Identification and Estimation

Linear Panel Event Studies

Liyang (Sophie) Sun (CEMFI) Jesse M. Shapiro (Harvard and NBER)

Outline

- Lay out key identifying assumptions for the simplest difference-in-differences estimator
 - "no anticipation" assumption and its economic content
 - · "parallel trends" assumption and its economic content
- Generalize assumptions for popular extensions to the estimator
 when
 - · treatment lasts several periods
 - · treatment is introduced to different units at different times

Basics

Classical example: Card and Krueger (1994)

- Measured employment before and after minimum wage increase for a sample of fast-food restaurants
- Motivated difference-in-differences (DID) estimator by the following

Moreover, since seasonal patterns of employment are similar in New Jersey and eastern Pennsylvania, as well as across high- and low-wage stores within New Jersey, our comparative methodology effectively "differences out" any seasonal employment effects.

A simple DID estimator

Table 3 of Card and Krueger (1994)

		y state	
Variable	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
1. FTE employment before,	23.33	20.44	-2.89
all available observations	(1.35)	(0.51)	(1.44)
2. FTE employment after, all available observations	21.17	21.03	-0.14
	(0.94)	(0.52)	(1.07)
3. Change in mean FTE employment	-2.16	0.59	2.76
	(1.25)	(0.54)	(1.36)

- Binary treatment D_i
 - For PA, *D_i* = 0; for NJ, *D_i* = 1
- Two periods: $t \in \{-1, 0\}$ and treatment is implemented at t = 0
- Four sample averages of the outcome $\bar{y}_{t,D}$:
 - before vs after and PA vs NJ

· Row 3 Column (iii) is their DID estimate

	Stores by state		
Variable	PA (i)	NJ (ii)	Difference, NJ – PA (iii)
1. FTE employment before,	23.33	20.44	-2.89
all available observations	(1.35)	(0.51)	(1.44)
2. FTE employment after, all available observations	21.17	21.03	-0.14
	(0.94)	(0.52)	(1.07)
3. Change in mean FTE employment	-2.16	0.59	2.76
	(1.25)	(0.54)	(1.36)

· We can write the estimator as

$$\hat{\beta}^{\mathsf{DID}} = (\bar{y}_{t=0,D=1} - \bar{y}_{t=-1,D=1}) - (\bar{y}_{t=0,D=0} - \bar{y}_{t=-1,D=0})$$

What is the DID estimator estimating?

The DID estimator is

$$\hat{\beta}^{\mathsf{DID}} = (\bar{y}_{t=0,D=1} - \bar{y}_{t=-1,D=1}) - (\bar{y}_{t=0,D=0} - \bar{y}_{t=-1,D=0})$$

- Potential outcomes $y_{i,t}(d)$ for $d \in \{0, 1\}$
 - The employment that would have been if minimum wage increased (*d* = 1) and did not increase (*d* = 0)
 - For PA, observe $y_{i,t}(0)$; for NJ, observe $y_{i,t}(1)$
- Interested in the average impact for NJ after the minimum wage increased, formally, the average treatment effect on the treated

ATT:
$$E[\underbrace{y_{i,0}(1)}_{\text{observed}} - \underbrace{y_{i,0}(0)}_{\text{counterfactual}} | D_i = 1$$

 Since counterfactual outcomes are never observed, we need to impose some assumptions to estimate the ATT

- "no anticipation" assumption:
 - the outcome is not affected by the treatment prior to its implementation: y_{i,-1}(0) = y_{i,-1}(1) for all *i* with D_i = 1
- Assuming "no anticipation," outcomes we observe $y_{i,t}$ can be written as

	PA $D_i = 0$	NJ $D_i = 1$
before $t = -1$	$y_{i,-1}(0)$	$y_{i,-1}(0)$
after $t = 0$	$y_{i,0}(0)$	$y_{i,0}(1)$

- Example violation: fast food restaurants laying off minimum wage workers in advance of increase in wage
 - Other examples: consumption smoothing for anticipated job loss
 (Hendren 2017)

• "parallel trends" assumption:

 $E[y_{i,0}(0) - y_{i,-1}(0) | D_i = 1]$ (NJ counterfactual trend) = $E[y_{i,0}(0) - y_{i,-1}(0) | D_i = 0]$ (PA trend)

- if minimum wage never increased for NJ, average trends would coincide between NJ and PA
- Example violation: NJ labor market was improving compared to PA
 - Other examples: downward trend in wage income leading to participation in job training programs (Ashenfelter's dip)

Sufficient assumptions (2): Parallel trends

- Very different from the unconfoundedness assumption that is common in RCTs:
 - Random assignment $\{y_i(1), y_i(0)\} \perp D_i$
- Parallel trends assumption allows for potentially non-zero selection bias:

$$\underbrace{E[y_{i,-1}(0) \mid D_i = 1] - E[y_{i,-1}(0) \mid D_i = 0]}_{\text{selection bias at } t = -1}$$

$$=\underbrace{E[y_{i,0}(0) \mid D_i = 1] - E[y_{i,0}(0) \mid D_i = 0]}_{\text{selection bias at } t = 0}$$

 Sensitive to the scale: if parallel trends holds for level of employment, it might fail for log of employment, and vice versa (Roth and Sant'Anna 2023)

DID is unbiased for ATT

• The DID estimator

$$\hat{\beta}^{\mathsf{DID}} = (\bar{y}_{t=0,D=1} - \bar{y}_{t=-1,D=1}) - (\bar{y}_{t=0,D=0} - \bar{y}_{t=-1,D=0})$$

· is therefore unbiased for

$$E[y_{i,0} - y_{i,-1} | D_i = 1] - E[y_{i,0} - y_{i,-1} | D_i = 0]$$

= $E[y_{i,0}(1) - \underbrace{y_{i,-1}(0)}_{\text{"no anticipation"}} | D_i = 1] - E[y_{i,0}(0) - y_{i,-1}(0) | D_i = 0]$
= $\underbrace{E[y_{i,0}(1) - y_{i,0}(0) | D_i = 1]}_{\text{ATT}} + \underbrace{E[y_{i,0}(0) - y_{i,-1}(0) | D_i = 1] - E[y_{i,0}(0) - y_{i,-1}(0) | D_i = 0]}_{=0 \text{ under "parallel trends"}}$

Estimation with two periods

Regression representation

· Recall the DID estimator:

$$\hat{\beta}^{\mathsf{DID}} = (\bar{y}_{t=0,D=1} - \bar{y}_{t=-1,D=1}) - (\bar{y}_{t=0,D=0} - \bar{y}_{t=-1,D=0})$$

- Can implement via regression as follows
- Define z_{it} as
 - 1 if *i* is treated ($D_i = 1$) and *t* is after treatment (t = 0)
 - 0 otherwise
- Estimate $y_{it} = \alpha_d + \gamma_t + \beta z_{it} + \varepsilon_{it}$
 - Group fixed effect α_d for $d \in \{0, 1\}$
 - Time fixed effect γ_t
- The OLS estimate $\hat{\beta}$ is numerically equivalent to $\hat{\beta}^{\text{DID}}$

Grouped data and repeated cross sections

- This regression representation is also useful for non-panel datasets
- For repeated cross sections, $\hat{\beta}^{\text{DID}}$ still unbiased estimate of ATT and so is the regression representation
- We can also collapse to group-level and obtain group-level panel data
 - WLS coincides exactly with $\hat{\beta}^{\rm DID}$

Two-way Fixed Effects (TWFE)

- Common to implement DID via Two-way Fixed Effects (TWFE) regression
- Estimate $y_{it} = \alpha_i + \gamma_t + \beta z_{it} + \varepsilon_{it}$
 - Unit fixed effect α_i
 - Time fixed effect γ_t
- Large subsequent literature on minimum wage (for example, Neumark and Wascher 2007) estimates this model allowing for continuous treatment, covariates, multiple time periods, etc.
- · Will return to some of these topics later in lecture
- For now focus on multiple time periods

Estimation with multiple periods

Multiple periods but one treatment group

- For example, Seattle minimum wage increase (Jardim et al. 2022)
- Suppose for those $D_i = 1$, treatment starts at $t = t^*$
- Define *z_{it}* as before
 - 1 if *i* is treated ($D_i = 1$) and *t* is after treatment ($t \ge t^*$)
 - 0 otherwise
- Then relative time indicator $\Delta z_{i,t-k} = 1$ if treatment happens in period t k
 - *k* = 0: contemporaneous
 - *k* > 0: indicator for start of treatment *k* periods ago
 - k < 0: indicator for start of treatment |k| periods in future

"Dynamic" specification

· Estimate a "dynamic" specification

$$\mathbf{y}_{it} = \alpha_i + \gamma_t + \sum_{-\infty}^{\infty} \delta_k \Delta \mathbf{z}_{i,t-k} + \varepsilon_{it}$$

- Unit (or group) fixed effect α_i
- Time fixed effect γ_t
- Normalize $\delta_{-1} = 0$ so δ_k is in normalized differences
- Each regression coefficient estimator can still be thought of as a DID estimator:

$$\hat{\delta}_{k} = (\bar{y}_{t=t^{*}+k,D=1} - \bar{y}_{t=t^{*}-1,D=1}) - (\bar{y}_{t=t^{*}+k,D=0} - \bar{y}_{t=t^{*}-1,D=0})$$

Generalized "no anticipation" and "parallel trends"

- "No anticipation" assumption:
 - Treatment has no causal effect prior to its implementation: $y_{it}(0) = y_{it}(1)$ for all *i* with $D_i = 1$ for all $t < t^*$
- "Parallel trends" assumption:

$$E[y_{it'}(0) - y_{it}(0) \mid D_i = 1] = E[y_{it'}(0) - y_{it}(0) \mid D_i = 0]$$

for all $t \neq t'$

• Under "no anticipation" and "parallel trends", can interpret δ_k for $k \ge 0$ as cumulative ATT:

$$E[y_{i,t^*+k}(1) - y_{i,t^*+k}(0) \mid D_i = 1]$$

 But also implies δ_k for k < -1 should be zero, which is the basis for pre-trends testing that we discuss later

Multiple periods and multiple treatment groups

- For example, minimum wage increase was introduced gradually across states
- Suppose we want to estimate the impact of having experienced any increase in minimum wage ("staggered adoption")
 - Recall that $z_{it} \in \{0, 1\}$ indicates whether unit *i* is treated in period *t*
 - "Staggered adoption" implies that z_{it} is non-decreasing in t
- Can categorize units uniquely into treatment timing groups by g(i) = min{t : z_{it} = 1}, the earliest period at which unit i has received treatment
- Takes on values $g(i) \in \{0, 1, \dots, \infty\}$ where
 - + ∞ is never-treated

Generalized "no anticipation" and "parallel trends"

- "no anticipation" assumption:
 - Treatment has no causal effect prior to its implementation:
 y_{it}(∞) = y_{it}(g) for all *i* for all *t < g(i)*
- "parallel trends" assumption (strong version):

 $E[y_{it'}(\infty) - y_{it}(\infty) \mid g(i) = g] = E[y_{it'}(\infty) - y_{it}(\infty) \mid g(i) = \infty]$

for all $t \neq t'$ and for all adoption groups $g < \infty$

• The never-treated counterfactual would evolve in parallel for all adoption groups, as well as the never-treated group

- "no anticipation" assumption:
 - Treatment has no causal effect prior to its implementation:
 y_{it}(∞) = y_{it}(g) for all *i* for all t < g(i)
- "parallel trends" assumption (weak version):

 $E[y_{it'}(\infty) - y_{it}(\infty) | g(i) = g] = E[y_{it'}(\infty) - y_{it}(\infty) | g(i) = g']$

for all $t \neq t'$ and for all adoption groups $g, g' < \infty$

- The never-treated counterfactual would evolve in parallel for all adoption groups
- · Might not be parallel with the never-treated group

Estimate the dynamic effect: staggered adoption

 Under "staggered adoption", suppose we estimate a "dynamic" specification

$$\mathbf{y}_{it} = \alpha_i + \gamma_t + \sum_{-\infty}^{\infty} \delta_k \Delta \mathbf{z}_{i,t-k} + \varepsilon_{it}$$

- In addition to "no anticipation" and "parallel trends for staggered setting", this specification also restricts homogeneity on treatment effects
 - The dynamic effect δ_k only depends on the relative time k, but not on the treatment timing g
 - · Return later to cases where homogeneity is violated
- Can summarize "overall" ATT by taking averages of the estimated δ_k for k ≥ 0

Estimate the "overall" effect: staggered adoption

· Another option is to estimate a static model

$$\mathbf{y}_{it} = \alpha_i + \gamma_t + \beta_{post} \mathbf{z}_{i,t} + \varepsilon_{it}$$

- β_{post} is the correct summary for the "overall" effect if treatment effects are truly **static**, i.e., if $\delta_k = \mathbf{1}_{k \ge 0} \beta_{post}$
- If treatment effects are not static, then misspecified
- In settings without a never-treated group, recent work found cases with severe misspecification:
 - Coefficient β_{post} may not correspond to any proper average of δ_k
 - For example, $\beta_{post} < 0$ even though $\delta_k > 0$, and vice versa
- See de Chaisemartin and D'Haultfœuille (2020) and Goodman-Bacon (2021) for diagnostics

Estimate the "overall" effect: staggered adoption

- For illustration, de Chaisemartin and D'Haultfœuille (2020) constructed an example of two adoption groups and three time periods
 - Suppose $\delta_0 = 1$ and $\delta_1 = 4$, can summarize the "overall" effect appropriately based on the **dynamic** model
 - Only relying on the **static** model can be misleading because β_{post} is equal to -1/2 instead
- If report estimates from both static and dynamic model, can combine these estimates into one while staying agnostic about the degree of misspecification by applying Armstrong, Kline and Sun (2023)

Alternative identifying assumptions

Alternative identifying assumptions

- If "parallel trends" assumption is not applicable, many proposals for alternative identifying assumptions:
 - Methods Lecture 2007 (Change-in-Changes, Semiparametric Difference-in-Differences,...)
 - Methods Lecture 2021 (Synthetic Controls)
- · Details are beyond the scope of this lecture

Cohort comparison

- · Instead of panel data or repeated cross sectional data,
 - Observe one cross section where units can be categorized by birth cohorts *g*(*i*)
- Sometimes leverage cross-cohort comparison, for example, Duflo (2001)
 - Late cohort in the treatment group is more exposed to the treatment than the early cohort
- de Chaisemartin and D'Haultfœuille (2017) propose alternative assumptions
 - Intuitively, cohort *g*(*i*) plays the role of calendar time, but many differences

Randomized treatment / timing

- Treatment is randomized, and observe past outcomes
 - For example, baseline surveys
- Or the treatment timing is randomized, even though all units eventually receive treatment
 - For example, Parker, Souleles, Johnson, and McClelland (2013)
- Can now rely on random assignment $\{y_{i,t}(1), y_{i,t}(0)\} \perp g(i)$, which is invariant to scale
 - For example, McKenzie (2012) and Roth and Sant'Anna (Forthcoming)

Conclusion

- Armstrong, Tim, Patrick Kline, and Liyang Sun. 2023. Adapting to Misspecification. In *arxiv [econ].*
- de Chaisemartin, Clément and Xavier D'Haultfoeuille. 2017. Fuzzy difference-indifferences. In *The Review of Economic Studies.*
- de Chaisemartin, Clément, and Xavier D'Haultfœuille. 2020. Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects. In *American Economic Review*.
- Goodman-Bacon, Andrew. 2021. Difference-in-differences with variation in treatment timing. In *Journal of Econometrics*.
- McKenzie, David. 2012. Beyond baseline and follow-up: The case for more T in experiments. In *Journal of Development Economics.*
- Roth, Jonathan and Pedro H. C. Sant'Anna. Forthcoming. Efficient Estimation for Staggered Rollout Designs. In *Journal of Political Economy: Microeconomics*.
- Roth, Jonathan and Pedro H. C. Sant'Anna. 2023. When Is Parallel Trends Sensitive to Functional Form? In *Econometrica*.

Today

- Overview (Jesse)
- · Basics of identification and estimation (Liyang)
- · Basics of plotting (Jesse)
- · Pitfalls and some solutions
 - · Confounds and pre-trend testing (Liyang)
 - Heterogeneous effects (Jesse)
- Conclusions (Liyang)