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Neural networks

e A neuron

\f(Z ) \f(Z 2)/ j(Z 3)/

x=w/f(z)+w)f(z,)+wf(z)

X is called the total input
to the neuron, and f(x)
IS its output
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A neural network computes a differentiable

function of its input. For example, ours computes:
p(label | an input image)



Convolutional neural networks

e Here's a one-dimensional convolutional neural
network

 Each hidden neuron applies the same
localized, linear filter to the input
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Convolution Iin 2D

Input “image” Filter bank

Output map




Local pooling
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Overview of our model

Deep: 7 hidden “weight” layers

Learned: all feature extractors initialized at
white Gaussian noise and learned from the

data
Entirely supervised
More data = good

O

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity
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Overview of our model

* Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

e 650,000 neurons

* 60,000,000 parameters

* 630,000,000 connections

* Final feature layer: 4096-dimensional

Convolutional layer: convolves its input
Q with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity




06 learned low-level filters
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O Local convolutional filters

Tral n | n g Fully-connected filters
= T

A Using stochastic gradient descent and the
s backpropagation algorithm (just repeated application s
of the chain rule)

One output unit per class
x; = total input to output unit ¢

Fla) = i

Zj:l exp(x;)
We maximize the log-probability

of the correct label, log f(x;)

Forward pass
ssed piemyoeg
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Our model

* Max-pooling layers follow first, second, and
fifth convolutional layers

 The number of neurons in each layer Is given

by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000
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Input representation

* Centered (0-mean) RGB values.

An input image (256x256) Minus sign The mean input image



Neurons

f(x) = tanh(x) f(x) = max(0, x)
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X is called the total input
i to the neuron, and f(x)

IS its output

Very bad (slow to train) Very good (quick to train)



Data augmentation

* Our neural net has 60M real-valued
parameters and 650,000 neurons

* |t overfits a lot. Therefore we train on 224x224
patches extracted randomly from 256x256
images, and also their horizontal reflections.




Testing

* Average predictions made at five 224x224
patches and their horizontal reflections (four
corner patches and center patch)

» Logistic regression has the nice property that it
outputs a probability distribution over the class
labels

* Therefore no score normalization or calibration
IS necessary to combine the predictions of
different models (or the same model on
different patches), as would be necessary with
an SVM.



Dropout

* Independently set each hidden unit activity to
zero with 0.5 probability

* We do this in the two globally-connected
hidden layers at the net's output

A hidden layer's activity on a given training image

.

H BB H B
A hidden unit A hidden unit
turned off by unchanged

dropout



Implementation

* The only thing that needs to be stored on disk
IS the raw iImage data

e We stored it in JPEG format. It can be loaded
and decoded entirely in parallel with training.

* Therefore only 27GB of disk storage Is needed
to train this system.

» Uses about 2GB of RAM on each GPU, and
around 5GB of system memory during
training.



Implementation

* Written in Python/C++/CUDA

» Sort of like an instruction pipeline, with the
following 4 instructions happening in parallel:

- Train on batch n (on GPUSs)

- Copy batch n+1 to GPU memory

- Transform batch n+2 (on CPU)

- Load batch n+3 from disk (on CPU)



Validation classification
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Validation classification
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Validation classification
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television wallaby
seat belt television sliding door hare
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Validation localizations

bookshop

cradle wood rabbit
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Validation localizations

o i

boathouse Scottish deerhound electric guitar

wine bottle apiary Scottish deerhound violin
digital clock mobile home Irish wolfhound carpenter's kit

gar boathouse Leonberg revolver
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Retrieval experiments

First column contains query images from ILSVRC-2010 test set, remaining
columns contain retrieved images from training set.
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