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Key Ingredient: Discrete Subgroup of a Topological Group

Suppose that G is a topological group:

G is a group and also a topological space.

The product and inverse maps are continuous.

Let Γ be a discrete subgroup of G .

Experience suggests:

The study of (left) Γ-invariant functions on G is of interest.

Slight generalization: Study functions that satisfy

f (γg) = χ(γ) f (g)

where χ is a character of Γ.
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Examples

G = R, Γ = Z. Fourier expansions on Z\R ∼= S1.

G = SL(2,R), Γ = SL(2,Z). Get the classical theory of modular
forms (including Maass forms).
Notes:

1 Classical modular forms are functions on the upper half plane H. Link:

G/SO(2,R) = H
(
a b
c d

)
∈ G 7→ ai+b

ci+d ∈ H.

Modular forms may be thought of as functions on G that have a
property of the form

f (gκ) = χ(κ)f (g) for all κ ∈ K := SO(2,R)

for a suitable character χ.
2 Since Γ\G is not compact, one most impose additional conditions on

the functions:
F Growth condition.
F Right K -finiteness.
F Invariance with respect to G -invariant differential operators.
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Examples (Continued)

The adeles of Q, AQ, consists of tuples

(a∞, a2, a3, a5, . . .)

such that av ∈ Qv for v =∞, 2, 3, . . . and av ∈ Zv for almost all v .
Topological ring. Then Q, embedded diagonally, sits discretely in AQ.

More generally, let F a global field, and similarly define AF , the adeles
of F . Let G = AF , and Γ = F . Then Γ is a discrete subgroup of G .
Get Fourier expansion on F\AF ; analogous to expansion on Z\R.

G = A×F , Γ = F×. A continuous function ξ on G that is Γ-invariant is
called a Hecke character.
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L-Functions
The main examples above have something in common: One can attach an
L-function to a nice Γ-invariant function.

Hecke attached an L-function L(s, ξ) of the form

∞∑
n=1

a(n)

ns

to each Hecke character ξ. This includes the Riemann zeta function
as a special case.

Hecke and Maass showed how to attach to f the L-function
L(s, f ) =

∑∞
n=1

a(n)
ns , where a(n) are the Fourier coefficients of f .

All these L-functions satisfy the fundamental properties

1 They are Euler products:
∑∞

n=1 =
∏

p prime.

2 The series, defined for <(s) sufficiently large, have meromorphic
continuation to the full complex plane and satisfy a functional
equation under s 7→ 1− s.
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Connection to p-adic Integrals

Tate showed how to use adelic and p-adic integrals to establish (and
better understand) the properties of the Hecke L-functions L(s, ξ).

Key point (Global to Local): Tate’s global (adelic) integral can be
expressed in terms of integrals over the p-adic groups F×v where v
runs over the places of F .

Jacquet and Langlands did the same thing for modular and Maass
forms (over any number field F ).
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General Case

Let G be a reductive algebraic group defined over F , and
G = G (AF ). Then Γ = G (F ) sits discretely inside G . Functions on
the quotient (with similar additional conditions involving smoothness,
growth, etc.) are called automorphic forms on G .

Given an automorphic form f , roughly speaking, one considers the
vector space Vπ spanned by the space of functions

g 7→ f (gg1)

as g1 varies over G and calls this the automorphic representation of G
attached to f . The group G acts by the right regular representation
π. More carefully, one must do something different at the

archimedean places.
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The Langlands Conjectures, I

Conjecture

Given an automorphic representation π of G , there is a family of Dirichlet
series

L(s, π, ρ) =
∞∑
n=1

Aπ,ρ(n)

ns

(Langlands L-functions), originally defined and absolutely convergent for
<(s) sufficiently large, each having meromorphic continuation to all
complex s and functional equation under s 7→ 1− s.

1 Each L(s, π, ρ) is an Euler product.

2 Here ρ is a complex analytic representation of the L-group of G .

3 The functional equation takes L into its contragredient L-function.

4 Defining the exact coefficients at the ramified places are not given in
full generality. They are understood for GLm thanks to the local
Langlands correspondence.
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The Langlands Conjectures, II

Conjecture

Automorphic forms on different groups are related (“Langlands
functoriality”).

In studying these conjectures, integrals on p-adic groups arise that may be
expressed in terms of characters of representations of complex Lie groups.
Aspects of combinatorial representation theory play an important role in
the theory.
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Beyond the Langlands Conjectures?

Fix an integer n > 1. There are also groups that are n-fold covers of
G (AF ) (if F contains enough roots of unity), called metaplectic groups.

Can one formulate similar conjectures in those cases?

Key observation: In computations, crystal graphs arise!
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Concluding Remark
“It is a deeper subject than I appreciated and, I begin to suspect, deeper
than anyone yet appreciates. To see it whole is certainly a daunting, for
the moment even impossible, task.” (Robert Langlands, writing about the
theory of automorphic forms.)
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