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When our measurement instruments sample from only a subspace of the domain that we 
are seeking to understand, or when they sample with uneven sampling density from the 
target domain, the resulting data will be affected by a selection effect. If we ignore such 
selection effects, our conclusions may suffer from selection biases. 

A classic example of selection bias is the election poll taken by the Literary 
Digest in 1936. On the basis of a large survey, the Digest predicted that Alf Langdon, the 
Republican presidential candidate, would win by a large margin. But the actual election 
resulted in a landslide for the incumbent, Franklin D. Roosevelt. How could such a large 
sample yield such a wayward prediction? The Digest, it turned out, had harvested the 
addresses for its survey mainly from telephone books and motor vehicle registries. This 
introduced a strong selection effect. The poor of the depression era, a group that 
disproportionally supported Roosevelt, often did not have phones or cars. 
 Observation selection effects are an especially subtle kind of selection effect that 
is introduced not by limitations in our measurement apparatuses but by the fact that all 
evidence is preconditioned on the existence of an observer to “have” the evidence and to 
build the instruments in the first place. Observation selection effects have only quite 
recently become the subject of systematic study. As well as being of philosophical 
interest, they are important in many scientific areas, including cosmology, parts of 
evolution theory, and the foundations of thermodynamics and quantum theory. There are 
also interesting applications to the search for extraterrestrial life and questions such as 
whether we might be living in a computer simulation created by an advanced civilization 
[1]. 
 Observation selection theory owes a large debt to Brandon Carter, who wrote 
several seminal papers on the subject, the first one published in 1974 [2-5]. Although 
there were many precursors, one could fairly characterize Carter as the father of 
observation selection theory – or “anthropic reasoning” as the field is also known. Carter 
coined the “weak” and the “strong anthropic principle”, intending them to express 
injunctions to take observation selection effects into account. Yet while Carter knew how 
to apply his principles to good effect, his explanation of the methodology they were 
meant to embody was less than perfectly clear. The meaning of the anthropic principles 
was further obscured by some later interpreters, who endowed them with additional 
content quite unrelated to observation selection effects. This contraband content, which 
was often of a speculative, metaphysical, or teleological nature, caused “anthropic” 
reasoning to fall into disrepute.1 The confusion about what anthropic reasoning is 

                                                 
1 See e.g. [6, 7]. Anthropic reasoning was first brought to the attention of a wider audience in [8]. 
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continues to the present day, although there now seems to be a growing recognition that it 
amounts to something interesting and legitimate. 
 Since Carter’s pioneering explorations, considerable effort has been devoted to 
working out of the applications of anthropic principles, especially as they pertain to 
cosmological fine-tuning. There have also been many philosophical investigations into 
the foundations of anthropic reasoning. These investigations have revealed several 
serious paradoxes, such as the Doomsday argument [9], the Sleeping Beauty problem 
[10] [11], and the Adam and Eve and the UN++ thought experiments [12]. It is still 
controversial what conclusions we should draw from the apparent fine-tuning of our 
universe, as well as whether and to what extent our universe really is fine-tuned, and even 
what it means to say that it is fine-tuned. 
 Developing a theory of observation selection effects that caters to legitimate 
scientific needs while sidestepping the paradoxes is a non-trivial challenge. In my recent 
book Anthropic Bias: Observation Selection Effects in Science and Philosophy, I 
presented the first mathematically explicit general observation selection theory and 
examined some of its implications. 
 Before sketching some of the basic elements of this theory and illustrating how it 
applies to the multiverse hypothesis, let us briefly consider some of the difficulties that 
such a theory must overcome. 
 

��� ���� ��� � ������������� ���������
The anthropic principles proposed by Carter, even setting aside the inadequacies the way 
they were formulated, were insufficiently strong for many scientific applications. A key 
shortcoming is that they were not probabilistic. 

Carter’s principles enable us to handle some straightforward cases. Consider a 
simple theory that says that there are 100 universes, and that 90 of these are lifeless and 
10 contain observers. What does such a theory predict that we should observe? Clearly 
not a lifeless universe. Since lifeless universes contain no observers, an observation 
selection effect, as enunciated by the strong anthropic principle, precludes them from 
being observed. Although the theory claims that the majority of universes are lifeless, it 
nevertheless predicts that we should observe one of the atypical universes that contain 
observers. 

Let’s take a slightly more complicated case. Suppose a theory says that there are 
100 universes of the following description: 
 

90 type-A universes, which are lifeless 
9 type-B universes, which contain one million observers each 
1 type-C universe, which contains one billion observers 

 
What does this theory predict that we should observe? (We need to know the 

answer to this question in order to determine whether it is confirmed or disconfirmed by 
our observations.) As before, an obvious observation selection effect precludes type-A 
universes from being observed, so the theory does not predict that we should observe one 
of those. But what about type-B and type-C universes? It is logically compatible with the 
theory that we should be observing a universe of either of these kinds. However, 
probabilistically it is more likely, conditional on the theory, that we should observe the 
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type-C universe, because that is what the theory says that over 99% of all observers 
observe. Finding yourself in a type-C universe would, ceteris paribus, tend to confirm 
such a theory, to at least some degree, compared to other theories that imply that most 
observers live in type-A or type-B universes. 

To get this result, we must introduce a probabilistic strengthening of the anthropic 
principle along the lines of what I have called the Self-Sampling Assumption [11, 13, 14]: 
 

(SSA) One should reason as if one were a random sample from the set of all 
observers in one’ s reference class.2 

 
With the help of SSA, we can calculate the conditional probabilities of us making a 
particular observation given one theory or another, by comparing what fraction of the 
observers in our reference class would be making such observations according to the 
competing theories. 
 What SSA does is enable us to take indexical information into account. Consider 
the following two evidence statements concerning the current temperature of the cosmic 
microwave background radiation (CMB)3: 
 

E: An observation of CMB = 2.7K is made. 
E*: We make an observation of CMB = 2.7K. 

 
Note that E* implies E, but not vice versa. E*, which includes a piece of indexical 
information, is logically stronger than E. It is consequently E* that dictates what we 
should believe in case these different evidence statements lead to different conclusions. 
This is a corollary of the principle that all relevant information should be taken into 
account. 
 Let us examine a case where it is necessary to use E* rather than E [21]. Consider 
two rival theories about the local temperature of CMB. Let T1 be the theory we actually 
hold, claiming that CMB = 2.7K. Let T2 say that CMB = 3.1K. Now, suppose that the 
universe is infinitely large and contains an infinite number of stochastic processes of 
suitable kind, such as radiating black holes. If for each such random process there is a 
finite, non-zero probability that it will produce an observer in any particular brain state 
(subjectively making an observation e), then, because there are infinitely many 
independent “ trials” , the probability, for any given observation e, that e will be made by 
some observer somewhere in the universe is equal to 1. Let B be the proposition that this 
is the case. We might wonder how we could possibly test a conjunction like T1&B, or 
T2&B. For whatever observation e we make, both these conjunctions predict equally well 
(with probability 1) that e should be made. According to Bayes’ s theorem, this entails 
that conditionalizing on e being made will not affect the posterior probability of T1&B, or 
of T2&B. And yet it is obvious that the observations we have actually made support T1&B 

                                                 
2 Related principles have also been explored in e.g. [15-18]; see also [19, 20]. 
3 In this toy example, we assume that the “ current time”  is defined with reference to some other parameter 
of cosmological evolution than the temperature of the background radiation itself. To avoid this inelegancy, 
we could change the example and pick some stochastic constant, such as the half-life of some particle, and 
let T1 and T2 be two theories that make different assertions about the value of this constant. 
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over T2&B, for, needless to say, it is because of our observations that we believe that 
CMB = 2.7K and not 3.1K. 
 The problem is solved by using the stronger evidence statement E* and applying 
SSA. For any reasonable choice of reference class, T1&B implies that a much larger 
fraction of all observers in that class should observe CMB = 2.7K than CMB = 3.1K, than 
does T2&B. (According to T1&B, all normal observers observe CMB = 2.7K, while on 
T2&B only some exceptional black-hole-emitted observers, or those who suffer from rare 
illusions, or those who are witnessing a local thermal fluctuation, observe CMB = 3.1K.) 
Given these facts, SSA implies: 
 

P(E* | T1&B) >> P(E* | T2&B)  (1) 
 
From (1) it is then easy to show that our actual evidence E* does indeed give us reason to 
believe T1&B rather than T2&B. In other words, SSA makes it possible for us to learn that 
CMB = 2.7K. 
 In the foregoing reasoning, we have set aside the problem of exactly how the 
reference class is to be defined. In the above example, any reference class definition 
satisfying some very weak constraints would do the trick. To keep things simple, we have 
also ignored the problem of how to generalize SSA to deal with infinite domains. Strictly 
speaking, such an extension, which might involve focusing on densities rather than sets 
of observers, would be necessary to handle the present example.4 
 We can also find support for SSA in thought experiments like the following.  
 

Dungeon 
The world consists of a dungeon that has one hundred cells. In each 
cell there is one prisoner. Ninety of the cells are painted blue on the 
outside and the other ten are painted red. Each prisoner is asked to 
guess whether he is in a blue or a red cell. (And everybody knows all 
this.) You find yourself in one of these cells. What color should you 
think it is? – Answer: Blue, with 90% probability. 

 
Since 90% of all observers are in blue cells, and you don’t have any 

other relevant information, it seems that you should set your credence (your 
subjective probability) of being in a blue cell to 90%. Most people seem to 
agree that this is the correct answer. Since the example does not depend on 
the exact numbers involved, we have the more general principle that in cases 
like this, your credence of having property P should be equal to the fraction of 
observers who have P. You reason as if you were a randomly selected 
observer, in accordance with SSA. 

While many accept without further argument that SSA is applicable to 
Dungeon, it may be useful briefly to consider how this view could be defended 
if challenged. One argument one can adduce is the following. Suppose that 

                                                 
4 We could still make the present point by considering another example in which the universe is assumed to 
be finite but so big that both theories predict that observations of both temperatures will be made by some 
observers. 
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everyone accepts SSA and everyone has to bet on whether they are in a blue 
or a red cell. Then 90% of the prisoners will win their bets; and only 10% will 
lose theirs. If, on the other hand, SSA is rejected and the prisoners think that 
one is no more likely to be in a blue cell than in a red cell, and they bet, for 
example, by tossing a coin, then on average merely 50% of them will win and 
50% will lose. It seems better that SSA be accepted. 

What allows the people in Dungeon to do better than chance is that 
they have a relevant piece of empirical information regarding the distribution 
of observers over the two types of cells: they have been informed that 90% are 
in blue cells. It would be irrational not to take this information into account. 
We can imagine a series of thought experiments where an increasingly large 
fraction of observers are in blue cells – 91%, 92%, …, 99%. As the situation 
gradually degenerates into the limiting 100%-case where they are simply 
told, “You are all in blue cells,” from which each prisoner can deductively 
infer that he is in a blue cell, it is plausible to require that the strength of 
prisoners’ beliefs about being in a blue cell should gradually approach 
probability one. SSA has this property. 

It is worth noting that we did not specify how the prisoners arrived in their cells. 
The prisoners’  history is irrelevant so long as they do not know anything about it that 
gives them clues as to the color of their cell. For example, they may have been allocated 
to their respective cells by some objectively random process such as by drawing balls 
from an urn (while blindfolded so they could not see where they ended up). But the 
thought experiment does not depend on there being a well-defined randomization 
mechanism. One may just as well imagine that prisoners have been in their cells since the 
time of their birth, or indeed since the beginning of the universe. If there is a possible 
world in which the laws of nature determine, without any appeal to initial conditions, 
which individuals are to appear in which cells and how each cell will be painted, then the 
inmates would still be rational to follow SSA, provided only that they did not have 
knowledge of the laws or were incapable of deducing what the laws implied about their 
own situation. Objective chance, therefore, is not an essential ingredient of the thought 
experiment. It runs on low-octane subjective uncertainty. 
 We see that there are contexts in which we need to take indexical information into 
account in order to connect theory with observation. We need a theory of how to do so. 
This is represented by the box complementing “ standard statistics”  in figure 1.  
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The methodology embodied in SSA receives support from thought experiments and from 
its utility in helping to make sense of apparently legitimate scientific inferences. 
However, if we use SSA with what may seem like the most natural choice of reference 
class, the universal reference class consisting of all intelligent observers, we encounter 
paradoxes. One of these is the Doomsday argument, which purports to show that we have 
systematically underestimated the probability of impending extinction for our species. 
 Suppose that a large urn filled with consecutively numbered balls is placed in 
front of you. The urn contains either ten or a million balls. If you randomly select a ball 
from the urn, and you find that it is ball number 7, that gives you strong evidence for the 
hypothesis that the urn contains only ten balls. Analogously, if you use the SSA with the 
universal reference class, thus reasoning as if you were a random sample from the class 
of all observers that will ever have lived, you can calculate the conditional probabilities, 
given various hypothesis about the total size of the human species, of this random sample 
having the particular “ birth rank”  that you have (i.e. your position in the sequence of all 
humans that will ever have lived).5 For example, if you consider two hypotheses about 
how many humans there will have been, 200 billion or 200 trillion, and your birth rank is 
number 60 billion, then the SSA with the universal reference class implies that the 
conditional probability of you having rank 60 billion is a thousand times greater on the 
hypothesis “ total = 200 billion”  than on the hypothesis “ total = 200 trillion” . After 
Bayesian conditionalization on this piece of information about your birth rank, you find 
that “ total = 200 billion”  has gained dramatically in probability relative to its more 
optimistic alternative.6 
 The Doomsday argument does not imply any particular probability of impending 
extinction because the posterior probability of “ doom soon”  depends also on the 
                                                 
5 Let us assume the simplest case here, that the humanity is the only intelligent species in the world. 
6 Note that the argument depends on the fact that whether the total is 200 billion or 200 trillion, someone 
was bound to have rank 60 billion, just as it was guaranteed that there would be a ball numbered 7 in the 
urn analogy. 

Indexical 
information 

Non-indexical 
information 

OOBBSSEERRVVAATTIIOONN  

TTHHEEOORRYY  
(Cosmology, Physics, Evolution, …) 

STANDARD 
STATISTICS 

OBSERVATION 
SELECTION THEORY 

Figure 1. Observation selection theory is a complement to standard statistics, 
needed to handle cases where either the evidence or the hypothesis includes an 
indexical component. 
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empirical prior that we start out with. This prior should take into account factors such as 
our best guesses about the risks of germ warfare, nuclear war, meteor strikes, destructive 
nanotechnology, etc. Nevertheless, independently of the particular prior used, the 
posterior will be systematically skewed in favor of more pessimistic hypotheses. (The 
posterior probability of our descendants ever colonizing the galaxy would be truly dismal 
for any plausible prior, as this would make our own place in human history exceedingly 
atypical.) 
 The most common initial reaction to the Doomsday argument is that it must be 
wrong. Moreover, it is typically asserted that it is wrong for some obvious reason. 
However, when it comes to explaining why it is wrong, it turns out that there are almost 
as many explanations as there are disbelievers, and the explanations tend to be mutually 
inconsistent. On closer inspection, all these objections, which allege some trivial fallacy, 
appear to be mistaken [9, 11, 22]. 

The Doomsday argument has its backers as well as detractors, and while the 
manner in which it purports to derive its conclusion is counterintuitive, it may not quite 
qualify as a paradox. It is therefore useful to consider the following thought experiment 
[12]. It has the same structure as the Doomsday argument but yields a conclusion that is 
even harder to accept. 
 

Serpent’s Advice 
Eve and Adam, the first two humans, knew that if they gratified their flesh, Eve 
might bear a child, and that if she did, they would both be expelled from Eden and 
go on to spawn billions of progeny that would fill the Earth with misery. One day 
a serpent approached the couple and spoke: “ Pssssst! If you take each other in 
carnal embrace, then either Eve will have a child or she won’ t. If she has a child, 
you will have been among the first two out of billions of people. Your conditional 
probability of having such early positions in the human species given this 
hypothesis is extremely small. If, one the other hand, Eve does not become 
pregnant then the conditional probability, given this, of you being among the first 
two humans is equal to one. By Bayes’ s theorem, the risk that she shall bear a 
child is less than one in a billion. Therefore, my friends, indulge yourselves and 
worry not about the consequences!”  

 
It is easy to verify that, if we apply SSA to the universal reference class, the 

serpent’ s mathematics is watertight. Yet surely it would be irrational for the couple to 
conclude that the risk of Eve becoming pregnant is negligible. Note that the inference 
would hold even if the couple, based on a detailed understanding of the biology of human 
reproduction, confidently assigned a fairly high prior probability of pregnancy (e.g. p > 
10%). 

One could try to revise SSA in various ways or impose stringent conditions on its 
applicability. It is difficult, however, to formulate a principle that satisfies all constraints 
that an observation selection theory ought to respect – a principle that serves legitimate 
scientific needs and at the same time is probabilistically coherent and paradox-free.7 

                                                 
7 We lack the space for a full discussion of these constraints here. For a more complete analysis, see [11]. 
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Perhaps the most elegant maneuver to get rid of the Doomsday argument and the 
counterintuitive implication in the Serpent’ s Advice is to adopt what I have called the 
Self-Indication Assumption. 
 

(SIA) Given the fact that you exist, you should (other things equal) 
favor hypotheses according to which many observers exist over 
hypotheses on which few observers exist. 

 
The beauty of SIA is that if we adopt it, we can keep using an unrestricted SSA 

with the universal reference class and still completely avoid the doomsday-like 
implications that follow from using SSA on its own without SIA. The idea is simple. 
First, you take into account the fact that you exist, which according to SIA gives you 
evidence in favor of many observers existing. Second you take into account your birth 
rank, which according to SSA gives you evidence in favor of few observers existing. It 
can be shown that these two probability shifts cancel out exactly, restoring the empirical 
prior probability of “ doom soon” . This cancellation will result if we interpret SIA as 
asserting that the conditional probability of you finding yourself alive, given some 
hypothesis h, is proportional to the expected number of people that will have existed 
according to h. 
 Unfortunately, SIA has paradoxical consequences of its own: 
 

The Presumptuous Philosopher 
It is the year 2100 and physicists have narrowed down the search for a theory of 
everything to only two remaining plausible candidate theories, T1 and T2 (using 
considerations from super-duper symmetry). According to T1 the world is very, 
very big but finite and there are a total of a 200 billion observers in the cosmos. 
According to T2, the world is very, very, very big but finite and there are a 200 
trillion observers. The super-duper symmetry considerations are indifferent 
between these two theories. Physicists are preparing a simple experiment that will 
falsify one of the theories. Enter the presumptuous philosopher: “ Hey guys, it is 
completely unnecessary for you to do the experiment, because I can already show 
to you that T2 is about a billion times more likely to be true than T1 (whereupon 
the philosopher explains the Self-Indication Assumption)!”  

 
In this thought experiment, there is no counterbalancing doomsday-like 

probability shift to cancels out the effect of SIA. This is because in Presumptuous 
Philosopher, the relevant “ birth rank”  is not known, i.e. our position in the sequence of all 
observers that will ever have existed throughout the universe. Without a low birth rank to 
conditionalize on, we are stuck with a seeming bias towards believing that the universe 
contains huge numbers of observers. If the prior empirical probability of the universe 
containing infinitely many observers is greater than zero, then after taking SIA into 
account it would climb to 100%, which is surely overconfidence. What is counterintuitive 
about SIA is not that we would have to accept that the universe is infinite – we might 
have independent reasons for that – but the grounds on which we should allegedly accept 
this, and the unreasonable level confidence that we would have in the conjecture. 

But if not SIA, then what? 
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Perhaps the problem with SSA is not that it is too strong but that, in a way, it is not strong 
enough. SSA instructs you to take into account one kind of indexical information: 
information about which observer you are. But you have more indexical information than 
that. You also know which temporal segment of that observer – which “ observer-
moment”  – you currently are. We can formulate a Strong Self-Sampling Assumption that 
integrates such temporal indexical information [11]. 
 

(SSSA) Each observer-moment should reason as if it were randomly selected 
from the class of all observer-moments in its reference class. 

 
Arguments can be given that SSSA embodies a correct way of reasoning about a number 
of cases. For example, one can consider cases analogous to Dungeon but where the 
subject is ignorant about what time it is rather than about which room she is in. 

The added analytical power provided by SSSA enables us to make a second 
move: relativizing the reference class. Rather than placing all observer-moments in the 
same reference class, we can use different reference classes for different observer-
moments, to reflect the different information that may be available to observers at 
different times. For example, the early observer-moments of Adam and Eve might be 
placed in a different reference class from the observer-moments of other observers (or of 
themselves at later times). These later observer-moments would know whether Eve got 
pregnant or not, whereas the early observer-moments lack that knowledge. With such a 
relativized reference class, we would block the inference that Adam and Eve should 
assign a negligible probability to Eve getting pregnant, for whether she did or not, her 
early observer-moments would still be typical of their reference class, which now 
consists exclusively of such early observer-moments.8 

It is tempting to surmise that the correct reference class to use for an observer-
moment α is one that contains all and only those observer-movements that have exactly 
the same information as α. This minimal reference class would succeed in blocking the 
Serpent’ s inference. However, such a reference class definition is too narrow to be 
correct in general. It would fail, for example, in the case of the two theories about the 
temperature of the cosmic background radiation. We observe CMB = 2.7K. On both T1 
and T2, there would be some observers making that observation. If we restricted our 
reference class to those observers (or observer-moments) that have exactly the same 
information as we have, then – trivially – it would be the case that according to both T1 
and T2, all observers in our reference class would observe CMB = 2.7K. The SSA would 
then specify the same conditional probability (unity) to our observation for both these 
theories. Hence our observation of CMB = 2.7K would fail to discriminate between the 
two theories, which is clearly not the case – we do know that our observing CMB = 2.7K 
gives us evidence in favor of T1. This shows that the minimal reference class definition is 
too narrow. A wider reference class must be used to make sense of scientific practice. 

                                                 
8 Relativizing the reference class creates a methodology that might appear to violate Bayesian 
conditionalization. Elsewhere, I have argued that it merely appears to do so [11]. 
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One is led to wonder whether there is a general rule for selecting a suitable 
reference class. While this is to some extent still an open question, my suspicion is that 
there is no such rule. We can establish constraints on permissible choices of reference 
class. We have already seen two examples of such constraints: the correct reference class 
definition is narrower than the universal reference class and wider than the minimal 
reference class described above. Perhaps additional constraints will be discovered. But 
we might find that the full set of binding constraints still underdetermines the choice of 
reference class. 

The reference class in effect determines a prior probability for indexical belief. It 
is quite widely accepted that the traditional constraints of rationality fail to determine a 
uniquely correct prior for non-indexical belief – there seems to be an unavoidable 
element of subjectivity in the choice of prior over non-indexical belief. If in some cases 
there are more than one rationally defensible choice of reference class, this would merely 
show that the situation with regard to indexical belief is similar to what we already have 
accepted is the case with regard to non-indexical belief. 

Different applications of “ anthropic reasoning”  make different assumptions about 
the reference class. Some applications require only very weak assumptions: they would 
work given practically any (non-gerrymandered) choice of reference class. Other 
applications reply on much stronger assumptions about the reference class. For example, 
in the case of the temperature of the cosmic background radiation, we can use almost any 
reference class that is at least slightly more inclusive than the minimal reference class. 
The result we get does not depend on which of the many possible reference classes we 
choose. By contrast, the Serpent’ s reasoning requires a rather peculiar kind of reference 
class – one that is inclusive enough to contain the observer-moments of the people who 
would be born centuries later and who would be in very different epistemic situations 
from the pre-fall Adam and Eve. This difference in how strong assumptions an 
application makes on the reference class seems to be related to how compelling or 
rigorous the application is. The Serpent’ s reasoning is highly non-compelling whereas the 
cosmologist’ s inference from our observations about the cosmic background may well be 
rationally obligatory. (Other applications fall somewhere in between.) We might thus be 
able to account for our intuitions about the degree of rigorousness of different 
applications of anthropic reasoning partly on the basis of how robust they are under 
varying choices of reference class.9 This finding again mirrors the situation with regard to 
non-indexical belief. A scientific argument that is such that a wide range of priors 
(ideally, all rationally defensible priors) would converge on assigning a hypothesis a high 
probability after taking the argument into account is a more rigorous scientific argument 
for that hypothesis than is an argument that is merely suggestive to some people who 
happen to hold a particular kind of prior. Robustness under a large class of priors, 
indexical or non-indexical, can be viewed as a hallmark of scientific objectivity. 

The idea that is expressed vaguely in SSSA can be formalized into a precise 
principle that specifies the evidential bearing of a body of evidence e on a hypothesis h. I 
have dubbed this the Observation Equation [11]: 
 

                                                 
9 Particular applications might of course also rely on shaky empirical assumptions and might be non-
compelling for that reason. 
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Here, α  is the observer-moment whose subjective probability function is αP . hΩ  is the 
class of all possible observer-moments about whom h is true; eΩ  is the class of all 
possible observer-moments about whom e is true; αΩ  is the class of all observer-
moments that α  places in the same reference class as herself; αw  is the possible world in 
which α  is located; and γ  is a normalization constant. The quantity in the denominator 
is the cardinality of the intersection of two classes, αΩ  and )( σwΩ , the latter being the 
class of all observer-moments that exist in the possible world σw . 

The Observation Equation can be generalized to allow for different observer-
moments within the reference class having different weights )(σµ . This option is of 
particular relevance in the context of the many-worlds version of quantum mechanics, 
where the weight of an observer-moment would be proportional to the amplitude squared 
of the branch of the universal wavefunction where that observer-moment lives. 

The Observation Equation expresses the core of a quite general methodological 
principle. Here we will just highlight two of its features for the purposes of explication. 
The first is that by dividing the terms of the sum by the denominator, we are factoring out 
the fact that some possible worlds contain more observer-moments than do others. If one 
omitted this operation, one would in effect be assigning a higher prior probability to 
possible worlds that contain a greater number of observers (or more long-lived 
observers). This would be equivalent to accepting the Self-Indication Assumption, which 
prescribes an a priori bias towards worlds that have a greater population. As we have 
seen, arguments such as Presumptuous Philosopher suggest that SIA should be rejected. 

A second feature is that the only observer-moments that are taken into account by 
an agent are those that the agent places in the same reference class as herself (at the time 
of the reasoning). For the purposes of taking into account indexical information, 
observer-moments outside of the reference class have the same status as rocks and other 
lifeless objects. Epistemically, they are not relevant alternative indexical possibilities for 
the agent at the time. 
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Observation selection theory has applications outside philosophy. For example, when we 
ask about what our evidence tells us about how likely it was for intelligent life to evolve 
on Earth, or how many “ critical steps”  took place in the evolutionary process, or what the 
chances are that we will ever encounter extraterrestrial intelligence, we encounter 
observation selection effects that need to be taken into account. This also happens when 
we critically assess Boltzmann’ s attempt to explain time’ s arrow by postulating that we 
live in a vast local thermal fluctuation in a universe that as a whole is in thermal 
equilibrium. Observation selection effects also crop up in regard to certain questions in 
the foundations of quantum physics. Yet it is in cosmology that we find the best-known 
applications of anthropic reasoning. 
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As we saw earlier, observation selection theory is needed if we are to derive any 
observational predictions whatever from “ big world”  cosmologies that imply the world is 
large enough and random enough that all possible human observations are, with 
probability one, in fact made. 

A more specific application in cosmology pertains to the apparent fine-tuning of 
various physical constants and parameters. “ Fine-turning”  refers to the apparent fact that, 
for a number of physical parameters, such as the cosmological constant, had they had a 
value only very, very, slightly different from their actual value (on any intuitively 
plausible measure of “ slightly” ) then life could not have existed. It seems as though the 
world is balancing on a knife’ s edge. This is puzzling: why should the world be like 
that?10 The growing popularity of multiverse theories, according to which our universe is 
but one in a large ensemble of universes, is attributable in large measure to the hope that 
such theories can offer an “ anthropic explanation”  of the apparent fine-tuning. By 
allaying worries that anthropic reasoning is inherently flawed or paradox-ridden, 
observation selection theory puts these explanations on a firmer methodological footing. 

Let us consider some more specific lessons. A multiverse theory can potentially 
explain cosmological fine-tuning, but only if several conditions are met. To begin with, 
the theory must assert the actual existence of an ensemble of physically real universes. 
(An ensemble of merely “ possible universes”  would not do.) The universes in this 
ensemble would have to differ from one another with respect to the values of the fine-
tuned parameters, according to a suitably broad distribution. If observers can exist only in 
those universes in which the relevant parameters take on the observed fine-tuned values 
(or if the theory at least implies that a large portion of all observers are likely to live in 
such universes), then an observation selection effect can be invoked to explain why we 
observe a fine-tuned universe. Further, in order for the explanation to be completely 
satisfactory, the postulated multiverse should not itself be significantly fine-tuned, for 
otherwise the explanatory problem would merely have been postponed. (We would then 
have to ask why the multiverse is “ balancing on a knife’ s edge” , such that any slightly 
different multiverse would not have contained intelligent life.) 

A multiverse theory meeting these requirements could give a relatively high 
conditional probability to our observing a fine-tuned universe. It would thereby gain a 
degree of evidential support from the finding that our universe is fine-tuned. Such a 
theory could also help explain why we find ourselves in a fine-tuned universe, but to do 
in this, the theory would also have to meet the ordinary set of methodological desiderata 
– it would have to be physically plausible, fit the evidence, be relatively simple and non-
gerrymandered, and so forth. Determining whether this potential anthropic explanation of 
fine-tuning actually succeeds requires a lot of detailed work in empirical cosmology. 

One may wonder whether these conclusions depend on fine-tuning per se or 
whether they follow directly from the generic methodological injunction that we should, 
other things being equal, prefer simpler theories with fewer free variables to more 
complex theories that require a larger number of independent stipulations to fix their 

                                                 
10 Saying that the universe had to be some way or another so there is nothing to be surprised about, does not 
on reflection appear to be a satisfactory response [23]. We lack the space here to review the extensive 
philosophical and cosmological literature on the problem of fine-tuning (for the philosophical bit, see e.g. 
[24-30]). Instead I shall merely summarize what I see as the chief implications of the observation selection 
theory outlined above. 
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parameters (Occam’ s razor). In other words, how does the fact that life would not have 
existed if the constants of our universe had been slightly different play a role in making 
fine-tuning cry out for an explanation and in suggesting a multiverse theory as a possible 
answer? 

Observation selection theory helps us answer these questions. It is not just that all 
single-universe theories currently in the offing would seem to require delicate 
handpicking of lots of independent parameter-values that would make such theories 
unsatisfactory: the fact that life would not otherwise have existed adds to the support for 
a multiverse theory. How does that fact do this? By making the anthropic multiverse 
explanation possible. A simple multiverse theory could potentially give a high 
conditional probability to us observing the kind of universe we do because it says that 
only that kind of universe, among all the universes in a multiverse, would be observed (or 
at least, that it would be observed by a disproportionately large fraction of the observers). 
The observation selection effect operating on the fact of fine-tuning acts as a kind of 
epistemic lens: it focuses or concentrates conditional probability on us observing a 
universe like the one we see (figure 2). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Moreover, observation selection theory enables us to answer the question of how 
big a multiverse has to be in order to explain our evidence. The upshot is that bigger is 
not always better [11]. The postulated multiverse would have to be large and varied 
enough to make it probable that some universe like ours should exist. Once this size is 
reached, there is no additional anthropic ground for thinking that a theory that postulates 
an even bigger ensemble of universes is therefore, other things equal, more probable. The 
choice between two multiverse theories that both give a high probability to a fine-tuned 

Observer-friendly 
interval 

f (x): frequency of regions with 
parameter ψ = x 

x 

x 

P(x): frequency of observations 
of regions with parameter ψ = x 

P

f 

Figure 2. An observation selection effect acts like a focusing lens, concentrating 
conditional probability on a small set of observational parameter values. 

Observation selection effect
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universe like ours existing must be made on other grounds, such as simplicity or how 
well they fit with the rest of physics. 
 A multiverse would not have to be large enough to make it probable that a 
universe exactly like ours should exist. A multiverse theory that entails such a huge 
cosmos that one would expect a universe exactly like ours to be included in it does not 
have an automatic advantage over a more frugal competitor. Such an advantage would 
have to be earned, for instance by enabling greater simplicity. There is no general reason 
for assigning a higher probability to theories that entail that there is a greater number of 
observers in our reference class. Increasing the membership in our reference class might 
make it more likely that the reference class should contain some observer who is making 
exactly the observations that we are making, but it would also make it more surprising 
that we should happen to be that particular observer rather than one of the others in the 
reference class. The net effect of these two considerations is to cancel each other out. All 
the observation selection effect does is concentrate conditional probability on the 
observations represented by the observer-moments in our reference class so that, 
metaphorically speaking, we can postulate stuff outside the reference class “ for free” . 
Postulating additional stuff within the reference class is not gratis in the same way but 
would have to be justified on independent grounds. 

It is, consequently, in major part an empirical question whether a multiverse 
theory is more likely than a single-universe theory, and whether a larger multiverse is 
more plausible than a smaller one. Anthropic considerations are an essential part of the 
methodology for addressing these questions, but the answers will depend on the data. 

Anthropic reasoning should not be regarded as a cop-out or as a dubious method 
of last resort to be used only when traditional approaches have failed. Rather, anthropic 
reasoning, interpreted as the study of observation selection effects, is simply a part of the 
methodology that enables us to determine what observational predictions follow from a 
given set of ontological postulates. On this interpretation, the anthropic principles 
themselves (and the observation equation) do not make any specific empirical assertions 
about the world, although of course particular applications – such as the multiverse 
explanations of fine-tuning – do rely on empirical assumptions. 
 

�������� ��� �������� ����������
If we consider hypotheses that imply that might be infinitely many observer-moments in 
our reference class, then the Observation Equation as formulated above cannot be used.  
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This is because the denominator is then infinite, i.e. the cardinality of the set of observer-
moments in our reference class, in at least one of the possible worlds wσ, is infinite. An 
infinite sum of terms of the form (1/∞) is not defined in standard arithmetic. 
 We have already alluded to a natural solution to this shortcoming: reformulating 
the equation in terms of densities of observer-moments of different kinds. For example, 
we can start by considering only those observer-moments that are within some interval r 
of observer-moment α, and then take the limit as r→∞. 
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For this to work, we need to assume that the observer-moments have some fully 
connected natural order, e.g. that they are distributed in one continuous spacetime. We 
also need to assume that each of the possible worlds wσ, which is compatible with h, e, 
and to which α assigns a non-zero prior probability, is such that the relevant density is 
defined. This will be the case if all the possible worlds are suitably homogeneous. 

We can conceive of possible worlds where these conditions fail. Consider the 
following possible worlds: 
 

w1: a, b, b, a, a, a, a, b, b, b, b, b, b, b, b, a, … 
w2: a, b, a, b, a, b, …,  a, a, b, a, a, b, a, a, b, a, a, … 

 
In w1, we have a linear order of alternating and increasingly large blocks of different 
kinds of observer-moments. For instance, w1 might be a world consisting of one observer 
who observes a for 1 day, then observes b for 2 days, then observes a again for 4 days, 
then b for 8 days, and so forth. In such a world, the limit procedure diverges and no 
density is defined. Suppose you learn that you live in this kind of world. What probability 
should you assign to making observation a? There is no obvious answer. 
 In world w2, there are locations in spacetime that are infinitely far removed from 
the starting point. (w2 has order-type ω + ω.) If we look at the first segment, we find that 
the density of type a-observations is 1/2. In the second segment, the density of a-
observations is 2/3. But what probability does the theory that says that the actual world is 
w2 give to us making observation of type a? Perhaps one could try postulating that the 
“ density”  of the world as a whole is the average density of its infinite segments, i.e. w2 
would have a density of type a-observations equal to (1/2 + 2/3) /2 = 7/12. But consider a 
variation of w2 like the following: 
 

w3: a, b, a, b, a, b, …,  …, a, a, b, a, a, b, a, a, b, a, a, … 
 
Here, the second segment is infinite in both directions (i.e., w3 has order-type ω + ω* + 
ω). Does this world have a higher overall density than w2? Should we give twice the 
weight to the second segment on grounds that it is infinite in two directions? 
 As a final example, consider w4, which has a tree-like structure (figure 3). One 
way in which this structure could arise is if we interpret the vertical lines as representing 
(infinitely powerful) computers each simulating an infinite world represented by a 
horizontal line. Inhabitants in a simulated world build infinitely many computers, each of 
which simulate another infinite world, and so on, creating an infinitely tall tree with 
infinitely many branches at each level. Another way that such a structure could exist is if 
we suppose that a universe can spawn infinitely many baby-universes, each of which in 
turn gives rise to infinitely many descendants, etc. 
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Each horizontal line has an infinite number of observers living on it and making various 
kinds of observations. What does a theory claiming that we live in w4 predict that we 
should observe? If each level of the tree is the same as any other and is homogenous, then 
we could simply pick an arbitrary level and use the density of different observation-types 
on that level as our measure. But what if the levels differ? (E.g. maybe some parameter 
decreases in generational step, so that a baby universe always has a smaller value of this 
parameter than its parent.) One method we could try in this case is to take the limiting 
frequency of different kinds of observations as we consider increasing ovals centered on 
some arbitrary point on the tree (figure 4). However, this procedure would fail to 
converge for some kinds of world, and it might give different results depending on the 
selection of length-scales at the different levels in other kinds of world. 
 
 
 
 
 
 
 
 
 
 
 
 
Worlds 1-4 are simple toy examples but are useful for drawing attention to some 
fundamental methodological issues. More realistic versions of the same sort of situation 
do arise in cosmological theory.11) We can identify three problems posed by possible 
worlds of these kinds: 
 

1. Finding stronger principles. Can we design more powerful extensions of the 
observation equation that enable us to deal with cases like w1-w4 and other 
worlds like them? 

2. Justification. How can we justify one proposed rule over another? 

                                                 
11 See e.g. [31]. 

Figure 3. w4 has a tree-like structure. 

step 3 
step 2 

step 1 

Figure 4. Taking the density of w4 to be the limit of the local 
density within ovals of increasing “ radius” .  
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3. Dealing with the gaps. If we cannot find and justify methodological principles 
that apply to all possible worlds, then how do we deal with the resulting gaps in 
our methodological coverage? 

 
These problems must be tackled if we are to extend observation selection theory to 
infinite worlds that have a more complicated structure than a single homogeneous 
universe with a continuous spacetime. Since some of the most promising of our current 
cosmological theories postulate worlds of this sort, and since taking account of 
observation selection effects is essential when we try to derive observational 
consequences from these theories, it is a matter of some importance to find solutions to 
these methodological problems. 
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