was separated and stored in aliquots at �70�C
for later measurement of plasma levels of antibodies to measles
virus and HIV, HIV RNA, IgE, cytokines, and eotaxin.

Detection of measles virus IgM antibody. Measles was con-
firmed by detection of measles virus–specific IgM in plasma by
EIA (Wampole Laboratories). Children were classified as having
measles if measles virus–specific IgM was detected at any time
point.

Detection of HIV RNA. Plasma was tested for antibody to
HIV by EIA (Organon Technika). Plasma samples from children
with a positive result of EIA for antibody to HIV were assayed
for HIV RNA. Plasma levels of HIV RNA were quantified by a
reverse-transcription polymerase chain reaction assay (Amplicor
HIV-1 Monitor version 1.5; Roche Molecular Systems). Children
were classified as being HIV infected if HIV RNA was detected in
a plasma sample from any time point and were excluded from
subsequent analysis.

Plasma cytokine, cytokine receptor, chemokine, and IgE levels.
Plasma levels of IL-4, IL-5, IL-10, IL-13, and IFN-g were quan-
tified by EIA on stored plasma samples. Primary and secondary
antibody pairs (Pharmingen) were used according to the manu-
facturer’s instructions. Avidin–horseradish peroxidase was used to
detect biotin-labeled secondary antibodies, and dilutions of recom-
binant human cytokines (Pharmingen) were used as standards. EIA
kits were used to measure plasma levels of soluble IL-2 receptor
(sIL-2R) (Endogen), the chemokine eotaxin (Pharmingen), and IgE
(United Biotech). Optical density readings were interpreted with
SOFTmax PRO software (Molecular Devices). Values below the
limit of detection were assigned values midway between 0 and the
lower limit of detection, for the purpose of analysis.

Intracellular cytokine staining. Mononuclear cells were stained
for intracellular cytokines after incubation at 37�C in 5% CO2 for
3 h in the presence of phorbol 12-myriastate 13-acetate (50 ng/mL)
and ionomycin (1 mg/mL), with use of Cytoperm/Cytofix reagents
(Pharmingen), according to the manufacturer’s instructions. Stim-
ulated mononuclear cells were harvested, washed, and stained for
surface markers with use of fluorescein isothiocyanate–conjugated
antibodies to CD4, CD8, or CD56 (Becton Dickinson) at 4�C. After
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Figure 2. Median plasma interleukin (IL)–10 levels in children with
measles and in control children. ** .P ! .0001

being washed and preblocked with equivalent amounts of appro-
priate isotypes of mouse or rat immunoglobulin at 4�C, cells were
permeabilized and stained with phycoerythrin-conjugated antibod-
ies to intracellular IL-4, IL-5, IL-10, or IL-13 (Pharmingen). Flow
cytometric analysis on 105 cells was done on a FACScan flow cy-
tometer that used Cell Quest software (Becton Dickinson).

Statistical analysis. The Kruskal-Wallis test was used to de-
termine whether measurements for children with measles differed
from those of control children. Differences in sex distribution be-
tween study groups were compared by the x2 test, and differences
in median age between study groups were compared by the Krus-
kal-Wallis test. No formal adjustment was made for multiple test-
ing. Data analysis was done with Stata statistical software (version
6.0; Stata).

Results

Study children. Plasma cytokine assays were done on sam-
ples from 161 HIV-uninfected children with measles and 63
HIV-uninfected children without acute illness. Not all cytokine
assays were done for all children or at all time points. The
median age of the children with measles (18 months; inter-
quartile range [IQR], 9–45 months) did not differ from the
median age of control children (21 months; IQR, 10–92 months;

). Fifty-five percent of the children with measles and 49%P p .4
of the control children were boys ( ). The median numberP p .2
of days of rash at study entry for children hospitalized with
measles was 3 (IQR, 2–4 days), the median number of days of
hospitalization was 6 (IQR, 5–8 days), and the median number
of days from rash onset to the 1-month follow-up visit was 38
(IQR, 36–39 days).

Type 1 cytokines. To assess the production of type 1 cy-
tokines during measles in Zambian children, plasma levels of
IFN-g and sIL-2R were measured (table 1). IFN-g levels were
elevated in children with measles during the first 3 days after
rash onset and then returned to control values, whereas sIL-
2R levels remained elevated for at least 2 weeks, compared with
levels in control children. IFN-g was detected by intracellular
cytokine staining after in vitro stimulation predominantly in

CD8� T lymphocytes and NK cells in the 2 weeks following
onset of rash (figure 1). As many as one-third of CD8� T cells
and up to 20% of CD56� lymphocytes were positive for IFN-
g in the 1–2 weeks following the onset of the rash. In contrast,
intracellular IL-2 was detected in a higher proportion of CD4�

T cells after in vitro stimulation. Similar patterns of intracellular
cytokine staining were observed when data were analyzed by
number of cells rather than percentage (data not shown).

Type 2 cytokines. The genes for IL-4, IL-5, and IL-13 are
clustered on chromosome 5 and are frequently coexpressed in
conditions associated with activation of Th2 cells [20]. Studies
of North and South American children with measles showed
a persistent increase in IL-4 as the rash cleared [21]. To deter-
mine whether the pattern was similar in Zambian children and
whether IL-5 and IL-13 showed patterns similar to IL-4, plasma
levels of these cytokines were measured (table 2). IL-4 and IL-
13 levels were elevated in children with measles compared with
levels in control children. Plasma levels of IL-4 remained sig-
nificantly higher than control levels at the 1-month follow-up,
whereas plasma levels of IL-13 decreased to levels similar to
those of control children 1–2 weeks after rash onset. In contrast,
plasma levels of IL-5 were lower in Zambian children with
measles than in control children at all times after onset of rash
(table 3).

IL-4 and IL-13 were detected intracellularly primarily in
CD4� T cells, whereas IL-5 was detected in an almost equal
proportion of CD4� and CD8� T cells (figure 1). The propor-
tion of CD4� T cells positive for any of these cytokines was
lower than that observed for IL-2.

Eosinophils, IgE, and eotaxin. The type 2 cytokines regulate
a number of immunologic functions associated with allergic
responses, as well as providing B cell help [22]. Because IL-4
and IL-13 are important regulators of IgE class switching in B
cells [23], plasma IgE levels were measured (table 2). Surpris-
ingly, IgE levels were lower in children with measles than in
control children. IL-5 is an important regulator of eosinophil
production, maturation, and survival [24], so eosinophil counts
were also assessed (table 3). As with plasma levels of IL-5,
numbers of circulating eosinophils were lower in children with
measles than in control children, but they gradually increased
to control levels at follow-up. IL-4 induces eotaxin, a chemo-
kine that attracts eosinophils [25], and plasma levels of eotaxin
were higher in children with measles during the first week after
rash onset (table 2).

IL-10. IL-10 was originally characterized as a factor gen-
erated by mouse Th2 cells that inhibited cytokine synthesis by
Th1 cells [26]. However, in humans, IL-10 is produced by Th0,
Th1, and Th2 cells, as well as a number of other cell types,
including macrophages, CD8� T cells, B cells, keratinocytes, and
NK cells [27–31]. IL-10 is a multifunctional cytokine, but primary
roles appear to be in the later phases of an immune response for
maturation of antibody-secreting B cells and down-regulation of
inflammatory processes [31–35]. Plasma levels of IL-10 were el-
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evated in children with acute measles and during convalescence
(figure 2), and production of IL-10 by T cells was primarily de-
tected in the CD4� population (figure 1).

Discussion

The present study has shown that immune activation during
measles in Zambian children was similar in many respects to
that in previously studied US and Peruvian children, and our
data support the hypothesis that cytokines induced by measles
virus infection may play a role in subsequent immunosuppres-
sion. Specifically, sustained high levels of IL-10 during con-
valescence suggest a role for this immunoregulatory cytokine
in measles virus–induced immunosuppression. However, fea-
tures related to IL-5, eosinophilia, and levels of IgE distin-
guished these Zambian children from children with measles
studied elsewhere. The immune response during measles in-
volved early type 1 responses, with production of IFN-g pre-
dominantly by CD8� T cells and IL-2 predominantly by CD4�

T cells during the rash phase of the illness. During and after
this phase, more-prolonged increases were observed in the type
2 cytokines IL-4 and IL-13, cytokines likely produced by CD4�

T cells, as demonstrated by intracellular staining after in vitro
stimulation. IL-5 was produced in vitro by both CD4� and
CD8� T cells and was regulated differently from IL-4 and IL-
13; plasma levels were low in children with measles, compared
with the high levels present in control children. Lower levels of
IL-5 were reflected in lower eosinophil counts, compared with
those in control children. IgE was also lower in children with
measles, despite high levels of IL-4 and IL-13.

Each stage in the immunologic response to measles virus is
likely to be important in determining the outcome of the mea-
sles virus infection and the associated immunosuppression. The
rash marks the onset of the immune-mediated clearance of mea-
sles virus from multiple sites of replication. Mean plasma IFN-
g levels were elevated only for the 3 days after the onset of the
rash. The high level of IFN-g during the rash is similar to
observations in other populations of children with measles,
which demonstrated early elevation of IFN-g prior to rash
onset [18]. IFN-g is a critical participant in type 1 immune
responses, because it stimulates macrophage activation and in-
creases expression of major histocompatibility complex class I
and II molecules on antigen-presenting cells [36]. IFN-g was
produced primarily by CD8� T cells and NK cells after stim-
ulation in vitro, which is consistent with the detection of measles
virus–specific cytotoxic T lymphocytes in circulation during the
measles rash and the proposed role for cytotoxic T lymphocytes
in virus clearance [15, 16]. Other studies have shown that ac-
tivation of CD8� T cells, as evidenced by production of soluble
CD8� and surface expression of activation markers such as
Fas, is greatest during the rash and is quickly down-regulated
as virus is cleared and the rash fades [37] (authors’ unpublished
data). These changes are likely to reflect the rapid expansion

and prompt elimination of antigen-specific CD8� T cells with
the decrease in viral antigen, as documented in other acute viral
infections [38].

In contrast to CD8� T cells, CD4� T cells tend to remain
activated for a longer period of time and are presumed to reg-
ulate the ongoing maturation of the memory immune response
to measles virus. However, differences in the production of type
1 and 2 cytokines by activated CD4� T cells were apparent. In
the acute phase of measles, IL-2, a type 1 cytokine that stim-
ulates proliferation of lymphocytes, was produced primarily by
CD4� T cells after in vitro stimulation, and sIL-2R, a com-
ponent of the a-chain of the IL-2 receptor, was released from
the surface of proliferating cells. Studies elsewhere have shown
that plasma levels of IL-2 are elevated for 10–12 days after
onset of rash [21]. As observed in the present study, levels of
sIL-2R decline somewhat more slowly, which is consistent with
the longer half-life of sIL-2R compared with plasma IL-2.

Plasma levels of the type 2 cytokines IL-4 and IL-13, produced
primarily by CD4� T cells, also increased in children with mea-
sles. Studies elsewhere have shown elevations of plasma IL-4 for
at least 7 weeks after onset of rash in some children [21], and,
in the present study, mean plasma IL-4 was increased for at least
5 weeks, although not in all children. High levels of IL-4 are
produced by cultured peripheral blood mononuclear cells from
children with measles, and antibody to IL-4 improves lympho-
proliferative responses, suggesting a role for IL-4 in immuno-
suppression [21]. IL-13 shares a number of functions with IL-4
but has not previously been studied in measles. Both cytokine
receptors use the IL-4R a-chain [39], decrease cytokine produc-
tion by monocytes, and increase IgE synthesis and eotaxin pro-
duction [40, 41]. Despite the elevation of IL-4 and IL-13 during
measles and the ability of measles virus to synergize with IL-4
to induce IgE production in vitro [42, 43], IgE levels were sup-
pressed in Zambian children with measles compared with those
in control children. In previous studies of Peruvian children with
measles, plasma IgE levels were elevated during the few days
before and for at least 1 week after the onset of rash [42].

In contrast to IL-4 and IL-13, plasma levels of IL-5 were
decreased in children with measles compared with those in con-
trol children, at essentially all time points examined. Although
these 3 cytokines are often expressed together, pathways for
selective expression have been identified [44–48]. IL-5 is pro-
duced by both CD4� and CD8� T cells [49] and can also be
expressed by NK cells [50]. IL-5 is an important regulator of
eosinophil production and survival [51, 52] and is clearly linked
with eosinophilia in helminth infections [53]. In mice, IL-5 pro-
motes B cell proliferation and differentiation and IgE class
switching [54] but whether IL-5 plays a role in human B cell
maturation remains controversial. Therefore, lower eosinophil
counts in Zambian children with measles are consistent with
the lower levels of IL-5 that were present, but they differ from
previous observations during measles in humans and experi-
mentally infected macaques. The only previous published study
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of plasma IL-5 levels in acute measles failed to detect meas-
urable levels of either IL-5 or IL-4 in 9 of 10 patients [55].
However, in addition to increased IL-4 [21], we have also ob-
served elevated plasma IL-5 levels in Peruvian children with
measles for 2 weeks following rash onset (unpublished data).

In comparing Zambian with Peruvian children, the major
differences appear to be in the levels of IgE, IL-5, and eosin-
ophils. Mean control levels of IgE were 154 IU/mL in Zambian
children, and control levels of IL-5 were 220 pg/mL. These data
suggest that children in Zambia have high baseline levels of
IgE, IL-5, and eosinophils and that measles virus or the immune
response to measles virus suppresses these previously high lev-
els. This is further suggested by the fact that, in children with
measles, levels of IgE, IL-5, and eosinophils rise toward control
values after recovery. The most likely explanation for these high
control levels would be chronic helminth infection in Zambian
children. Preliminary studies suggest that Ascaris infection is
common in Zambian children (unpublished data), as it is in
other sub-Saharan African populations [56].

The depressed eosinophil counts and plasma IgE and IL-5
levels in Zambian children with measles may be due in part to
the immunoregulatory effects of IL-10 [57, 58]. Plasma levels
of IL-10 remained elevated for weeks in Zambian children with
measles. IL-10 can accelerate eosinophil death by suppressing
production of factors that are critical to eosinophil survival,
such as granulocyte-macrophage colony-stimulating factor [59].
IL-10 inhibits IL-5 production by T lymphocytes costimulated
through CD28 [60–62] and inhibits IL-5 production in several
mouse models of allergic disease [63, 64]. In addition, IL-4–in-
duced synthesis of IgE can be prevented by IL-10 [65–67], and
IL-10 has been hypothesized to play a critical role in the de-
creased prevalence of atopy among persons with chronic hel-
minth infections [68, 69].

The primary cellular source of IL-10 and the means of its
induction during measles are not clear. Monocytes and mac-
rophages are an important source of IL-10, and production in
vitro is directly induced by viruses that infect macrophages,
such as HIV, rhinovirus 14, respiratory syncytial virus, parain-
fluenza virus type 3, and murine cytomegalovirus [70–76]. Few
studies have measured IL-10 levels in vivo following acute viral
infection. Plasma or serum IL-10 levels are increased during
persistent infection with hepatitis C virus [77], transiently in-
creased in rubella and influenza virus infections [78, 79], and
increased for 10 days after rash onset in Japanese children with
measles [80]. Because measles virus infects monocytes and mac-
rophages [10, 11], IL-10 could be directly induced by measles
virus infection. Stimulation of monocytes in peripheral blood
from measles patients in The Gambia did not show an increase
in IL-10 secretion, compared with control subjects [81], but the
relevant monocytes and macrophages are probably in tissue.
Alternatively, the immune response to measles virus may result
in increased IL-10 production by cells not directly infected.
Small numbers of CD4� T cells were positive for intracellular

IL-10, but these cells are unlikely to be the primary source of
IL-10 in these children.

The synthesis of IL-10 is likely to be important for develop-
ment of the sustained high-quality antibody response that char-
acteristically accompanies recovery from measles. IL-10 enhances
B cell proliferation, prevents the death of germinal center B cells,
and induces B cell differentiation into antibody-secreting cells
[32, 82]. However, IL-10 is also broadly immunoregulatory and
immunosuppressive. IL-10 down-regulates the synthesis of a wide
array of cytokines, suppresses macrophage activation, suppresses
T cell proliferation, and promotes the release of cytokine inhib-
itors [29, 33, 73, 83–85]. IL-10 has been linked to a shift from
type 1 to type 2 responses in chronic murine schistosomiasis [86]
and to virus-induced immunosuppression [87]. In fact, some her-
pesviruses produce a virally encoded IL-10 that may suppress
antiviral immune responses [88, 89]. IL-10 could account for
many of the manifestations of immunosuppression observed dur-
ing and after measles [4, 5]. IL-10 inhibits delayed-type hyper-
sensitivity responses [90, 91] and T cell proliferation to mitogens
[92, 93] and increases susceptibility to other infections by im-
pairing macrophage function [94–97].

We report several novel observations concerning cytokine
responses during measles virus infection. The findings suggest
that plasma levels of IL-5, IgE, and eosinophils are regulated
differently in Zambian children than in previously studied
American or Peruvian children, perhaps because of nutritional
deficiencies or concurrent infections. We also observed high
plasma levels of IL-10, potentially contributing to the impaired
cellular immunity and depressed hypersensitivity responses that
follow measles.
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