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Owing to their strong dipole moment and long coherence times, superconducting qubits have demonstrated
remarkable success in hybrid quantum circuits. However, most qubit architectures are limited to the GHz
frequency range, severely constraining the class of systems they can interact with. The fluxonium qubit, on the
other hand, can be biased tovery low frequencywhile beingmanipulated and read outwith standardmicrowave
techniques. Here, we design and operate a heavy fluxoniumwith an unprecedentedly low transition frequency
of 1.8 MHz. We demonstrate resolved sideband cooling of the “hot” qubit transition with a final ground state
population of 97.7%, corresponding to an effective temperature of 23 μK. We further demonstrate coherent
manipulation with coherence times T1 ¼ 34 μs, T�

2 ¼ 39 μs, and single-shot readout of the qubit state.
Importantly, by directly addressing the qubit transitionwith a capacitively coupledwaveguide, we showcase its
high sensitivity to a radio-frequency field.Throughcyclic qubit preparation and interrogation,we transform this
low-frequency fluxonium qubit into a frequency-resolved charge sensor. This method results in a charge

sensitivity of 33 μe=
ffiffiffiffiffiffi
Hz

p
, or an energy sensitivity (in joules per hertz) of 2.8ℏ. Thismethod rivals state-of-the-

art transport-based devices, while maintaining inherent insensitivity to dc-charge noise. The high charge
sensitivity combinedwith large capacitive shunt unlocks new avenues for exploringquantumphenomena in the
1–10 MHz range, such as the strong-coupling regime with a resonant macroscopic mechanical resonator.

DOI: 10.1103/PhysRevX.14.011007 Subject Areas: Quantum Physics

I. INTRODUCTION

Superconducting qubits consist of engineered quantum
systems with lowest-level spacings designed to host a
two-level system which can be manipulated and read out
via its dipolar interaction with electromagnetic fields. Their
strong dipole moment is also beneficial to interface them
with other physical systems. For instance, fluorescence
from individual electronic spins was successfully detected
using a superconducting qubit-based microwave-photon
detector [1] operating close to 7 GHz. Additionally, in the

realm of circuit quantum acoustodynamics (cQAD), the
coupling between a qubit and a piezoelectric resonator is
used to detect and manipulate the phononic state, typically
within the 2–10 GHz range [2–5]. However, adapting these
sensing schemes to lower frequencies, below the conven-
tional operating frequency of superconducting qubits,
introduces distinct challenges.
First, in a typical circuit quantum electrodynamics setup,

the qubit state is read out thanks to the dispersive shift
imparted to a nearby superconducting resonator. As the
dispersive shift quickly drops for a cavity detuning exceed-
ing the qubit anharmonicity, weakly anharmonic qubits,
such as transmons, require nearly resonant resonators with
dimensions scaling inversely with the frequency (as an
illustration, a 1 MHz λ=2 coplanar cavity requires a 100-m-
long waveguide). Second, systems with frequencies lower
than kBT=h, where T stands for the environmental temper-
ature, are coupled to a hot thermal bath with which they
exchange photons randomly, quickly turning pure quantum
states into statistical mixtures.
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In recent years, significant progress has been made in
overcoming these challenges. Notable contributions include
the development of a 14 MHz heavy-fluxonium qubit with a
long coherence time and fast manipulation through fast-flux
gates [6]. Furthermore, operation of a fluxonium qubit
dispersively coupled to a 690 MHz piezoelectric mechanical
system was demonstrated earlier this year [7].
In this work, we demonstrate a fluxonium qubit with a

transition frequency as low as 1.8 MHz, achieving coherent
operation and a charge sensitivity of 33 μe=

ffiffiffiffiffiffi
Hz

p
, reflecting

its potential for coupling with other devices operating in the
MHz range. We achieve single-shot readout and direct
preparation in the qubit state basis using sideband cooling,
attaining a preparation fidelity above 97%. Based on this
fidelity, we calculate an effective temperature of approxi-
mately 23 μK. We also demonstrate direct resonant manipu-
lation of the qubit statewith a charge drive as low as 5 × 10−3

Cooper pairs. This value corresponds to a single-shot charge
sensitivity of 10−2 e. In order to compare the sensitivity of our
qubit-based detection scheme to other charge sensors, we
accumulate statistical data through a cyclic qubit preparation
and interrogation sequence. The charge sensitivity demon-
strated here, at δq ≈ 33 μe=

ffiffiffiffiffiffi
Hz

p
, rivals that of the most

advanced transport-based devices [8–18], while maintaining
intrinsic insensitivity to dc-charge noise. Furthermore, the
capacitance C ∼ 50 fF of the fluxonium electrode demon-
strated in this work exceeds the typical gate capacitance of
single-electron transistors (SETs) [9,12] by approximately 2
orders of magnitude, resulting in a record-low energy
sensitivity δq2=2C ∼ 2.8ℏ. This metric can be regarded as
more fundamental than the bare charge sensitivity, which gets
diluted when the self-capacitance of the probed system
exceeds that of the sensor in a real-world charge-sensing
scenario.
For instance, the demonstrated charge sensitivity, com-

bined with large gate capacitance demonstrated here, are
well suited to explore quantum phenomena with low-
frequency mechanical systems. For one, the frequency
and electrode capacitance demonstrated in our work align
with those found in cutting-edge vacuum-gap dispersive
electromechanical systems [19]. Additionally, the single-
shot charge sensitivity demonstrated here is sufficient to
detect the zero-point motion of such a system placed in a
dc-biased vacuum gap capacitor [20]. Achieving the strong
coupling between a low-frequency mechanical resonator
and a superconducting qubit would enable us to test the
superposition principle in a regime where general relativity
and quantum mechanics interplay [21].

II. CIRCUIT DESIGN

The heavy-fluxonium circuit is shown in Fig. 1. The
qubit itself is composed of a small Josephson junction
(energy EJ ¼ ϕ2

0=LJ, ϕ0 denoting the reduced quantum of
flux ϕ0 ¼ Φ0=2π, with Φ0 ¼ h=2e) shunted by a large

capacitance to ground (capacitive energy EC ¼ e2=2C) and
a superinductance (inductive energy EL ¼ ϕ2

0=L) formed
by 360 large Josephson junctions in series. We ensure that
each junction of the array has a negligible phase-slip rate by
taking EJ;A=Ep ≳ 3, where EJ;A=h ¼ 65 GHz is the
Josephson energy of each array junction, and Ep=h ¼
17.9 GHz is the junction plasma frequency [22]. In this
regime the junction chain behaves as a linear inductor and
the circuit Hamiltonian writes

ĤQ¼−EJ cosðφ̂−φextÞþ4EC½n̂−ngðtÞ�2þ
EL

2
φ̂2: ð1Þ

(d)

(a) (c)

(b)

FIG. 1. Circuit diagram and implementation of the fluxonium
qubit, controls, and readout. Optical micrograph (a) and circuit
diagram (c) of the fluxonium qubit composed of a capacitor
(green), an array of 360 Josephson junctions (blue), and a single
junction (red). The qubit is capacitively coupled to the readout
resonator (purple). The magnetic flux through the superconducting
loop can be rapidly tuned via the current passing through the flux
line (orange), and the qubit is capacitively coupled to a charge line
(cyan). (b) Scanning electron micrograph of the fluxonium single
junction (red) and four junctions of the array (blue). (d) Two-tone
spectrum centered on the flux frustration point φext=2π ¼ 0.5.
The color scale in the image represents the phase of the reflected
probe pulse. The fit to the data (dotted lines) yields the qubit
parameters EJ=h¼5.178GHz, EC=h¼0.4144GHz, and EL=h ¼
0.18 GHz. Central inset: detailed view of the avoided crossing near
the frustration point. The left- and right-hand insets represent the
energy-level diagrams of the four lowest eigenstates, with the
potential in gray and the wave functions in colors for an external
flux of φext=2π ¼ 0.5 and φext=2π ¼ 0.6, respectively.
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In this equation, φ̂ represents the superconducting phase
across the junction, and n̂ denotes its conjugate variable
(the Cooper pair number), φext ¼ 2πΦext=Φ0, where Φext
stands for the magnetic flux threading the superconducting
loop, and ngðtÞ is the offset charge on the capacitor pad.
φext can be controlled by an on-chip flux line, and ngðtÞ can
be controlled by a capacitively coupled coplanar wave-
guide. While the fluxonium spectrum is insensitive to a dc-
charge offset [23], the main goal of this work is to evaluate
the sensitivity of the qubit to a nearly resonant ac-charge
modulation.

III. QUBIT SPECTRUM

The circuit operates in the heavy-fluxonium regime,
characterized by the two conditions EJ ≫ EL and
EJ ≳ 10EC. The first condition ensures that the potential
experienced by the positionlike variable φ̂ consists of
multiple wells with distinct minima. The second condition
ensures that the lowest energy eigenstates are well localized
within each well, with a small tunneling probability
between neighboring wells. The magnitude of the tunneling
rate ES=ℏ is exponentially suppressed as a function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
, which relates the height of the potential barrier

2EJ to the zero-point energy 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
.

We denote jgi and jei (jfi and jhi) as the fundamental
(first excited) states of the two lowest wells. Two families
of transitions are observed in the two-tone spectroscopy of
Fig. 1(d): intrawell (or plasmonic) transitions, jgi → jfi
and jei → jhi, that are only weakly dependent on the
external flux φext, and interwell transitions jei → jfi and
jgi → jhi, that feature a linear dependence with φext.
Away from the two sets of flux points φext ≡ 0½2π� and

φext ≡ π½2π� for which the potential is symmetric with
respect to the position-like variable, the interwell transition
jgi → jei is exponentially suppressed, acting as a selection
rule that can be used to protect a microwave qubit against
relaxation [24] [right-hand inset of Fig. 1(d)].
At the flux-frustration point φext ¼ π, the eigenstates

undergo a transition, switching from localized modes
around a single potential well to symmetric and antisym-
metric superpositions of these well states. This transition
results in a significant overlap of the flux wave functions, as
evidenced by the magnitude of the flux matrix element
jhgjφ̂jeij ∼ π [left-hand inset of Fig. 1(d)]. Importantly, at
this point, the weakness of the tunneling element leads to a
reduced qubit transition frequency ωge ¼ ES=ℏ. The value
of ωge can be tuned over several orders of magnitude by
adjusting the circuit parameter EJ=EC. In our specific case,
we have chosen a transition frequency of 1.8 MHz, which
closely matches the oscillation frequency of existing
macroscopic mechanical systems based on suspended
membranes [25,26]. Notably, this frequency is approxi-
mately one order of magnitude lower than the lowest
frequency ever reported using superconducting qubits [6].

IV. SIDEBAND COOLING

With this low frequency, the qubit has almost equal
ground and excited state populations at thermal equilib-
rium. Inspired by experiments with trapped ions [27] and
optomechanical systems [28], we initialize the qubit in a
pure state by driving the readout cavity with a detuned tone.
By sweeping the reset tone frequency ωp in the vicinity of
the cavity resonance ωR=2π ¼ 5.64 GHz, we observe two
distinct processes at the sideband frequencies ωR � ωge,
corresponding to the transitions jg0i → je1i and je0i →
jg1i [see Fig. 2(a)]. More quantitatively, the qubit-resonator
Hamiltonian can be linearized around the intracavity drive
amplitude α. For large drive amplitude and dropping all
terms rotating at the drive frequency, we arrive at the
Hamiltonian (see Appendix C)

Ĥ ¼ ĤQ þ ℏΔRâ†âþ ℏg cosðφ̂ − φextÞðαâ† þ α�âÞ; ð2Þ

where â is the annihilation operator for photons in the
readout cavity, ΔR ¼ ωp − ωR the pump-cavity detuning,
and ℏg ¼ EJφ

2
zpf;R, with φzpf;R the zero-point fluctuations

of the readout mode quantifying the energy-participation
ratio of the cavity in the fluxonium junction. This
Hamiltonian, expressed in a frame rotating at the drive
frequency, describes the interaction between the fluxonium
and an effective cavity mode of frequency ΔR. When ΔR
matches the frequency ωge (−ωge), the interaction reduces
to the Jaynes-Cummings (anti-Jaynes-Cummings) model
between the cavity and the qubit. Furthermore, owing to
the large cavity damping rate κ=2π ¼ 2.4 MHz ≫ gjαj, the
cavity field dynamics can be adiabatically eliminated,
leading to the Purcell-like loss operators (see Appendix C),

L� ¼ 2gjαjffiffiffi
κ

p hej cosðφ̂ − φextÞjgiσ�; ð3Þ

where the� sign depends on the sideband addressed by the
drive pulse ΔR ≃�ωge.
At the flux-frustration point φext ¼ π, the matrix element

hej cosðφ̂ − φextÞjgi cancels due to the opposite parity of
the qubit wave functions. Prior to the 10 μs reset pulse, we
thus offset the flux by about 10−3 ×Φ0 which corresponds
to ωge=2π ≃ 10 MHz, and we ramp it back to the frus-
tration point afterward [see Fig. 2(b)]. In order to avoid
undesired mixing of qubit states caused by nonadiabatic
effects [6] while minimizing qubit decay, we have chosen a
ramp duration of 2 μs.
The qubit population is then detected by standard

dispersive readout. We were unable to directly resolve
the qubit states jgi vs jei, due to a too small dispersive shift
of the readout cavity. The qubit population was thus
obtained by first mapping the population from jgi to jhi,
thanks to a π Rabi pulse. The population in jhi is then
measured by standard dispersive readout [see Fig. 2(b)].
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Figure 2(c) shows a map of the final qubit population as a
function of the external flux and detuning of the reset tone.
The expected location of the upper and lower sideband
processes, as predicted by diagonalizing the Hamiltonian
Eq. (1), are overlaid as dashed orange and blue lines,
respectively. The dependence of the final qubit population
as a function of the duration of the reset pulse [see
Fig. 2(d)], for the preparation in jei (preparation in jgi),
is well fitted by an exponential curve of time constant
1.9 μs (1.7 μs). The raw single-shot probability of detec-
tion is given by Pprep g

g ¼ 86.4% for a qubit prepared in jgi
(Pprep e

e ¼ 92.8% for preparation in jei). By correcting for
mislabeling and decay during readout (see Appendix D),
we infer a state-preparation efficiency of 97.7% for the
qubit preparation in jgi and 97.7% for the preparation
in jei.

V. QUBIT COHERENCE

After having established this preparation process, we
first investigate the energy relaxation of the jei and jgi
fluxonium states, toward a thermal state: Figure 3(a)
displays the qubit population versus the delay time after
preparation in either jei or jgi. When a qubit interacts with
a thermal environment of occupation nth, it experiences two
relaxation channels, described by the operators

ffiffiffiffiffiffi
Γ↑

p
σ̂þ andffiffiffiffiffiffi

Γ↓
p

σ̂−, where Γ↑ ¼ γnth and Γ↓ ¼ γðnth þ 1Þ. Here, we
have introduced the intrinsic damping of the circuit
γ ¼ ωge=Qintr, corresponding to the energy decay rate in
an ideal zero-temperature environment, with Qintr the
intrinsic circuit quality factor. In the case of low-frequency
transitions, such as the fjei; jgig manifold, where
ℏωge ≪ kBT, both emission and absorption are nearly
equal Γ↑ ≈ Γ↓ ≡ Γ since nth ∼ kBT=ℏωge ≫ 1. This leads
to an exponential relaxation toward the statistical mixture
ρth ¼ ðjeihej þ jgihgjÞ=2 at a rate 2Γ [see Eq. (F4) of
Appendix F for details). By fitting exponential curves to the
data of Fig. 3(a), we obtain T1 ¼ 1=2Γ ¼ 34 μs.
As the qubit frequency explored in the current work

extends well below the values reported in the literature so
far [6], it is important to determine whether the qubit
transition couples with a thermal environment or is pri-
marily constrained by technical noises (e.g., 1=f charge or
flux noise). To examine this, we conducted T1 measure-
ments similar to those shown in Fig. 3(a), while varying the
cryostat base temperature (see Appendix E). To extract the
effective temperature of the circuit, which is often observed
to be higher than the cryostat temperature [29], we use the
measured residual populations of the fjfi; jhig manifold
as a local probe for the circuit temperature Tcirc (see
Appendix E for details). Although the built-in temperature
sensor of the cryostat indicates a minimal temperature of
7 mK, we have found that the circuit only thermalizes to
Tcirc ≈ 59 mK. Furthermore, we observe a nearly linear

(a)

(c)

(d)

(b)

FIG. 2. Sideband preparation of the fluxonium qubit. (a) Level
diagram illustrating the sideband reset protocol: The qubit is reset
to either jgi or jei by driving one of the sideband transitions:
je0i → jg1i or jg0i → je1i. The subsequent rapid decay of the
cavity photon ensures a directional transition toward the desired
qubit state. (b) Pulse sequence for the reset protocol. The flux bias
(blue) is set to the target value within 2 μs. A reset tone (purple) is
applied to the readout resonator port for 10 μs. The flux is then
reset to φext ¼ π within 2 μs. The qubit state is read out by
transferring the population from jgi to jhi (orange π pulse)
followed by single-shot dispersive readout in the eh manifold
(yellow pulse). (c) Qubit population (color scale) as a function of
flux bias (x axis) and reset pulse detuning (y axis). The reset pulse
power is adjusted to maintain a constant intracavity field at
ωR � ωgeðφextÞ. The horizontal dashed line indicates the readout
frequency. The nominal working points for jei and jgi prepara-
tion are denoted by the orange and blue dots, respectively. The
orange and blue dot-dashed lines represent the predicted frequen-
cies based on the Hamiltonian parameters in Fig. 1. (d) Final
qubit population as a function of reset pulse duration [other
parameters are the nominal parameters indicated in (c)]. The
population extracted from single-shot readout distributions is
shown on the left-hand axis, while the right-hand axis displays
the population corrected for decay and mislabeling during read-
out (see Appendix D). Exponential fits to the data (yellow and
blue lines) yield preparation times of 1.9 μs (jei) and 1.7 μs (jgi)
with final occupations of 97.7% and 97.7%, respectively.
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relationship between Γ and Tcirc in the range 59 ≤ Tcirc ≤
318 mK, suggesting an intrinsic damping γ ¼ 12 s−1, or
Qintr ¼ 9.6 × 105 independent of temperature, with a mar-
ginal impact of technical noise approximately equal to the
thermal contribution at Tcirc ¼ 59 mK (see Appendix E).
This observation indicates that, despite its ultralow opera-
tional frequency, our qubit is marginally impacted by 1=f
noise. This outcome stands in contrast with recent studies
on frequency-tunable fluxonium [30] and may be attributed
to the small superconducting loop area used in our circuit,
limiting the influence of flux noise.
Finally, we probe the qubit dephasing time, denoted as T�

2,
as a function of external flux. To achieve this, we conducted
Ramsey sequences on the jgi → jei transition. As seen in
Fig. 3(c), the coherence time reaches its maximal value of
approximately 40 μs at the flux frustration point, φext ¼ π.
Indeed, as shown in Fig. 3(c), the qubit frequency is to first
order insensitive to fluctuations in the external magnetic flux
at this point. The Ramsey fringe measurement at φext ¼ π is
depicted in Fig. 3(b). Notably, the measured coherence is
not too far from the upper limit of 2T1, suggesting a pure
dephasing rate of Γφ ¼ 1=2T1 − 1=T�

2 ¼ ð97 μsÞ−1.

VI. ac-CHARGE SENSITIVITY OF THE
FLUXONIUM QUBIT

In the following, we evaluate the sensitivity of the
fluxonium to a nearly resonant ac-charge drive. We delve
first into the theoretical advantages of the fluxonium qubit
over other qubit implementations, before introducing a
practical scheme for the experimental detection of weak
charge modulation.

A. Advantage of the heavy fluxonium over other
capacitively shunted qubits

In this section, we aim to maximize the Rabi rate for a
single-mode qubit subjected to a nearly resonant offset

charge of fixed oscillation amplitude Ndrive and frequency
ωd. This thought experiment will provide a clearer under-
standing of why the heavy fluxonium holds an advantage
over other capacitively shunted qubits.
Consider a single-mode qubit with a capacitive energy

given by 4EC½n̂ − ngðtÞ�2, which interacts with a classical
offset charge ngðtÞ ¼ Ndrive cosðωdtÞ. For small charge
modulations Ndrive ≪ 1, the Hamiltonian can be linearized.
In a frame rotating at the drive frequency, it writes

Ĥint ¼ −8NdriveEChejn̂jgiσ̂x: ð4Þ

Using the relation between charge and flux matrix elements
[22], namely, 8ECjhejn̂jgij ¼ ℏωgejhejφ̂jgij, we derive the
Rabi frequency:

Ωr ¼ 2Ndriveωgejhejφ̂jgij: ð5Þ

In a resonant coupling scenario, where the drive frequency
ωd is imposed by the resonance of an auxiliary system
to probe, the qubit frequency needs to fulfill ωge ¼ ωd. In
such a situation, maximizing the third factor jhejφ̂jgij is
crucial. Indeed, only this term depends on the specifics of
the qubit implementation, while the first two terms Ndrive
and ωge are characteristics of the auxiliary system to be
detected. For instance, in cQAD, the frequency ωd is set by
the mechanical resonance frequency, whereas the ampli-
tude Ndrive depends on the details of the mechanical-
electrical transduction. Consider the scenario of a silicon
nitride membrane, which is a promising candidate for
testing Penrose gravitational collapse due to its long
coherence time and large zero-point fluctuations [21]. In
this case, we expect an ac-charge modulation of Ndrive ∼
10−2 at a resonance frequency of ωd=2π¼Ωm=2π≈2MHz
(see Appendix G).

(a) (c)(b)

FIG. 3. Qubit coherence. (a) Energy relaxation time (T1) measured at the flux point φext ¼ π. The raw qubit population is plotted as a
function of delay time after preparation in jei (yellow dots) or jgi (blue dots) as the qubit relaxes toward a thermal mixture. A common
exponential fit yields T1 ¼ 34 μs. The apparent imbalance in the equilibrium population (dashed line) is due to the residual decay of the
intermediate state jfi used for readout. (b) Ramsey experiment after state preparation in jgi. The exponential decay of the Ramsey
fringes (black line) yields T�

2 ¼ 39.7 μs and a transition frequency of 1.8 MHz. (c) T�
2 (yellow curve, right-hand axis) and transition

frequency (blue curve, left-hand axis) as a function of flux bias. The points highlighted in red correspond to the data presented in (b). The
blue solid line is the predicted qubit frequency for the Hamiltonian parameters given in Fig. 1.

HIGH-SENSITIVITY AC-CHARGE DETECTION … PHYS. REV. X 14, 011007 (2024)

011007-5



While the matrix element jhejφ̂jgij is typically sup-
pressed exponentially in the heavy-fluxonium regime, a
radically different scenario emerges at the flux-frustration
point. Here, the wave functions recover a large overlap
jhejφ̂jgij ∼ π. This value compares favorably with weakly
anharmonic qubits, where jhejφ̂jgij ∼ ð2EC=EJÞ1=4 ≪ 1,
or even the Cooper pair box jhejφ̂jgij ∼ 4EC=EJ ∼ 1. In
essence, the unique characteristics of fluxonium eigenstates
at the flux-frustration point—manifesting as Schrödinger’s
cat–like superpositions of persistent current states—endow
it with a larger charge sensitivity compared to a transmon or
Cooper pair box operating at the same transition frequency.

B. Rabi oscillations of the qubit transition

In Fig. 4, we directly drive the qubit, biased at φext ¼ π,
with a MHz pulse on the charge drive. We observe a Rabi
oscillation pattern with maximum contrast for ωd ¼ ωge.
The inset shows the Rabi frequency Ωr=2π for a resonant
drive at 1.8 MHz. As expected from Eq. (5), we observe a
linear dependence of the Rabi oscillations with the drive
amplitude, up to Ωr=2π ∼ 1 MHz. For larger amplitude of
the drive, the rotating-wave approximation breaks down as
Ωr approaches ωge, leading to a deformed pattern with
reduced contrast at the resonance drive condition. We use

Eq. (5) to relate the voltage amplitude on the digital-to-
analog converter to the equivalent number of Cooper pairs
Ndrive on the fluxonium electrode. We also deduce from this
relation the minimum charge modulation Nmin required to
observe coherent Rabi flipping, which is obtained for
Ωr ≃ π=T1:

Nmin ¼
2π

jhejφ̂jgijωgeT1

≈ 5 × 10−3: ð6Þ

The ability to manipulate the qubit state with less than 1%
of a Cooper pair shows the extreme sensitivity of the
fluxonium to a resonant ac-charge modulation. For in-
stance, this value would be sufficient to reach the strong-
coupling regime with a dc-biased mechanical membrane in
a resonant coupling scenario (see Appendix G).
The aforementioned value of 5 × 10−3 Cooper pairs

corresponds to a single-shot charge sensitivity of 10−2 e.
However, through the implementation of quantum sensing
protocols, like those routinely used in nitrogen-vacancy-
center magnetometry [31] and similar methodologies [32],
we are able to accrue substantial statistical data. This allows
us to measure charge sensitivity within a 1 s integration
period and subsequently compare these findings with other
charge-sensing methods.

C. Frequency-resolved ac-charge sensitivity

In a quantum sensing experiment, we can leverage the
ability to swiftly prepare and read out the qubit state to
detect a weak charge signal through repeated interaction
with the two-level system. This involves preparing the
qubit in jgi, after which it interacts for an interrogation time
τI with the weak continuous signal to be detected (referred
to as the “calibration tone” henceforth), of frequency ωcal,
applied to the charge port. For weak enough calibration
tone, the Bloch vector undergoes a small rotation away
from the south pole. We then probe this displacement by
mapping the transverse component of the Bloch vector to
the σz basis with a π=2 pulse, before performing a single-
shot readout of the qubit in the jgi; jei basis. In this scheme,
the probability to detect the qubit in jei slightly deviates
from 1=2, by an amount that depends on the phase and
amplitude of the calibration tone. Furthermore, the mis-
match Δ between the calibration tone and qubit frequencies
gives rise to a shot-to-shot rotation of the Bloch vector
by an angle θk ¼ kΔτ, where k is the repetition index
and τ the repetition period of the experiment. Even though
each measurement result mk ∈ f0; 1g only contains one
bit of information, the complete measurement record
fmkg0≤k<Ntot

can be used to reconstruct the spectrum of
the charge modulation by the periodogram method [33].
Performing the π=2 rotation along a unique axis

would lead to an ambiguity between positive and negative
detuning Δ. We thus perform the qubit rotations along an
axis picked up sequentially in the set (þX, þY, −X, −Y).

FIG. 4. Direct Rabi manipulation of the radio-frequency qubit
transition. After initial preparation in jgi, the flux is reset to
φext ¼ π, and the qubit is driven via the charge port with a MHz
pulse of variable duration and frequency. The final qubit
population is read out using the technique described in Fig. 2.
The negative frequency part of the graph is here to highlight the
validity range of the rotating-wave approximation. The inset
shows the Rabi frequency for a resonant drive at 1.8 MHz,
extracted from a sinusoidal fit, as a function of the drive voltage
amplitude (upper horizontal axis). A linear fit of Eq. (5) to the
data provides the lower horizontal axis calibration, where the
drive amplitude is expressed in Cooper pairs on the fluxonium
electrode. The red dot is obtained for the parameters of the
main figure.
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This ensures a nonambiguous correspondence between
discrete and continuous time frequencies over the interval
½−ΩNy=2;þΩNy=2�, where ΩNy is the Nyquist angular
frequency ΩNy ¼ π=τ (see Appendix F). The charge-
noise spectrum over this interval is then reconstructed
by performing fast-Fourier transforms over adjacent
windows of N ¼ 1000 consecutive samples. Figure 5(c)
shows an example of such an experimentally recon-
structed spectrum. The calibration tone is visible as a
sinus-cardinal-shaped peak, centered around ωcal and of
width ΩRBW ¼ 2π=Nτ. This value is the residual band-
width of our quantum spectrum analyzer, and it can be
tuned by adjusting the window length N. The spectrum is
normalized in units of elementary charge e=

ffiffiffiffiffiffi
Hz

p
using

the known amplitude of the calibration tone, as deter-
mined from the linear fit of Fig. 4.

The calibration peak sits on a flat noise background,
which is attributable to the sampling noise of the quantum
sensor [34]. An analytic model for the signal-to-noise ratio
(SNR) as a function of the experimental parameters has
been derived (see Appendix F) and shows good agreement
with the measured data [see Fig. 5(c)]. Qualitatively, the
SNR increases linearly for τI ≪ T1, as the initial Bloch
vector accumulates a transverse component 2jhσij ¼ ΩrτI .
On the other hand, due to the interaction with the thermal
bath, the Bloch vector relaxes eventually toward the
origin of the Bloch sphere such that the SNR vanishes
for τI ≫ T1. In practice, around the optimal value
τI ∼ 20 μs, the detector achieves a noise level as low as
33 μe=

ffiffiffiffiffiffi
Hz

p
. This value approaches that of the most

sensitive electrometers such as the radio-frequency
quantum point contact [13,35] or the radio-frequency

(a) (b)

(c)

FIG. 5. ac-charge sensing. (a) A weak monochromatic charge drive (also referred to as calibration tone) is detected thanks to a
repeated pulse sequence: The qubit is prepared in jgi [black arrow in the Bloch sphere (b)]. After interacting for a time τI with the
tone, a partial information on the qubit state is obtained by performing a π=2 pulse in one of the four directions þX;þY;−X;−Y,
followed by a qubit state readout in the eg basis. From the measurement samples mk ∈ f0; 1g, a complex telegraphic signal
σk ¼ ikðmk − 1=2Þ is constructed. The noise spectrum centered around the qubit frequency is estimated by the Bartlett’s method,
with periodograms of 1000 nonoverlapping consecutive samples. (c) The estimated noise spectrum presents a residual-bandwidth-
limited peak at the calibration tone frequency νcal ¼ 1.853 MHz. Red inset: enlargement on the calibration peak and sinus-cardinal
fit (solid line). Left- and right-hand insets: signal-to-noise-ratio (SNR) for the calibration peak as a function of interrogation time τI
and calibration peak amplitude, respectively. The red dots in the insets correspond to the parameters used in the main graph of (c).
The solid lines are the results of an analytic model taking into account the evolution of the qubit during the interrogation time. Signal
cancellation occurs when the calibration tone amplitude is a multiple of that of a π pulse. The spectrum in (c) is calibrated using the
known variance of the calibration tone. RO stands for readout.
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SET [11,12]. Yet, these transport-based sensors are very
different in nature from the current qubit-based quantum
protocol. The shunt capacitor on which the charge is
detected in our system is typically 2 orders of magnitude
larger than the superconducting islands employed in those
systems [9,12,13]. This is of utmost practical importance
when it comes to connecting the sensor to an auxiliary
quantum system. As an example, when trying to detect the
charge modulation of an electromechanical system such as
Ref. [19], the 50 fF capacitor of the vacuum-gap system
would perfectly match the value employed in this work,
whereas traditional sensors would suffer a large dilution of
the signal. The challenge of detecting extremely small
charge signals while maintaining a large island capacitance
is more directly captured by the energy sensitivity [12]
δq2=2C ≈ 2.8ℏ which is below the sensitivity of any other
charge detectors operating at MHz frequencies. Contrary to
rf SETs, whose sensitivity is fundamentally bounded by the
shot-noise limit δq2=2C ≥ ℏ [9], the quantum sensor
introduced in this work could in principle operate below
this bound, for instance, by improving the qubit coherence
time as demonstrated in Appendix F. Furthermore, in stark
contrast with transport-based measurements, featuring a
flat frequency response from dc to several tens of MHz, our
resonant detector features a narrow frequency response
around the qubit frequency, the full bandwidth being given
byΩfull ¼ 2π=τI ∼ 50 kHz (see Appendix F). This peculiar
frequency response is highly advantageous when coupling
the fluxonium to a nearly resonant system, as it guarantees
perfect immunity to low-frequency environmental charge
noise while maximizing charge sensitivity at the MHz
region of interest.

VII. CONCLUSION

In conclusion, we have demonstrated high-fidelity prepa-
ration, manipulation, and single-shot readout of a heavy-
fluxonium qubit with a transition frequency as low as
1.8 MHz. To the best of our knowledge, this is the lowest
frequency reported so far for a superconducting qubit. As
demonstrated in earlier work [6], this circuit represents a
realistic alternative to the transmon in a quantum comput-
ing architecture. Our work furthermore demonstrates the
potential of this circuit in sensing experiments. This can be
routed from the peculiar frequency response of the circuit
which filters efficiently the environmental noise at audio
frequency while being maximally sensitive at the resonant
qubit frequency in the MHz range. The high charge
sensitivity combined with the large capacitive shunt dem-
onstrated in this work opens up avenues in hybrid circuits,
where the fluxonium can be used as a resonant probe to
manipulate other physical systems. As an example, we
show (Appendix G) that the coherence time and electric
dipole achieved in the current work are sufficient to attain
the strong-coupling regime in a hybrid electromechanical
system involving a dc-biased nanomechanical resonator.
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APPENDIX A: MICROFABRICATION

The large circuit parts, i.e., the coplanar waveguide
resonator, the flux line, the charge-drive electrode, and
the fluxonium coplanar capacitor, were fabricated with
standard UV laser lithography: starting with a 280-μm-
thick silicon (100) wafer with a resistivity of 20 kΩ cm, and
coated with a 150-nm-thick layer of niobium (Nb), we spin
coat S1805 positive resist, and bake it at 115 °C for 1 min.
The resist is then exposed to UV light with a dose of
100 mJ=cm2, and developed using MF-319. Nb is etched
using reactive ion etching with a SF6 plasma. Any
remaining resist is finally removed with acetone in an
ultrasound bath at 50 °C for 15 min, rinsed in isopropanol
(IPA), and dried.
The small Josephson junction and the numerous large

junctions of the superinductor were fabricated using the
Dolan-bridge technique. First, the sample is spin coated
with MMA EL13 at 4000 rpm, and subsequently baked for
1 min at 195 °C. The sample is then spin coated with
PMMA A3 at 5000 rpm and baked for 30 min at 195 °C.
Electron-beam lithography with a dose of 280 μC cm−2 is
used to create the freestanding bridges on the MMA-
PMMA bilayer. The development is performed with a
mixture of IPA and deionized water at a temperature of 6 °C
for 90 s. The Al=AlOx=Al junctions are fabricated by
evaporation of a 31-nm-thick aluminum (Al) layer with a
−22° angle, followed by oxidization with a mixture 9∶1
of argon and O2, at 200 mbar and for 12 min. Finally, a
100-nm-thick Al layer is evaporated at þ22° angle. A lift-
off is then performed in an N-methyl-2-pyrrolidone bath at
80 °C for 20 min. The sample is then dried after rinsing with
acetone and IPA.
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APPENDIX B: EXPERIMENT SCHEMATIC

The room-temperature and cryogenic rf and dc connec-
tions are depicted in Figs. 6 and 7, respectively. A fast data
acquisition system Operator X (OPX) from quantum
machine is used in combination with a microwave source
(Anapico APMS40G) to generate the rf and microwave
pulses. The magnetic flux control is obtained by combining a
stabilized voltage source (Yokogawa 7651) with a fast
analog output of the OPX. This setup allows us to scan
the flux bias over more than Φ0, while enabling fast control
over a range of approximately 3 × 10−2 ·Φ0 with a sub-
microsecond time resolution.

APPENDIX C: SIDEBAND COOLING

The starting point of our analysis is the Hamiltonian of
the fluxonium, including the driven readout cavity. The
Hamiltonian is expressed in the normal mode basis, as
obtained by diagonalizing the classical equations of motion
for EJ → 0 [36]. The normal modes are labeled “R” for
readoutlike and “Q” for qubitlike. The Hamiltonian writes

Ĥ¼ℏωQĉ†ĉþℏωRâ†âþℏðâε�deiωptþ â†εde−iωptÞ ðC1Þ
−EJ cosðφ̂Q þ φ̂R − φextÞ; ðC2Þ

where φ̂R ¼ φzpf;Rðâþ â†Þ and φ̂Q ¼ φzpf;Qðĉþ ĉ†Þ re-
present the normalmode positionlike operators in the absence
of the Josephson term (EJ ¼ 0). The bosonic annihilation
operators for the qubit and cavity modes are denoted by ĉ
and â, with respective frequenciesωQ andωR. The zero-point
fluctuations of the readout and qubit modes, as seen by the
Josephson junction, are given by φzpf;R and φzpf;Q. Note that
the participation ratio of the resonator mode in the Josephson
junction is very small [36], such that φzpf;R ≪ 1.
To account for photon loss in the readout resonator,

we model the dynamics with a master equation,

d
dt

ρ̂ ¼ −i½Ĥ; ρ̂� þ κDâðρ̂Þ; ðC3Þ

FIG. 6. Room-temperature rf and dc circuitry. IR mixer: Image
rejection mixer; IF: intermediate frequency; RT amplifier: room
temperature amplifier; and TWPA: traveling wave parametric
amplifier.
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FIG. 7. Cryogenic rf and dc circuitry. The color code matches
that of Fig. 1. VLFX 500: 500 MHz low-pass filter from
Minicircuits. K&L: 12 GHz low-pass filter (model 6L250-
12000) from K&L. SLP 1.9+: 1.9 MHz low-pass filter from
Minicircuits. JTWPA: Josephson traveling wave parametric
amplifier.
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where the Lindbladian writes Dâðρ̂Þ ¼ â ρ̂ â† − 1
2
½â†â ρ̂þ

ρ̂â†â�.
In the following, we demonstrate how Eq. (C3) simplifies

to the effective qubit dissipative dynamics, as represented by
the loss operator in Eq. (3). We proceed by going in a frame
rotating at the drive frequency ωp, and displaced around the
mean amplitude of the cavity field α, by doing the sub-
stitution â → ðαþ âÞe−iωpt. The steady state value α is
chosen such that it cancels the three drift terms:

Ĥ1 ¼ ðℏκ=2iÞðα�â − αâ†Þ; ðC4Þ

Ĥ2 ¼ ℏΔðαâ† þ α�âÞ; ðC5Þ

Ĥ3 ¼ ℏðϵ�dâþ ϵdâ†Þ; ðC6Þ

where Ĥ1 is an effective Hamiltonian dynamics stemming
from the expression of the Lindbladian in the displaced
frame, Ĥ2 comes from the linearization of the term ℏΔRâ†â
in the rotating frame Hamiltonian, with ΔR ¼ ωp − ωR

being the drive detuning, and Ĥ3 is the drive term. We thus
obtain the value of α:

α ¼ −ϵd
ΔR þ iκ=2

: ðC7Þ

The Hamiltonian in the displaced frame becomes

Ĥ¼ℏωQĉ†ĉþℏΔRâ†â−EJ cosðφ̂Qþ φ̃R−φextÞ; ðC8Þ

where φ̃R ¼ φzpf;Rðαþ âÞe−iωpt þ φzpf;Rðα� þ â†Þeiωpt is
the resonator coordinate in the new frame. Since
φzpf;Rjαj ≪ 1, we Taylor expand this expression to second
order with respect to φ̃R:

Ĥ ¼ ℏωQĉ†ĉþ ℏΔRâ†â − EJ cos ðφ̂Q − φextÞ
þ EJ sin ðφ̂Q − φextÞ × φ̃R

þ EJ

2
cos ðφ̂Q − φextÞ × φ̃2

R: ðC9Þ

The first line of Eq. (C9) corresponds to the resonator and
unperturbed qubit Hamiltonian, the second line, which
corresponds to the first order Taylor expansion, can be
safely neglected as it only consists of terms rotating at�ωp.
On the other hand, the third line, corresponding to the second
order Taylor expansion, reduces to cos ðφ̂Q − φextÞ×
φ2
zpf;Rðαâ† þ α�âÞ, once fast rotating terms have been

neglected, and linearizing for α ≫ â; â†. We thus obtain
Eq. (2), with

ĤQ ¼ ℏωQĉ†ĉ

− EJ

�
1 −

�
2πΦzpf;R

Φ0

�
2
�
jαj2 þ 1

2

��
cosðφ̂Q − φextÞ

≃ ℏωQĉ†ĉ − EJ cosðφ̂ − φextÞ: ðC10Þ

In the last expression, we have used φzpf;Rjαj ≪ 1, and
φ̂Q ≈ φ̂ since the participation ratio of the readout resonator
in the junction is small.
Let us now project the Hamiltonian on the qubit sub-

space, with the projector Π̂eg ¼ jeihej þ jgihgj:

Ĥm ¼ Π̂egĤΠ̂eg ¼
ℏωge

2
σ̂z þ ℏΔRâ†â

þ ℏgðc0 þ cxσ̂x þ czσ̂zÞ × ðαâ† þ α�âÞ; ðC11Þ

with

c0 ¼ ðhgjβ̂jgi þ hejβ̂jeiÞ=2;
cx ¼ hgjβ̂jei;
cz ¼ ðhejβ̂jei − hgjβ̂jgiÞ=2;

where β̂≡ cosðφ̂Q − φextÞ. The interesting processes occur
when the cavity drive is nearly resonant with one of the
two sidebands, ΔR ∼�ωge. We treat separately the two
cases by going to the interaction picture with respect to
Ĥ�

0 ¼ ℏωgeσ̂z=2� ℏωgeâ†â:

Ĥ�
m ¼ ℏΔ�

R â
†â

þ ℏgðc0 þ cx½σ̂−e∓iωget þ σ̂þe�iωgetÞ þ czσ̂z�
× ðαâ†e�iωget þ α�âe∓iωgetÞ; ðC12Þ

where Ĥþ
m (Ĥ−

m) is the Hamiltonian in the rotating frame
Ĥþ

0 (Ĥ−
0 ), and Δ�

R ¼ ΔR � ωge is the drive detuning with
respect to the upper or lower sideband. Since the qubit-
cavity system operates deep in the resolved sideband
regime (at the bias point chosen for sideband preparation,
2ωge=κ ≈ 10), we can safely neglect fast rotating terms,
which yields:

Ĥ�
m ≈ ℏΔ�

R â
†âþ ℏgcxðασ̂�â† þ α�σ∓âÞ: ðC13Þ

We proceed with the adiabatic elimination of the cavity
field [37], since the cavity dissipation κDâðρ̂Þ dominates
over the coupling gcxjαj. We define the parameter
ϵ≡ gcxjαj=κ, with respect to which we can expand the
density matrix ρ̂, with ρ̂mn ¼ hmjρ̂jni acting on the qubit’s
subspace:

1

κ

dρ̂
dt

¼ −
i
ℏκ

½Ĥ�
m; ρ̂� þDâðρ̂Þ;

ρ̂ ¼ ρ̂00j0ih0j þ ϵðρ̂10j1ih0j þ ρ01j0ih1jÞ
þ ϵ2ðρ̂11j1ih1j þ ρ̂02j0ih2j þ ρ̂20j2ih0jÞ þOðϵ3Þ:

ðC14Þ
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The goal of the adiabatic elimination procedure is to obtain
the reduced dynamics of the qubit alone,

dρ̂Q
dt

¼ TrR

�
dρ̂
dt

�
¼ dρ̂00

dt
þ ϵ2

dρ̂11
dt

þOðϵ3Þ; ðC15Þ

which can be done by projecting the Lindblad evolution of
Eq. (C14) on the resonator’s elements j0ih0j; j0ih1j; j1ih1j,
so that

1

κ

dρ̂00
dt

¼ −iϵ2ðσ̂�ρ̂10 − ρ̂01σ̂
∓Þ þ ϵ2ρ̂11 þOðϵ3Þ; ðC16Þ

1

κ

dρ̂10
dt

¼ −iσ̂∓ρ̂00 −
�
i
Δ�

R

κ
−
1

2

�
ρ̂10 þOðϵÞ; ðC17Þ

1

κ

dρ̂11
dt

¼ −iðσ̂∓ρ̂01 − ρ̂10σ̂
�Þ − ρ̂11 þOðϵÞ: ðC18Þ

Equation (C16) shows that ρ̂00 is slowly varying, since its
derivative is of orderOðϵ2Þ. In the rhs of Eq. (C17), the first
term is a source term, and the second one a damping term.
As the source term is slowly varying, we can assume that
ρ̂10 is always in its stationary state: ð1=κÞðdρ̂10=dtÞ ≈ 0.
The same argument applies to Eq. (C18), such that
ð1=κÞðdρ̂11=dtÞ ≈ 0. In the end, we obtain

ρ̂10 ¼ −
κ

Δ�
R þ i κ

2

σ̂∓ρ̂00 þOðϵÞ; ðC19Þ

ρ̂11 ¼
κ2

Δ�
R
2 þ κ2

4

σ̂∓ρ̂00σ̂� þOðϵÞ: ðC20Þ

By inserting these expressions in Eq. (C16), we recognize
the Lindblad evolution associated to the following effective
loss operators on the qubit:

L̂� ¼ gcxjαj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

Δ∓
R
2 þ κ2

4

s
σ̂�: ðC21Þ

When the drive is set at resonance with one of the sidebands
(Δ�

R ¼ 0), we retrieve the expressions Eq. (3).
Following a more rigorous treatment of the adiabatic

elimination using a systematic pertubative approach, as
described in Ref. [38], leads to the same results.

APPENDIX D: PREPARATION FIDELITY
ESTIMATION

To evaluate the preparation fidelity, we prepare the qubit
in either jgi, jei, or a thermal state. The density matrix
reduced to the ge manifold reads

ρprep j
0 ¼ Pprep j

g jgihgj þ ð1 − Pprep j
g Þjeihej;

where Pprep j
g is the probability to be in the jgi state after

preparation in state j∈ fg; e; hg. Since the dispersive
shift of the readout cavity is too small to directly distinguish
jgi from jei, we apply a 64 ns pulse, resonant with the
jgi → jhi transition. The initial jgi population undergoes
Rabi oscillations of angle θ, while the jei population
remains unaffected:

ρprep jðθÞ ¼ Pprep j
g

1þ cosθ
2

jgihgj þPprep j
g

1− cosθ
2

jhihhj
þ ð1−Pprep j

g Þjeihej

þPprep j
g

j sinθj
2

ðjgihhj þ jhihgjÞ: ðD1Þ

Decoherence has been neglected in this process as the pulse
duration is short compared to the decoherence rates of the
jgi–jhi transition. We then read out the state of the qubit
through the dispersive shift of the readout resonator.
Histograms of the real (I) and imaginary part (Q) of the
reflection coefficient, measured with a 600 ns pulse are
plotted in Fig. 8(a). The continuous variable I is then
compared to a threshold Ithreshold ¼ 0 to yield a Boolean
detection result left ¼ I < Ithreshold. By averaging a large
number of repetitions, we measured the probability
Pprep j½left�ðθÞ to obtain I < Ithreshold after a Rabi pulse
of angle θ [see Fig. 8(b)], for each preparation protocol.
This probability is given by

Pprep j½left�ðθÞ ¼
X

x∈ fg;e;hg
P½leftjx�hxjρprep jðθÞjxi; ðD2Þ

where P½leftjg�, P½leftje�, and P½leftjh� are the conditional
probabilities of measuring I < Ithreshold knowing that the
qubit was in the state jgi, jei, or jhi, respectively. In a
perfect detection scenario, P½leftjg� ¼ P½leftje� ¼ 1 and
P½leftjh� ¼ 0. Combining Eqs. (D1) and (D3), we arrive at

Pprep j½left�ðθÞ¼Pprep j
g

P½leftjg�þP½leftjh�
2

þð1−Pprep j
g ÞP½leftje�

þPprep j
g cosðθÞP½leftjg�−P½leftjh�

2
: ðD3Þ

Considering the large occupation of the thermal bath, we
assume equal populations in jgi and jei: Pprep th

g ¼ 0.5. We
proceed by fitting the three curves of Fig. 8 with the free
parameters P½leftjg�, P½leftje�, P½leftjh�, Pprep g

g and Pprep e
g .

We obtain the conditional readout probabilities P½leftjg� ¼
94.04� 0.04%, P½leftje�¼95.87�0.03%, and P½leftjh� ¼
10.99� 0.05%. The values of 1 − P½leftjg� ¼ 6%,
1 − P½leftje� ¼ 4% correspond to the mislabeling, due to
the overlap of the Gaussian distributions. The larger value
of P½leftjh� ¼ 11% is due to the decay of the jhi state
(of lifetime 7 μs) during the 600 ns readout pulse. The
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extracted preparation fidelity for the jgi and jei states are
Pprep g
g ¼97.67�0.05% and 1 − Pprep e

g ¼ 97.69� 0.08%.
The quoted error intervals are obtained by a bootstrap
technique: The fit is repeated on a subset of the data
obtained by random sampling with replacement of the data
point, from which the mean value and standard deviation of
each parameter is extracted. The effective temperature of
the qubit after the preparation is

Tprep g
g ¼ ℏωge

kB½logðPprep g
g Þ − logð1 − Pprep g

g Þ� ¼ 23 μK:

APPENDIX E: NOISE TEMPERATURE OF THE
QUBIT ENVIRONMENT

In this appendix, we determine how the relaxation rate
varies with temperature. To achieve this, we heat the mixing
chamber of the cryostat with a resistor. The temperature
TRuO2

, as measured by a ruthenium oxide probe built in
with the cryostat (model Bluefors BF-LD250), is stabilized
thanks to a feedback loop to various setpoints ranging from
7 to 100 mK. For each point, we measure the decay rate 2Γ
of the states jei and jgi, akin to the measurement presented
in the main text [refer to Fig. 3(a)].
To precisely correlate our data with the circuit’s

temperature, we harness the residual thermal population
of the higher qubit excited states, fjfi; jhig. This func-
tions as a local probe, sensitive to the noise temperature
which directly reflects the noise spectrum experienced

by the circuit near its second transition at a frequency of
3.7 GHz [39].
In practice, we let the circuit thermalize with its

environment, and then record a histogram of the real (I)
and imaginary part (Q) of the readout cavity reflection
coefficient, as visible in Fig. 9(b). Three peaks are visible
on the histogram, corresponding to the population in
the manifold fjgi; jeig, the state jfi, and the state jhi,
respectively. We assume a Boltzmann distribution for the
population in the various qubit states: pk ∝ e−Ek=kbT , where
Ek is the energy of state k (k∈ fjgi; jei; jfi; jhig.
Furthermore, by neglecting the small transition frequencies
ωge= ∼ 2π × 1.8 MHz and ωfh ∼ 2π × 50 MHz, compared
to ωge−fh ≡ ðωef þ ωghÞ=2 ∼ 2π × 3.7 GHz, we get pjgi ¼
pjei ≡ pg;e=2 and pjfi ¼ pjhi ≡ pf;h=2. We extract the
populations pg;e and pf;h by a triple Gaussian fit to the
readout histogram, where the Gaussian peaks correspond-
ing to jfi and jhi are constrained to the same area. From
the values pg;e and pf;h, we determine the effective circuit
temperature:

Tcirc ≡ ℏωge−fh

kB logðpg;e

pf;h
Þ : ðE1Þ

Figure 9(c) presents the evolution of Tcirc with respect
to TRuO2

. Throughout the entire temperature range, there
is a notable disparity between the two temperatures.
Specifically, the circuit temperature remains relatively stable
at Tcirc ∼ 59 mK for 7 ≤ TRuO2

≤ 40 mK, before rising to

(a) (b)

FIG. 8. (a) Histograms of the real (I) and imaginary (Q) parts of the cavity reflection coefficient, as obtained by demodulating and
integrating a 600 ns pulse. The x and y axes have been rescaled by the standard deviation of the Gaussian envelope. Top plot is the
histogram obtained when the system is initially prepared in its thermal state. Even though jgi and jei are almost equally populated, the
dispersive shift is insufficient to separate the two distributions. Bottom plot is the histogram obtained after a jgi → jhi π pulse. The left-
hand blob corresponds to the jei population, unaffected by the π pulse, while the right-hand blob is due to the population transferred in
jh⟫. Setting a threshold at I ¼ 0 (white dashed line) implements a single-shot readout. (b) Calibration of the state-preparation fidelity.
The qubit is prepared through sideband cooling in jei (yellow), jgi (blue), or a thermal state (red). We apply a 64 ns pulse at the jgi–jhi
transition frequency with a varying amplitude. The dynamics is then fitted using Eq. (D3) to extract the preparation fidelity (see main
text for details).
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Tcirc ¼ 318 mK when TRuO2
¼ 100 mK. Such discrepan-

cies could arise from inadequate sample thermalization,
temperature gradients within the mixing chamber plate, or
potential miscalibration of the RuO2 temperature sensor.
This underscores the value of our independent temperature
assessment using the higher qubit excited states.
We then plot the decay rate 2Γ as a function of Tcirc in

Fig. 9(d). The data are well fitted by an affine relation
2Γ ¼ ξTcirc þ ζ, with ξ¼0.27ms−1mK−1 and ζ¼16ms−1.
The first term, proportional to Tcirc, can be interpreted as
the thermally induced relaxation, occurring at a rate
γð2nth þ 1Þ ∼ 2γnth, where the second equality results from
nth ≫ 1 for the 1.8 MHz qubit transition. The second term,
which can be traced back to a technical noise independent
of Tcirc, has a relatively small contribution over the studied
temperature range—ζ ∼ ξTcirc for the lowest temperature
Tcirc ∼ 59 mK. This points toward the fact that technical
noise is only marginally affecting the qubit relaxation, in
spite of the very low transition frequency ωge=2π ¼
1.8 MHz. Finally, from the linear dependence, we can
extract the intrinsic circuit damping γ ¼ ξℏωge=2kB ∼
12 s−1, or equivalently, Qintr ¼ ωge=γ ¼ 9.6 × 105.

APPENDIX F: CHARGE SPECTRUM ANALYZER

In this appendix, we develop a theoretical model for the
expected signal-to-noise ratio in the frequency-resolved
charge detection experiment.

1. Qubit evolution during the interrogation time

We first model the evolution of the qubit during the
interrogation time, by taking into account the interaction
with the calibration tone (Rabi frequency Ωr, finite detun-
ing of the calibration tone Δ ¼ ωge − ωcal). Since the qubit
is coupled to a thermal bath with a large occupation,
we choose an equal rate Γ for the loss and gain of qubit
excitations. From the empirical finding T1 ≈ T2 (see
Fig. 3), we also assume a dephasing rate Γφ ≈ Γ=2. The
full evolution of the qubit’s density matrix ρ is thus, in a
frame rotating at the drive frequency,

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þ Γ

�
σ̂ρσ̂† −

1

2
ðσ̂†σ̂ ρ̂þρ̂σ̂†σ̂Þ

�

þ Γ
�
σ̂†ρσ̂ −

1

2
ðσ̂σ̂†ρ̂þ ρ̂ σ̂ σ̂†Þ

�

þ Γ
2

�
σ̂†zρσ̂z −

1

2
ðσ̂zσ̂†z ρ̂þ ρ̂σ̂zσ̂

†
zÞ
�
; ðF1Þ

with Ĥ ¼ ℏΔσ̂z=2þ ℏΩrσ̂x=2. We proceed by calculating
the Bloch equations for the three components of the qubit
pseudo-spin:

dhσ̂xi
dt

¼ −Δhσ̂yi − 2Γhσ̂xi; ðF2Þ

(a) (c)

(b) (d)

FIG. 9. Temperature dependence of the decoherence rate. (a) Two-dimensional histogram of the I, Q quadratures of the readout
reflection coefficients for a qubit at thermal equilibrium with the environment. (b) Histogram of the I quadrature. The population in the
manifolds fjgi; jeig, jfi, jhig are determined by fitting the various peaks with Gaussian functions (see text for details). Qubit effective
temperature Tcirc, as determined from Eq. (E1), as a function of cryostat temperature TRuO2

. (d) Energy decay rate 2Γ in the fjgi; jeig
manifold measured via T1 relaxometry [see Fig. 3(a)], as a function of the effective temperature Tcirc. The dashed line is a linear fit to the
data yielding 2Γ ¼ ξ · Tcirc þ ζ, with ξ ¼ 0.27 mK−1 ms−1 and ζ ¼ 16 ms−1. The filled point in (c) and (d) is the one extracted from the
histograms in (a) and (b).

HIGH-SENSITIVITY AC-CHARGE DETECTION … PHYS. REV. X 14, 011007 (2024)

011007-13



dhσ̂yi
dt

¼ −Ωrhσ̂zi þ Δhσ̂xi − 2Γhσ̂yi; ðF3Þ

dhσ̂zi
dt

¼ Ωrhσ̂yi − 2Γhσ̂zi: ðF4Þ

These equations describe a rotation around an axis
Δez þ Ωrex combined with an isotropic relaxation toward
the origin of the Bloch sphere at a rate Γ due to the various
relaxation channels. We solve for a qubit initially prepared
in jgi (hσ̂zi ¼ −1; hσ̂xi ¼ hσ̂yi ¼ 0), and obtain

hσ̂xi ¼ e−2Γt
�
cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r þ Δ2

q
t
�
− 1
� ΔΩr

Ω2
r þ Δ2

;

hσ̂yi ¼ e−2Γt sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r þ Δ2

q
t
� Ωrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r þ Δ2

p ;

hσ̂zi ¼ −e−2Γt
�
Δ2 þΩ2

r cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r þ Δ2

q
t
�� 1

Ω2
r þ Δ2

:

At the end of the interrogation time, we can thus obtain the
magnitude of the pseudo-spin projection in the x, y plane:

j2hσ̂i0j ¼ jhσ̂xi þ ihσ̂yij ¼ ΩrτIe−2ΓτI fðΔÞ; ðF5Þ

where fðΔÞ is the frequency response function of the
detector, given by

fðΔÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2sinc2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rþΔ2
p

τI
2πÞþΩ2

r sinc2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

rþΔ2
p

τI
πÞ

Ω2
r þΔ2

s

≈sinc

�
Δ

Ωfull

�
; ðF6Þ

where Ωfull ¼ ð2π=τIÞ and the convention sincðxÞ ¼
sinðπxÞ=πx has been used. The second equation is valid
in the limit ΩrτI ≪ 1.

2. Signal processing

At the end of the interrogation time, a projective
measurement of one of the transverse components of the
pseudo-spin is performed in the qubit frame:

hmki ¼ 1=2þ Re½hσi0ð−iÞkeiΔkτ�: ðF7Þ

The term ð−iÞk encodes for the alternating measurement
basis fX; Y;−X;−Yg. The term eiΔkτ describes the phase
difference between the frames of the qubit and calibration
tone. Without loss of generality, we can ignore the phase of
hσi0 and assume hσi0 ∈Rþ, such that

hmki ¼ 1=2þ hσi0Re½ð−iÞkeiΔkτ�: ðF8Þ

Finally, samples undergo the transformation σk ¼
ikðmk − 1=2Þ. We thus get

hσki ¼
	 hσi0 cosðΔkτÞ k even

ihσi0 sinðΔkτÞ k odd:
ðF9Þ

Hence, the real and imaginary parts of the complex values
hσi0eiΔt are encoded pairwise on the successive samples σk.
The records are then grouped by windows of N ¼ 1000
consecutive samples, and Fourier transformed to yield
periodograms. In order to reduce the spacing between
adjacent frequency bins, we perform the Fourier transform
on a zero-padded version of the samples fzkg0≤k<NpN , with

zk ¼
	
σk 0 ≤ k ≤ N − 1

0 N ≤ k < NpN:
ðF10Þ

The padding factor Np represents the number of frequency
bins in each measurement bandwidths. We typically use
Np ¼ 5 in our data analysis. We denote fZkg0≤k<NpN the
Fourier transform of the samples fzng0≤n<NpN :

Zn ¼
XNpN−1

k¼0

zke−2iπkn=NpN: ðF11Þ

Following Bartlett’s method, the spectrum is then estimated
by taking the mean value Sn ¼ hjZnj2i over a large number
of periodograms.

3. Response to the calibration tone
and frequency aliasing

Because of the calibration tone, the samples zk have
a nonzero expectation value [see Eq. (F9)]. We now
estimate the line shape Ssignaln ¼ jhZnij2 resulting from this
signal. By combining Eq. (F9) with Eq. (F11), and
separating the contribution of even and odd index k in
the sum, we get

hZni ¼ hσi0
XN=2−1

k¼0

cos

�
2π

2kΔ
2ΩNy

�
e−i2πð2kΔn=2ΩNyÞ

þ i sin

�
2π

ð2kþ 1ÞΔ
2ΩNy

�
e−i2π½ð2kþ1ÞΔn=2ΩNy�;

where the nth frequency bin is given byΔn ¼ ð2πn=τNpNÞ
and the Nyquist frequency ΩNy ¼ π=τ. After elementary
arithmetic manipulations, we arrive at

hZni ¼
hσi0
2

"
ei2π½ðΔ−ΔnÞ=ΩNy�½ðN−1Þ=4�

sinð2π Δ−Δn
ΩNy

N
4
Þ

sinð2π Δ−Δn
4ΩNy

Þ

þ ie−i2π½ðΔþΔnÞ=ΩNy�½ðN−1Þ=4�
sinð2π ΔþΔn

ΩNy

N
4
Þ

cosð2π ΔþΔn
4ΩNy

Þ

#
:
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For large values of N, we have

Ssignaln ≈
hσi20
4

" 
sinð2π Δ−Δn

ΩNy

N
4
Þ

sinð2π Δ−Δn
4ΩNy

Þ

!2

þ
 
sinð2π ΔþΔn

ΩNy

N
4
Þ

cosð2π ΔþΔn
4ΩNy

Þ

!2#
:

This expression is peaked around the values Δ≡
Δnðmod 2ΩNyÞ and Δ≡ΩNy−Δnðmod 2ΩNyÞ. Figure 10
shows the two families of peaks in the ðΔ;ΔnÞ plane. In the
aliasing-free region −ΩNy=2 ≤ Δ ≤ ΩNy=2 highlighted
by the gray square, the signal is given in a good approxi-
mation by

Ssignaln ≈
�
hσi0

N
2
sinc

�
Δ − Δn

ΩRBW

��
2

: ðF12Þ

In this expression, we use the definition sincðxÞ ¼
sinðπxÞ=πx, and the residual bandwidth of the measure-
ment is given by

ΩRBW ¼ 2π=τN: ðF13Þ

4. Signal-to-noise ratio

Owing to the quantum nature of our sensor, the meas-
urement records are in essence discrete, such that a
fundamental sampling noise, of spectral shape Ssampling

n ,
affects our measurement. Indeed, the spectrum estimator
can be decomposed according to

Sn ¼ Ssignaln þ Ssampling
n ; ðF14Þ

with Ssignaln ¼ jhZnij2 and Ssampling
n ¼ hjZn − hZnij2i. To

calculate the sampling noise, we can consider the situation
where no calibration tone is applied, such that the
samples fzkg0≤k<N are independent, with hzki ¼ 0 and
hzkz0�k i ¼ δk;k0=4. Combined with the relation (F11), we get

Ssampling
n ¼ hjZkj2i ¼

XN−1

k¼0

hzkz0ki ¼ N=4: ðF15Þ

By combining the relations (F12) and (F15), we get the
signal-to-noise ratio:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðSsignaln Þ=Ssampling

n

q
¼

ffiffiffiffi
N

p
σ0: ðF16Þ

The blue curve in the left inset of Fig. 5(c) is calculated
using Eqs. (F16) and (F5), with 2Γ ¼ ð24 μsÞ−1, in
qualitative agreement with the value obtained with a more
direct measurement (see main text), and an 84% scaling
factor to account for finite readout efficiency.

5. Approximate expression for the optimal
charge sensitivity

The noise spectrum in units of e2=Hz is calibrated such
that the area under the calibration peak matches the known
modulation amplitude:

Z
∞

0

Seedω=2π ¼ ð2NdriveÞ2; ðF17Þ

where the factor 2 accounts for the number of elementary
charges in each Cooper pair. The left-hand side of Eq. (F17)
is approximately given by See½ωd� ·ΩRBW=2π, such that the
peak of the noise spectrum is given by

maxðSsignalee Þ ¼ ð2NdriveÞ2
2π

ΩRBW
: ðF18Þ

(a)

(b)

FIG. 10. Aliasing diagram of the charge spectrum analyzer.
(a) The blue lines indicate the position of the peaks in
discrete frequency space Δn as a function of the continuous
frequency Δ of the applied tone, Δ≡ Δnðmod 2ΩNyÞ and
Δ≡ ΩNy − Δnðmod 2ΩNyÞ (see main text for details). (b) Ex-
perimental spectrogram with an applied tone of fixed fre-
quency. The detuning Δ is swept by adjusting the qubit local
oscillator frequency. In this particular instance, the repetition
time of the experiment was set to τ ¼ 14.4 μs, corresponding
to a Nyquist frequency ΩNy=2π ¼ 35 kHz. The frequency
axis in the Fig. 5(c) has been cropped to only display
frequencies from −ΩNy=2 ≤ Δn ≤ ΩNy=2.
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We can now use the definition of the signal-to-noise
ratio (in conjunction with the linear relationship between
See and Sn):

Ssampling
ee ¼ maxðSsignalee Þ=ðSNRÞ2: ðF19Þ

Additionally, by combining Eq. (F5) with Eq. (F16), we
obtain the approximate expression of the signal-to-noise
ratio for a calibration tone well within the detector
bandwidth (Δ ≪ Ωfull):

ðSNRÞ2 ¼ N

�
expð−τI=T1ÞΩRτI

2

�
2

: ðF20Þ

Finally, by inserting Eq. (F20) into Eq. (F19), and using the
expressions (5) for Ωr and (F13) for ΩRBW, we derive

Ssampling
ee ¼ δq2 ¼ 4τ

τ2Iω
2
geπ

2 exp ð−2τI=T1Þ
: ðF21Þ

To minimize δq, it is beneficial to maximize the duty
cycle τI=τ. In our experiment, the total preparation and
readout time is approximately amounts to τprep ∼ 13 μs,
rendering the total cycle time as τ ¼ τI þ τprep . Figure 11

illustrates the evolution of Ssampling
ee as a function of the

interrogation time τI for various T1 values under two
distinct scenarios.
In the first scenario (dotted lines), we have considered

the ideal case τprep ¼ 0 μs. In this ideal case, the optimal
sensitivity is obtained for τI ¼ T1=2, reaching a value

δq2min ¼
8 expð1Þ
T1ω

2
geπ

2
: ðF22Þ

Remarkably, δqmin only depends on the qubit frequency
ωge and coherence time T1. This stems from the observa-
tion that at the flux-frustration point, the Rabi frequency
depends only on the product ωgeNdrive [see Eq. (5)], and not
on the specific qubit parameters, as long as the system
operates in the heavy-fluxonium regime.
In the second scenario (full lines in Fig. 11), we consider

a realistic preparation and readout time τprep ¼ 13 μs.
As evident from Eq. (F21), for a given interrogation time
τI, the sensitivity is degraded by a factor

ffiffiffiffiffiffiffiffi
1=η

p
, where

η ¼ τI=τ denotes the duty cycle of the experiment, in
comparison to the ideal case. However, the optimal
sensitivity, defined as

δqmin ¼ min
τI

ðδqÞ; ðF23Þ

remains close to the ideal one [given in formula (F22)] as
long as τprep ≪ T1, as visible in Fig. 11(b).

APPENDIX G: ESTIMATE OF THE CHARGE
MODULATION BY A dc-BIASED MEMBRANE

In this appendix, we assess the possibility for the heavy
fluxonium to reach the strong-coupling regime with state-
of-the-art macroscopic electromechanical systems. For this,
we estimate the magnitude of the charge modulation
induced by the zero-point fluctuations of a dc-biased
vacuum-gap capacitor. In this scenario, we consider that
the out-of-plane vibrations of a silicon nitride membrane
modulate the capacitance between two parallel electrodes
subjected to a dc bias voltage Vg.
Table I summarizes the main geometric parameters of the

membrane. The membrane lateral dimensions are chosen
such that the fundamental mechanical mode matches the
qubit frequency ωge [40]. The area of the electrodes is
chosen to obtain a capacitance C ¼ 50 fF matching the
value reported in our fluxonium implementation. We
assume an electrode separation h ¼ 500 nm, which is a
conservative estimate based on flip-chip assemblies already

(a)

(b)

FIG. 11. Sensitivity of the heavy-fluxonium charge spectrum
analyzer. (a) Charge sensitivity as a function of interrogation time
τI , for various qubit lifetimes T1 (see legend). The dashed line
corresponds to an ideal scenario where the duty cycle τI=τ ¼ 1
[see Eq. (F22)]. The full line corresponds to a fixed preparation or
readout time τprep ¼ 13 μs. (b) Minimal sensitivity (obtained for
an optimal value of τI) as a function of T1. The two scenarios
considered in (a) are still represented by dashed and full lines,
respectively.
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reported in the literature [19]. The mechanical resonator
undergoes the sum of the restoring force and the electro-
static force:

F ¼ −mΩ2
mðz − hÞ − V2

gϵ0S=2z2: ðG1Þ

Mechanical stability requires Vg <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mΩ2

mh3=ϵ0S
p

≈ 50 V.
If we assume a conservative bias voltage Vg ¼ 5 V,
we obtain

Ndrive ¼
Vg

2e
xzpf

dC
dx

≃ 0.01; ðG2Þ

where xzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩm

p
is the mechanical mode zero-

point motion amplitude, and ðdC=dxÞ ≃ C=h.
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