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Abstract

Technological innovation can create or mitigate risks of catastrophes—
such as nuclear war, extreme climate change, or powerful artificial in-
telligence run amok—that could imperil human civilization. What is
the relationship between economic growth and these existential risks?
In a model of endogenous and directed technical change, with mod-
erate parameters, existential risk follows a Kuznets-style inverted U-
shape. This suggests we could be living in a unique “time of perils,”
having developed technologies advanced enough to threaten our per-
manent destruction, but not having grown wealthy enough yet to be
willing to spend much on safety. Accelerating growth during this “time
of perils” initially increases risk, but improves the chances of human-
ity’s survival in the long run. Conversely, even short-term stagnation
could substantially curtail the future of humanity. Nevertheless, if
the scale effect of existential risk is large and the returns to research
diminish rapidly, it may be impossible to avert an eventual existential
catastrophe.
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1 Introduction

The last two centuries of technological innovation have brought enormous
prosperity. Yet some of those technological innovations have also created the
possibility of catastrophes such as nuclear war, extreme climate change, or
bioengineered pandemics. In the next century, powerful artificial intelligence
(AI) might engender amazing advances, but some worry that it could run
amok. Increasing attention is being paid to these so-called “existential” risks
that could imperil human civilization. In particular, existential risks are
those that threaten human extinction or could otherwise irreversibly curtail
the potential of humankind (such as a war that permanently sends us back
to the Stone Age); see Bostrom (2002), Posner (2004), and Farquhar et al.
(2017). Some philosophers argue that because of the potential “astronomi-
cal” value associated with the long-run future of humanity, mitigating exis-
tential risk should be of paramount concern; see Bostrom (2003).

However, most people generally have a positive rate of pure time prefer-
ence; they do not care much about the long-run future of humanity. What
happens to existential risk when resources are allocated impatiently? In par-
ticular, what is the interaction between economic growth and existential risk?
Does faster economic growth accelerate the development of dangerous new
technologies, thereby increasing the probability of an existential catastrophe?

I develop a model of endogenous and directed technical change, involving
a tradeoff between consumption and safety. Consumption and the associated
technologies carry some risk of disaster, which can be mitigated by spending
on safety and developing safety technology. The outcome turns out to criti-
cally depend on the scale effect of existential risk—that is, how proportionally
growing both consumption and safety affects existential risk. If existential
risk decreases with scale, no special concern for safety is required for risk to
fall to zero exponentially. If existential risk increases with scale moderately,
the level of existential risk may follow an inverted U-shape. This grounds the
intuition of some prominent thinkers, like Sagan (1994) and Parfit (2011),
that human civilization could be passing through a unique “time of per-
ils.” We may have advanced enough to create technologies that threaten
our permanent destruction, but not yet grown wealthy enough to be willing
to spend much on safety. During this “time of perils,” accelerating growth
initially increases risk, but perhaps counterintuitively improves the chances
of humanity’s survival in the long run. Conversely, even short-term stagna-
tion substantially hurts the changes of humanity’s survival in the long run.
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Finally, if the scale effect of existential risk is too large and the returns to
research diminish too rapidly, it is impossible to avert an eventual existential
catastrophe.

This paper relates to the literature on the relationship between economic
growth and environmental degradation (see Brock and Taylor (2005) for an
overview). Most relevant is Stokey (1998), demonstrating that if the marginal
utility of consumption diminishes rapidly, there is an inverted U-shape re-
lationship between economic development and pollution; this relationship is
often called the “environmental Kuznets curve.” I find that the level of ex-
istential risk may follow a similar inverted U-shape. However, Stokey (1998)
looks at environmental degradation that additively reduces utility; existen-
tial risk that imperils the survival of human civilization is a quite different
concern.

To model people’s concern about risks of existential catastrophes, I build
on previous work on the value of life. Hall and Jones (2007) show that
for a large class of conventional preferences, as consumption grows and the
marginal utility of consumption declines, it becomes relatively more valuable
to purchase additional days of life rather than increasing consumption on
any given day of life. Jones (2016) shows how this can lead society to value
safety over consumption growth, resulting in optimal consumption growth
lower than what is feasible. In his richer endogenous growth model, lifesav-
ing goods can be purchased to increase people’s lifespan. I build on this
model to look at existential risk. Unlike the mortality in Jones’s model, I
model existential risk as increasing in consumption spending. Moreover, I
model existential risk as depending on total consumption and total safety
spending, not on per-capita variables as in Jones’s model.

Critically, modeling existential risk as depending on total instead of per-
capita variables allows for a potential scale effect. Previous work has made
the implicit assumption that the risk of catastrophe stays constant with
scale. In particular, Martin and Pindyck (2015, 2019) and Aurland-Bredesen
(2019) posit a fixed set of possible catastrophes, which would each require
a constant permanent tax on consumption to avert. Yet this is a knife-edge
assumption: holding safety spending constant as a fraction of output only
holds risk constant when the scale effect is exactly zero. This paper general-
izes from this knife-edge assumption, illustrating the divergent dynamics of
the cases when existential risk decreases, increases, or increases very rapidly
with scale.

The rest of this paper is organized as follows. Section 2 presents the
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economic environment of the model and a benchmark “rule of thumb alloca-
tion.” Section 3 presents the asymptotic (impatient) optimal growth path,
highlighting how the scale effect of existential risk matters for the long run.
Section 4 discusses empirical evidence on the model parameters. Section
5 illustrates the transition path of the case with a moderate scale effect,
yielding the inverted U-shape path of existential risk. Section 6 analyzes
what happens to existential risk when growth accelerates. Section 7 presents
conclusions.

2 The Economic Environment

I look at an endogenous idea-based growth model based on the Jones (1995)
version of the Romer (1990) model. Similar to Jones (2016), this model
features a consumption and a safety sector with directed technical change
(see also Acemoglu (2002) and Acemoglu et al. (2012)).

2.1 Setup

The economy features a consumption sector, producing consumption good
Ct, and a safety sector, producing safety good Ht. Total production in each
sector is given by:

Ct =

[
∫ At

0

x
1/(1+α)
it di

]1+α

and Ht =

[
∫ Bt

0

z
1/(1+α)
it di

]1+α

. (1)

Each sector uses a variety of intermediate goods to produce output. A differ-
ent set of ideas is used for each sector: At represents consumption technolo-
gies, while Bt represents safety technologies. The safety goods zit are goods
that reduce the risk of catastrophe, from pollution mitigation to nuclear non-
proliferation treaties to laboratory protection that prevents the outbreak of
a bioengineered pandemic.

Once a technological variety has been discovered, one unit of labor can
be used to produce one unit of that variety. The total number of workers is
denoted Lt, so the resource constraint for workers is

Lct + Lht ≤ Lt given Lct ≡

∫ Ai

0

xitdi, Lht ≡

∫ Bt

0

zitdi. (2)
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People can also produce ideas. These people are called scientists, and the
production functions for ideas are given by

Ȧt = Sλ
atA

φ
t and Ḃt = Sλ

btB
φ
t , (3)

where as in Jones (1995), I assume φ < 1 and 0 < λ ≤ 1.
Our resource constraints are then

Sat + Sbt ≤ St and St + Lt ≤ Nt, (4)

where Nt represents the total number of people. People can become either
workers or scientists, and workers and scientists can in turn either work in
the consumption sector or work in the safety sector.

Next, consider existential risk. Jones (2016) considers individual-level
mortality that can be reduced with lifesaving goods. I instead wish to con-
sider risks that threaten the survival of humanity as a whole.

These risks differ from Jones’s individual-level mortality in two critical
ways. First, these risks are man-made: without the technological devel-
opment that enables modern levels of consumption, we would not have to
fear catastrophic climate change, dangerous AI, or nuclear war. Risk may
increase with more consumption: higher consumption may mean more car-
bon emissions, more powerful AI engineered, or more potentially dangerous
biotech. At the same time, the risk of an existential catastrophe may be mit-
igated by investing in safety: we can move to a lower-emission energy system
or engineer more reliable nuclear weapon locks (“permissive action links”) to
reduce the risk of accidental nuclear war. Thus, unlike in Jones (2016), where
mortality is only a function of spending in the lifesaving sector, existential
risk in this model is a function of both consumption and safety spending.
Growth in consumption is thus not purely positive, but creates risks. This
model formalizes the idea of “differential technological development,” as ar-
ticulated by Bostrom (2002): existential risk depends on the relative rate of
development of potentially dangerous technologies versus technologies that
ameliorate these hazards.

The second crucial difference to Jones (2016) is that existential risks de-
pend on total consumption and total safety spending—not on per-capita con-
sumption and per-capita safety spending. The risk of catastrophic climate
change depends on total emissions, not per-capita emissions; the risk of a
bioengineered superbug escaping depends on the total amount of hazardous
biotech, not on per-capita hazardous biotech; the risk of a nuclear winter
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depends on the total number of nuclear weapons, not per-capita nuclear
weapons. Similarly, existential risk mitigation depends on total spending
on climate change abatement, biosecurity, AI safety, etc. This introduces a
scale effect: risk depends on the total size of the economy, similar to how
technological development depends on scale in endogenous idea-based growth
models.

I will assume that an existential catastrophe results in permanent zero
utility thereafter. This assumption should be exactly valid in the case of hu-
man extinction. It should also be a valid approximation for most existential
catastrophes that, while not quite killing everybody, irreversibly curtail the
potential of humankind (such as a war that permanently sends us back to
the Stone Age).1

Mathematically, human civilization face a time-varying hazard rate δt.
This represents a stochastic probability of an existential catastrophe. The
probability that human civilization survives to date t (starting from date 0)
is given by

Mt = e−
∫ t
0 δsds, (5)

corresponding to the laws of motion

Ṁt = −δtMt, M0 = 1. (6)

The hazard rate is endogenous, and as explained above increases with
total consumption and decreases with total safety spending:

δt = δCǫ
tH

−β
t . (7)

For those concerned about the long-run future of humanity, the key vari-
able is M∞ = limt→∞ Mt = e−

∫
∞

0 δsds. This represents the probability that
human civilization does not succumb to an existential catastrophe and en-
joys a long future with astronomical value.2 Critically, note that M∞ is only
greater than zero iff

∫∞

0
δsds is bounded.

1Some have considered other risks, such as a creeping, irreversible spread of global
authoritarianism; see Caplan (2008). Such a risk would not be covered by this model. I
wish to focus on catastrophes that would kill most of the people alive at the time or make
people’s lives so miserable so as to reduce their utility to roughly zero.

2Note that surviving to time “infinity” in this model does not literally mean human
civilization survives forever. Instead, it means human civilization does not destroy it-
self; there are other natural/physical limits to the survival of human civilization that are
not considered here. In particular, there might be natural sources of extinction risk, but
Snyder-Beattie et al. (2019) find that these are negligible compared to potential anthro-
pogenic extinction risks. Thus, I focus on anthropogenic existential risk in this paper.
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Given ct ≡ Ct/Nt and ht ≡ Ht/Nt, expected lifetime utility for a repre-
sentative agent is

U =

∫ ∞

0

e−ρtu(ct)Mtdt, (8)

where flow utility is isoelastic in consumption:

u(ct) = u+
c1−γ
t

1− γ
. (9)

The parameter u is a constant that specifies the upper bound of the utility of
life relative to death (with the utility of death implicitly normalized to 0) in
the case where γ > 1 and thus c1−γ/(1 − γ) is negative. See Hall and Jones
(2007) for a discussion of this constant.

Finally, I assume an exogenous positive rate of population growth:

Ṅt = nNt. (10)

Given the symmetry of our setup, the xit and zit can simply be allocated
symmetrically across varieties. I will impose this throughout the rest of the
paper.

There are then three allocative decisions that need to be made: the frac-
tion of total scientists working on consumption (vs. safety), the fraction of
total workers working on consumption (vs. safety), and the fraction of the
population that is a scientist (vs. a worker). These three allocative decisions
can be represented by three variables:

1. st ≡
Sat

St
(11)

2. ℓt ≡
Lct

Lt
(12)

3. σt ≡
St

Nt
(13)

2.2 Rule of Thumb Allocation

As a benchmark, it will be helpful to consider a simple “rule of thumb”
allocation, as in Jones (2016). This rule of thumb allocation is analogous
to Solow’s (1956) assumption of a fixed saving rate in his version of the
neoclassical growth model. In particular, I will consider a rule of thumb
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allocation where the fraction of scientists and labor working on safety is
fixed. Later, I will consider the optimal allocation, in which the fraction of
resources dedicated to safety can evolve.

Proposition 1. Balanced growth under rule of thumb allocation

Consider a rule of thumb allocation where st = s, ℓt = ℓ, and σt = σ, all
strictly between zero and one. There exists a balanced growth path such that

g∗A = g∗B =
λn

1− φ
, (14)

g∗c = g∗h = g ≡
αλn

1− φ
, (15)

g∗δ = (ǫ− β)(g + n), (16)

with

δt → 0 if ǫ < β, δt → δ∗ > 0 if ǫ = β, δt → ∞ if ǫ > β. (17)

Proof. See Appendix A.1.

Given our symmetric production functions and fixed allocation of labor
and scientists to safety and consumption, the long-run growth of both sectors
looks like growth in the standard Jones (1995) version of the Romer (1990)
model. In particular, given the diminishing returns to research and the non-
rivalry of ideas, the long-run growth of both consumption and safety depends
on population growth. Moreover, given that a fixed fraction of workers and
scientists is allocated to the safety sector, both safety and consumption per
capita grow at the same rate.

What is important to note about this rule of thumb allocation is what
happens to existential risk. In the case that ǫ < β, i.e. safety is more potent
in reducing risk than consumption is in increasing it, the hazard rate δ falls
to zero at an exponential rate. Therefore,

∫∞

0
δsds is bounded, which implies

that the long-run probability of human civilization’s survival, M∞, is strictly
greater than zero. In the knife-edge case of ǫ = β, the hazard rate converges
to a constant, implying M∞ = 0. In the case that ǫ > β, i.e. consumption is
more potent in increasing risk than safety is in decreasing it, the hazard rate
increases exponentially. This causes not only M∞ = 0, but in fact δ → ∞,
so the instantaneous probability of an existential catastrophe approaches 1.

Here, we begin to see the central role of ǫ− β. Recall that δt = δCǫ
tH

−β
t .

Thus, ǫ − β represents the scale effect of existential risk. If ǫ < β, risk
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decreases with scale. Then, the future of humanity is bright: even if the
allocation of resources to safety stays fixed, existential risk decreases expo-
nentially. However, if ǫ > β, existential risk increases with scale. Then, more
scale doesn’t lead to more nonrival ideas and thereby more output—as it does
in the classic Romer/Jones endogenous idea-based growth model—but more
scale also increases risk. In the rule of thumb allocation, the fixed allocation
of resources to safety leads the hazard rate to explode when ǫ > β. In a
sense, ǫ− β characterizes the fragility of the world.

3 The (Impatient) Optimal Allocation

I now turn to the optimal allocation. I consider a representative agent that
maximizes its utility. The representative agent discounts future utility with
positive rate ρ: the agent is impatient. Moreover, this representative agent
is selfish, i.e. it does not consider the growing population. (However, since
our population is growing at a constant rate, taking into account the growing
population is equivalent to lowering ρ.)

The optimal allocation of resources is a time path for ct, ht, st, ℓt, σt, At,
Bt, Mt, δt that maximizes the utility of the representative agent, solving the
following problem:

max
{st,ℓt,σt}

U =

∫ ∞

0

Mtu(ct)e
−ρtdt, (18)

subject to

ct = Aα
t ℓt(1− σt), (19)

ht = Bα
t (1− ℓt)(1− σt), (20)

Ȧt = sλt σ
λ
t N

λ
t A

φ
t , (21)

Ḃt = (1− st)
λσλ

t N
λ
t B

φ
t , (22)

Ṁt = −δtMt, δt = δN ǫ−β
t cǫth

−β
t . (23)

To solve for the optimal allocation, I define the current value Hamiltonian:

H = Mtu(ct) + pats
λ
t σ

λ
t N

λ
t A

φ
t + pbt(1− st)

λσλ
t N

λ
t B

φ
t − vtδtMt, (24)

where st, ℓt and σt are our control variables and Mt, At, and Bt our state
variables. The costate variables pat, pbt, and vt capture the shadow values
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of an extra consumption idea, an extra safety idea, and an extra lifetime
respectively.

Based on the maximum principle and the arguments of Romer (1986),
the first-order conditions characterize a solution.

It will be useful to define

ṽt ≡
vt

u′ (ct) ct
. (25)

This is the shadow value of life, converted to consumption units by u′(ct), as
a ratio to the level of consumption.

After some manipulation (see Appendix A.2) the first order conditions
yield:

1− ℓt
ℓt

=
βδtṽt

1− ǫδtṽt
, (26)

1− st
st

=
βδtṽt

1− ǫδtṽt
·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
, (27)

σt

1− σt
=

λ(patȦ+ pbtḂ)

Mt[u′(ct)ct + (β − ǫ)δtvt]
, (28)

ρ =
v̇t
vt

+
1

vt
[u(ct)− vtδt], (29)

ρ =
˙pat
pat

+
1

pat
[Mtu

′(ct)α
ct
At

+ patφ
Ȧt

At
− αǫvtMt

δt
At

], (30)

ρ =
ṗbt
pbt

+
1

pbt
[pbtφ

Ḃt

Bt
+ αβvtMt

δt
Bt

]. (31)

The term ṽt—and in particular the product δtṽt—thus determines the allo-
cation of workers and scientists to consumption vs. safety. In Appendix A.2,
I show that vt can also be represented as

vt =
u(ct)

ρ− δt + gvt
, (32)

and thus

ṽt =
ũt

ρ− δt + gvt
, ũt =

u(ct)

u′(ct)ct
. (33)

ũt is the opportunity cost of death u(ct), converted into consumption units by
u′(ct), divided by the level of consumption ct. ũ thus represents the relative
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value of life. The denominator of ṽt essentially converts this into a discounted
present value. Therefore, ṽt represents the discounted relative value of life
and determines the demand for safety.

Note that the allocation of labor and scientists to safety is proportional
to βδtṽt

1−ǫδtṽt
. The numerator represents the marginal value of safety: the re-

duction in the hazard rate. The denominator represents the marginal value
of consumption: the utility benefits of consumption (normalized to 1) minus
the increase in the hazard rate. Note that δtṽt can’t rise forever as in (as in
Jones, 2016); if ǫδtṽt > 1, the marginal value of consumption is negative.

3.1 The Optimal Allocation with ǫ ≤ β

First, consider the case in which safety goods are at least as potent in reducing
existential risk as consumption goods in increasing existential risk, i.e. ǫ ≤ β.
Then, existential risk weakly decreases with scale. The asymptotic growth
path depends on the curvature of our preferences. The propositions here
echo the results in Jones (2016).

Proposition 2. Optimal growth with ǫ ≤ β and γ > 1+(β−ǫ)
(

1−φ
αλ

+ 1
)

Assume that ǫ ≤ β and that the marginal utility of consumption falls rapidly,
in the sense that γ > 1 + (β − ǫ)

(

1−φ
αλ

+ 1
)

. Then the optimal allocation
features an asymptotic constant growth path such that as t → ∞, the fraction
of labor working in the consumption sector ℓt and the fraction of scientists
working on consumption technology st both fall to zero at constant exponential
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rates, while σt → σ∗, and asymptotic growth is given by:3

g∗A =
λ(gs + n)

1− φ
> 0, (34)

g∗B =
λn

1− φ
> g∗A, (35)

g∗h = g, g ≡
αλn

1− φ
, (36)

gc = g ·

[

β + (β − ǫ)1−φ
αλ

γ + ǫ− 1

]

< g, g∗c > 0, (37)

g∗δ = −(γ − 1)g∗c < 0, (38)

g∗s = g∗ℓ = −g ·
γ − 1− β + ǫ

(1 + αλ
1−φ

)(γ + ǫ− 1)
− n ·

ǫ− β

(1 + αλ
1−φ

)(γ + ǫ− 1)
< 0, (39)

σ∗ =
λαgB

ρ+ (γ − 1)gc + (1− φ+ λα)gB
. (40)

Note that δt → 0 exponentially, implying M∞ > 0. Finally, note that this
solution is valid for all ρ > 0.

Proof. See Appendix A.3.

Unlike in the rule of thumb allocation, the allocation of resources to safety
can adjust. In particular,

ũt =
u(ct)

u′(ct)ct
= ucγ−1

t +
1

1− γ
. (41)

Thus, given γ > 1, the relative value of life ũt increases as consumption
grows. As people grow wealthier, the marginal utility of consumption de-
clines, and it becomes relatively more valuable to purchase more life and
spend on avoiding death. Note that this happens regardless of discount rate
ρ: no particular concern for the future is necessary for this dynamic. The
rising value of life means that resources are shifted towards the safety sector.
As such, consumption growth is substantially less than what is feasible and
substantially less than safety growth.

3These results have the following form: limt→∞ gct = g∗c , and so on.
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Proposition 3. Optimal growth with ǫ < β and γ < 1+(β−ǫ)
(

1−φ
αλ

+ 1
)

Assume that ǫ < β and that the marginal utility of consumption falls, but not
too rapidly, in the sense that γ < 1 + (β − ǫ)

(

1−φ
αλ

+ 1
)

. Then the optimal
allocation features an asymptotic constant growth path such that as t → ∞,
the fraction of labor working in the safety sector ℓ̃t ≡ 1−ℓt and the fraction of
scientists making safety ideas s̃t ≡ 1−st both fall to 0 at constant exponential
rates, while σt → σ∗, and asymptotic growth is given by:

g∗A =
λn

1− φ
, (42)

g∗B =
λ(n+ gs̃)

1− φ
< g∗A, g

∗
B > 0, (43)

g∗c = g, g ≡
αλn

1− φ
, (44)

g∗δ = −βg∗h + ǫg∗c − (β − ǫ)n < 0, (45)

with the exact values for g∗s̃ and g∗h depending on γ. If 1 < γ < 1 + (β −

ǫ)
(

1−φ
αλ

+ 1
)

:

g∗s̃ = g∗
ℓ̃
=

−n
[

αλ
1−φ

(1 + β − ǫ− γ) + (β − ǫ)
]

1 + β(1 + αλ
1−φ

)
< 0, (46)

gh = g ·

[

1−
(1 + αλ

1−φ
)(1− γ + β − ǫ) + (1 + 1−φ

αλ
)(β − ǫ)

1 + β(1 + αλ
1−φ

)

]

< g∗c . (47)

If γ ≤ 1:

g∗s̃ = g∗
ℓ̃
=

−n
[

(1 + αλ
1−φ

)(β − ǫ)
]

1 + β(1 + αλ
1−φ

)
< 0, (48)

gh = g ·

[

1−
(2 + αλ

1−φ
+ 1−φ

αλ
)(β − ǫ)

1 + β(1 + αλ
1−φ

)

]

< g∗c . (49)

Note that δt → 0 exponentially, implying M∞ > 0.

Proof. See Appendix A.4.

When γ is smaller, the value of life does not grow faster than the hazard
rate δt declines. Thus, the critical product δtṽt declines, and resources are
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shifted to consumption. As such, consumption growth remains as fast as is
feasible.

I wish not to emphasize the difference between the allocation for larger
or smaller γ, however. Instead, notice that regardless of the value of γ, the
hazard rate falls exponentially to zero, and thus M∞ > 0. At the same time,
consumption continues to grow exponentially and ct → ∞. In that sense, the
outcome of the optimal allocation in terms of the long-run future of humanity
is broadly similar to the rule of thumb allocation when ǫ < β.

To see why this is the case, note that when ǫ−β, existential risk decreases
with scale. Thus, as long as there is growth and at least some resources are
allocated to safety, risk decreases.

Depending on the exact preferences, it may be possible to improve upon
the rule of thumb allocation by shifting more resources to safety or to con-
sumption over time, but the broad trajectory of the future of humanity looks
bright in any case.

Finally, note that there exists a knife-edge case, which I consider for
completeness.

Proposition 4. “Interior” growth with ǫ < β and γ = 1 + (β −

ǫ)
(

1−φ
αλ

+ 1
)

, or with ǫ = β and γ ≤ 1
Assume either that ǫ < β and the knife-edge condition that γ = 1 + (β −

ǫ)
(

1−φ
αλ

+ 1
)

, or the knife-edge condition that ǫ = β and γ ≤ 1. Then the
optimal allocation features an asymptotic balanced growth path such that as
t → ∞, st and ℓt approach constants strictly between zero and one, and the
optimal allocation features the same balanced growth path as under the rule
of thumb allocation.

Proof. See Appendix A.5.

3.2 The Optimal Allocation with ǫ > β

Now, consider the case where consumption goods are more potent in in-
creasing existential risk than safety goods in reducing existential risk, i.e.
ǫ > β, but this difference is not too large, i.e. ǫ 6≫ β. Again, the asymptotic
growth path will depend on the curvature of our preferences. Here, we see a
divergence from Jones (2016).

Proposition 5. Optimal growth with ǫ > β and γ > 1
Assume that ǫ > β. Assume that ǫ 6≫ β in the sense that ǫ−β

β
< αλ

1−φ
. Finally,



EXISTENTIAL RISK AND GROWTH 14

assume that the marginal utility of consumption falls rapidly, in the sense that
γ > 1. Then the optimal allocation features an asymptotic constant growth
path such that as t → ∞, the fraction of labor working in the consumption
sector ℓt and the fraction of scientists working on consumption technology st
both fall to zero at constant exponential rates, while σt → σ∗, and asymptotic
growth is given by:

g∗A =
λ(gs + n)

1− φ
> 0, (50)

g∗B =
λn

1− φ
> g∗A, (51)

g∗h = g, g ≡
αλn

1− φ
, (52)

gc = g ·

[

β + (β − ǫ)1−φ
αλ

γ + ǫ− 1

]

< g, g∗c > 0, (53)

g∗δ = −(γ − 1)g∗c < 0, (54)

g∗s = g∗ℓ = −g ·
γ − 1− β + ǫ

(1 + αλ
1−φ

)(γ + ǫ− 1)
− n ·

ǫ− β

(1 + αλ
1−φ

)(γ + ǫ− 1)
< 0, (55)

σ∗ =
λαgB

ρ+ (γ − 1)gc + (1− φ+ λα)gB
. (56)

Note that δt → 0 exponentially, implying M∞ > 0. Finally, note that this
solution is valid for all ρ > 0.

Proof. See Appendix A.6.

Given γ > 1, the relative value of life ũt rises as consumption grows, as
before. Unlike before, however, we now have ǫ−β > 0: existential risk grows
with scale. Despite this scale effect, workers and scientists are shifted to the
safety sector quickly enough that δt still declines exponentially on the asymp-
totic growth path. In turn, M∞ > 0. Unlike in the rule of thumb allocation,
there is a positive, nonzero probability that humanity does succumb to an
existential catastrophe.

Proposition 6. Optimal growth with ǫ > β and γ ≤ 1
Assume that ǫ > β. Assume that ǫ 6≫ β in the sense that ǫ−β

β
< αλ

1−φ
.

Finally, assume that the marginal utility of consumption falls, but not as
rapidly, in the sense that γ ≤ 1. Then the optimal allocation features an
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asymptotic constant growth path such that as t → ∞, the fraction of labor
working in the consumption sector ℓt and the fraction of scientists working
on consumption technology st both fall to zero at constant exponential rates,
while σt → σ∗, and asymptotic growth is given by:

g∗A =
λ(gs + n)

1− φ
> 0, (57)

g∗B =
λn

1− φ
> g∗A, (58)

g∗h = g, g ≡
αλn

1− φ
, (59)

g∗c = g − (n+ g)
ǫ− β

ǫ
< g∗h, g

∗
c > 0, (60)

g∗δ = 0, (61)

δt →
(1− γ)ρ+ (1− γ)2gc

ǫ+ 1− γ
, (62)

g∗s = g∗ℓ = −
ǫ− β

ǫ
n < 0. (63)

Note that in this case M∞ = 0.

Proof. See Appendix A.7.

Unlike when ǫ < β, in this case when ǫ > β, workers and scientists are
shifted to safety even when γ ≤ 1. This is because even though the relative
value of life ũt is bounded when γ ≤ 1, δt continues increasing because of the
scale effect, so ṽtδt increases. Nevertheless, despite resources being shifted
to safety, they are not shifted to safety quickly enough to bound

∫∞

0
δsds, so

the long-run probability of humanity’s survival is M∞ = 0 when γ ≤ 1.
Note that unlike in Jones (2016), it is now optimal for scientists and

workers to shift exponentially from the consumption sector to the safety
sector for all γ, not just the narrower class of preferences with γ significantly
greater than one.

More importantly, however, consider the comparison of the optimal allo-
cation to the rule of thumb allocation. In the rule of thumb allocation when
ǫ > β, δt → ∞ and M∞ = 0 because of the scale effect of existential risk.
By contrast, resources are shifted to the safety sector in optimal allocation,
counteracting the scale effect. Thus, δt converges to a small constant or even
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zero. In fact, given γ > 1, the optimal allocation features δt falling to zero
exponentially, and thus M∞ > 0.

The case of ǫ > β is thus a world in which existential risk is an enormous
challenge, but can still be overcome. With a static concern for safety, as in
the rule of thumb allocation, the scale effect portends disaster. By shifting
resources to safety, as in the optimal allocation, this scale effect can be con-
tained; in fact, when γ > 1, even the impatient optimal allocation features a
nonzero probability of humanity’s survival in the long run.

3.3 Certain Existential Catastrophe with ǫ ≫ β

Now, consider the case in which ǫ ≫ β, i.e. consumption goods are signif-
icantly more potent in increasing existential risk than safety goods are in
reducing it.

Proposition 7. No asymptotic growth path with ǫ ≫ β
Assume that ǫ ≫ β in the sense that ǫ−β

β
> αλ

1−φ
. Assume reasonable prefer-

ences in the sense that there is some (arbitrarily low) level of consumption
below which dying is preferring to living (i.e. γ ≥ 1, or γ < 1 and u < 0).
Then there is no asymptotic growth path. This is true for any ρ.

Proof. See Appendix A.8.

To understand why this is the case, note that in the Jones (1995) version
of the Romer (1990) model, growth in the long run is αλ

1−φ
n: the diminishing

returns to R&D combined with the nonrivalry of ideas means that in the
long run, the growth rate depends on the growth rate of population. In
our model, even when (nearly) everyone works on safety, the contribution of
safety growth to the growth rate of δ is −β αλ

1−φ
n.

At the same time, when ǫ > β in our model, existential risk increases
with scale: population growth increases scale and thus contributes (ǫ− β)n
to the growth rate of δ. The problem arises when (ǫ − β)n > β αλ

1−φ
n: then,

even when (nearly) everyone works on safety, they cannot stop the hazard
rate δ from growing.

When ǫ−β
β

> αλ
1−φ

, the scale effect of existential risk is larger than the scale
effect of ideas. Thus, given exogenous population growth, there is no way to
stop δt → ∞ and M∞ = 0. Even halting population growth and stagnating
would only provide temporary relief: without population growth, there is no
growth in safety technology. δt remains at a constant high level, existential
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catastrophe follows eventually, and M∞ = 0. Letting fall ct exponentially
could contain existential risk, but eventually life would be so miserable that
extinction would be preferable to continued existence. In short, when ǫ ≫ β,
the optimal allocation is not much better than the rule of thumb allocation.
Eventual existential catastrophe is inevitable regardless of what society does.

This case stands in stark contrast to the previous case when ǫ > β.
When the scale effect of existential risk is not too large, ct → ∞ and, given
sufficiently curved preferences, M∞ > 0. Even with a scale effect, existential
risk could be overcome. When ǫ ≫ β, the scale effect of existential risk is
larger than the scale effects of ideas. A key factor here is αλ

1−φ
. If the returns

to more research (φ) and more people working on research (λ) do not decrease
as rapidly, αλ

1−φ
is higher, and so a larger scale effect of existential risk can be

dealt with.
In some sense, the world of ǫ ≫ β is the economist’s version of the Fermi

Paradox or the Doomsday Argument: the world is simply too fragile and
R&D too hard for existential risk to be overcome.

Finally, note that there exists a knife-edge case in which consumption
converges to a steady state. I consider this case for completeness.

Proposition 8. Optimal growth with ǫ−β
β

= αλ
1−φ

Assume that ǫ−β
β

= αλ
1−φ

. Assume reasonable preferences in the sense that

there is some (arbitrarily low) level of consumption below which dying is
preferring to living (i.e. γ ≥ 1, or γ < 1 and u < 0). Then the optimal
allocation features an asymptotic growth path in which st and ℓt fall to zero
exponentially, ct → c∗, gδ = 0, and M∞ = 0.

Proof. See Appendix A.9.

3.4 Summary

To provide an overview of the various optimal allocations, I have compiled
an overview of the asymptotic growth paths under different parameter values
below. For the sake of clarity, I have omitted the knife-edge cases.
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Table 1: Overview of Optimal Allocations

ǫ < β ǫ > β ǫ ≫ β

Rule of thumb
allocation

gc = gh = g

δt → 0
M∞ > 0

gc = gh = g

δt → ∞

M∞ = 0

Optimal
allocation with

small γ

st, ℓt → 1
gc = g, gh < gc
δt → 0
M∞ > 0

st, ℓt → 0
gc < gh, gh = g

δt → δ∗ > 0
M∞ = 0

No asymptotic growth
path.
M∞ = 0

Optimal
allocation with

large γ

st, ℓt → 0
gc < gh, gh = g

δt → 0
M∞ > 0

st, ℓt → 0
gc < gh, gh = g

δt → 0
M∞ > 0

Existential risk
in rule of thumb

vs. optimal
allocation

δ exponentially decays
under rule of thumb.
Optimal allocation
changes pace of decay.

δ explodes under rule
of thumb. Optimal
allocation can contain
growth in δ.

Doomed to existential
catastrophe whatever
society does.

4 Evidence on Parameters

To understand our results, we have to know what realistic parameter values
are and thus which world we live in. In particular, it would be very helpful
to know whether ǫ > β.

Evidence from broad trends in growth and existential risk

Over the past century, world economic output has grown manyfold. Tech-
nological risk to human civilization has arguably grown manyfold as well.
Nuclear winter, catastrophic climate change, and genetically-engineered pan-
demics are all risks that have emerged in the past century. The Bulletin of
Atomic Scientists, who publishes the “Doomsday Clock” assessing the likeli-
hood of existential catastrophe, puts it as follows:

Our species has never before in its 200,000-year history been so
close to a disaster as we are this century. Its unsettling enough
that the Doomsday Clock has been set to an ominous 3 minutes
to midnight (or doom) since 2015 [Note: 2 minutes to midnight
since 2018]. But the real gravity of our situation only comes into
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focus once one realizes that before 1945, there was no need for
the Doomsday Clock in the first place, given the low probability
of doom. (Torres, 2016)

The key question then is what has happened to the fraction of safety
spending as fraction of total output. If safety spending has not decreased
as a fraction of total output, the functional form δt = δCǫ

tH
β
t immediately

implies ǫ > β.
Regrettably, I have not been able to find good data on safety spending

as it is defined in this model. However, it seems like the effort spent on
mitigating existential risk was approximately none a century or two ago. For
example, nuclear disarmament and security, climate change abatement, and
research on AI safety are all efforts that began only in the past century, and
these efforts appear to be intensifying in the past decades. In that sense, it
appears that the fraction of output spent on safety has increased.

It would clearly be desirable to collect better data on both the level of
existential risk and the fraction of output spent on safety. Nevertheless, the
general trend appears to imply ǫ > β.

Evidence on αλ
1−φ

Jones and Romer (2010) give a broad and plausible range of αλ
1−φ

∈ [1/2, 2].
Note that this figure is for the economy as a whole. The R&D production
function for the safety sector may be different, although we have no reason
to believe it is, and so our base case should be that the nature of R&D is
similar in both sectors. As such, I have imposed the same parameters on
both the consumption and safety ideas production function in this paper.

Moreover, recent research by Bloom et al. (2017) demonstrates relatively
sharply diminishing returns to research across a wide range of sectors using
micro-evidence, indicating a low αλ

1−φ
.

Evidence on γ

Most of the large empirical literature on the coefficient of relative risk aversion
suggests γ > 1 is the relevant case. See e.g. Lucas (1994) on asset pricing
and Chetty (2006) on labor supply. γ also traditionally equals the inverse
of intertemporal substitution. The traditional evidence here suggests values
well below one, implying γ well above 1; see Hall (2009) for a survey.
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Evidence on ρ

Financial data reflecting consumer behavior tends to find pure time prefer-
ences in the range of 2%–5% (Pindyck, 2013). Weitzman (2007) finds data
roughly consistent with a ρ of 2%. Nordhaus uses a rate of pure time prefer-
ence of 1.5% in his seminal DICE climate change model (Nordhaus and Sztorc,
2013).

Implications

Our sparse evidence on the parameter values indicates that ǫ < β is unlikely,
and the ǫ > β world may well the one we live in. At the same time, the
ǫ ≫ β case appears surprisingly possible. If we take the high-end estimate
of αλ

1−φ
= 2, then an ǫ of 3/2 and a β of 1/2 would mean that ǫ ≫ β. If we

look at the lower-end estimate of αλ
1−φ

= 1/2, which may be the more realistic
number given recent evidence on the sharply diminishing returns to research,
even e.g. ǫ = 3/4 and β < 1/2, or ǫ = 1/2 and β < 1/3, would suffice for
ǫ ≫ β. Perhaps our efforts at mitigating existential risk do not matter much
after all—not because existential risk isn’t a problem, but because existential
catastrophe is inevitable whatever we do.

It would clearly be beneficial to get better empirical evidence on these
parameters. However, from now on, I will focus on the ǫ > β and ǫ 6≫ β
case. This appears to be the empirically likely case. Moreover, if ǫ ≫

β, no intervention can change M∞ = 0, so no intervention can unlock the
astronomical value of the long-run future of humanity.

In addition, I will focus on the case where γ > 1. This appears to be the
empirically relevant case. Moreover, when ǫ > β and γ ≤ 1, we again get
M∞ = 0 regardless of any intervention.

5 Transition Dynamics

The analysis so far has shed light on the long-run behavior of growth and risk.
However, we live in a world far away from this asymptotic result. To under-
stand the relationship between growth and risk as it might apply to today, I
consider the transition dynamics of the (impatient) optimal allocation.

In particular, I analyze the case where γ > 1 and ǫ > β.
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5.1 Laws of Motion in the Optimal Allocation

The transition dynamics of the optimal allocation can be studied as a system
of six differential equations in six “state-like” variables: st, ℓt, σt δt, yt ≡ gAt,
and zt ≡ gBt. With the addition of Nt, these variables then characterize
all other variables. They each converge to constant values: s∗ = 0, ℓ∗ = 0,
σ∗ = λαgB

ρ+(γ−1)gc+(1−φ+λα)gB
, δ∗ = 0, y∗ = gA, and z∗ = gB.

Let ŝ denote the growth rate of s, ℓ̂ denote the growth rate of ℓ, and so
on.

Proposition 9. Laws of Motion in the Optimal Allocation

In the optimal allocation, our “state-like” variables st, ℓt, σt δt, yt, and zt
grow according to following laws of motion:

ŝ = αz
λ

1− λ
(1− ℓ)

1− σ

σ
− αy

λ

1− λ

1− s

s
ℓ
1− σ

σ
, (64)

ℓ̂ =
θℓ(A©+ ωℓθσ B©)

1− ωℓωσθσ
, (65)

σ̂ = θσ(B©+ ωσℓ̂), (66)

δ̂ = (ǫ− β)

(

n− σ̂
σ

1− σ

)

+ α(ǫy − βz) + ℓ̂

(

ǫ+ β
ℓ

1− ℓ

)

, (67)

ŷ = λ(n+ ŝ+ σ̂)− (1− φ)y, (68)

ẑ = λ

(

n− ŝ
s

1− s
+ σ̂

)

− (1− φ)z, (69)
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where the following definitions have been used:

ωℓ = (γ − 1 + ǫ− β)
σ

1− σ
, (70)

ωσ = −

(

ℓ

1− ℓ
(1 + β) + ǫ

)

, (71)

θℓ =
(1− ℓ)

(

1 + 1−ℓ
ℓ

ǫ
β

)

1 +
(

γ − 1 + ǫ+ β ℓ
1−ℓ

)

(1− ℓ)
(

1 + 1−ℓ
ℓ

ǫ
β

) , (72)

θσ =
1− σ

1 + (β − ǫ)σ − λ(1− σ)
, (73)

A© = (β − ǫ)n + (1− γ − ǫ)αy + αβz − ρ− δ +
u(ct)

vt
, (74)

B© = (1− λ)
s

1− s
ŝ+ (λ+ β − ǫ)n+ αβz − αǫy +

u(ct)

vt
− αλz

1− ℓ

1 − st

1− σt

σt
,

(75)

and

u(ct)

vt
=

ℓ

1− ℓ
βδũ+ ǫδũ, ũ = ucγ−1

t +
1

1− γ
, (76)

ct =

(

δ
δ

(

ℓ
1−ℓ

(

(

z
y

)
1

1−φ ( s
1−s

)
λ

1−φ

)α)−β
)

1
ǫ−β

Nt
. (77)

Proof. See Appendix A.10.

5.2 Numerical Simulation

Simulating this system of equations yields a candidate transition path for
each set of parameters. These candidate transition paths feature two broad
dynamics that emerge for different combinations of parameter values. The
first dynamic features growth rates of A and B (and thus c and h) that
start very high (with c very close to 0) and then fall to the steady state.
The second dynamic features growth rates of A and B (and thus c and h)
that start small and then rise over time to the steady state. In trying to
understand the long-term dynamics of our civilization, the latter appears
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to be the relevant case. Over the period of recorded history, consumption
was initially broadly flat (but nonzero). Then, growth sped up. Thus, I
will focus on the second case. Although the exact dynamics depend on the
specific parameter values of course, the example below illustrates the central
qualitative features of this case.

I set γ = 1.5, ǫ = 0.4, β = 0.3, ρ = 0.02, and n = 1%. These are
meant to be reasonable values for illustration; other values produce similar
results. I choose the other parameter values, including φ, λ, δ, and u, to
target several stylized facts about the world. In particular, I seek to find
a year t0 with a value of life-year as a ratio to per capita consumption (ũ)
of 4 (corresponding e.g. to per capita consumption of $20,000 and a value
of a life-year of $80,000), in which consumption per capita grows at around
1 percent per year, around 95% of workers are in the consumption sector,
and the hazard rate is approximately 0.1%. This 0.1% rate of existential
catastrophe has become a relatively widely used benchmark; see Stern (2006)
and Méjean et al. (2017, 2019).

This is not meant to be a formal calibration in any sense: we do not have
good information about many of the parameters. This exercise is merely
meant to illustrate the qualitative dynamics; the calibration helps us use a
reasonable set of parameters. Critically, note that the qualitative dynamics
of these results are similar for other parameter choices, such as different γ,
different ǫ and β, and different ρ. I explain the details of the simulation in
Appendix B.1.

Figure 1 shows the key allocation of workers and scientists to consumption
along the transition path. Figure 2 shows the growth rates of consumption
and safety along the transition path. Figure 3 shows the hazard rate δ along
the transition path.



EXISTENTIAL RISK AND GROWTH 24

0 200 400 600 800 1000 1200 1400 1600
Time

0

10

20

30

40

50

60

70

80

90

100

Percent

Figure 1: The allocation along the transition path. Time 600 corresponds
to today and the values at this date are highlighted in the graph. A period
represents a year.

Consider first the allocation variables displayed in Figure 1. At the time
representing today, nearly all scientists and workers are in the consumption
sector. As consumption grows and thus the relative value of life ũ grows, both
s and ℓ decline as resources are shifted to the safety sector. Note that initially,
safety is increased by shifting workers towards the safety sector; only later
are scientists shifted towards the safety sector. Both s and ℓ eventually settle
in to their asymptotic, exponential decline to zero. The share of scientists in
the population σ rises steadily to its steady-state value.
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Figure 2: The growth rates along the transition path. Time 600 corresponds
to today and the values at this date are highlighted in the graph. A period
represents a year.

Next, consider the growth rates along the transition path in Figure 2.
The growth rates of consumption technology A and thereby consumption per
capita c rise steadily, accelerating from a low initial level to higher consump-
tion growth at the time representing today. We saw that as consumption
grows and the value of life rises, workers and scientists are shifted to the
safety sector. This causes the growth rate of A to level off and consumption
growth to slow, while the growth of safety per capita h accelerates. Note that
the additional safety growth is driven by shifting workers to the safety sector
at first; only after a while does the growth of safety technology B begin to
accelerate. All growth rates eventually converge to their constant asymptotic
values, with consumption growing significantly slower than safety. However,
consumption does continue growing at a constant exponential rate.
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Figure 3: The hazard rate along the transition path. Time 600 corresponds
to today and the value at this date is highlighted in the graph. A period
represents a year.

Finally, consider perhaps the most interesting dynamic: the hazard rate
along the transition path in Figure 3. The key qualitative dynamic is that the
hazard rate curve has an inverted U-shape. The hazard rate starts at a rela-
tively low level. Yet since ǫ > β, existential risk grows with scale, so δ grows.
This means that at the time representing today, the risk of an existential
catastrophe is much higher than it was hundreds of years ago. As consump-
tion grows, the value of life rises and so resources are shifted to safety. This
slows the growth rate of δ, yet existential risk keeps rising—the scale ef-
fect still dominates for a while. Eventually, the growth in safety relative to
consumption outpaces the scale effect, so the δ-curve bends: existential risk
starts to fall. The hazard rate δ ultimately decays exponentially.

Recall that what matters in determining the long-term probability of
humanity’s survival is the area under the hazard rate, since M∞ = e−

∫
∞

0 δsds.
The exponential decay of the hazard rate on the asymptotic path ensures that
∫∞

0
δsds is finite, and so M∞ > 0. Extrapolating from the simulation, the

long-run probability of human civilization’s survival conditional on surviving
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to the time that represents today is approximately 19.3%. However, note
that I calibrated the above simulation to have a δ of approximately 0.1%
today; a different calibration would rescale this curve and thus change the
magnitude of the survival probability.

5.3 Discussion: The Existential Risk Kuznets Curve

This inverted U-shape of the hazard rate curve is related to the literature on
the “environmental Kuznets curve,” which posits an inverted U-shape rela-
tionship between economic development and pollution (see Brock and Taylor
(2005) for an overview). The mechanism at work in this model is similar
to the classic Stokey (1998) paper on the theory behind the environmental
Kuznets curve: if γ > 1, richer societies care less about increasing consump-
tion and more about other things, such as the environment, or, in this case,
life. Initially, pollution rises with scale, but eventually declines as the rela-
tive value of environmental protection increases, producing a hump-shaped
pollution curve. While the matter at hand is very different—environmental
degradation that additively reduces utility versus existential catastrophes
that imperil human civilization—the analogy supports the soundness of the
result.

There are two important things to keep in mind, however, about what we
might call the “existential risk Kuznets curve.” First, the timescales involved
here appear to be very long, involving hundreds or even thousands of years
of economic development. Zooming in even a few hundred years around the
present in the graph above, we would likely only increasing risk, much as
some argue we have seen in the past century. On the one hand, this shows
the value of economic theory: it allows us to gain a long-run perspective on
potential societal dynamics. On the other hand, this means we cannot easily
test this model prediction empirically, giving us reason for caution.

Secondly, note that this existential risk Kuznets curve appears in the
transition dynamics of the optimal allocation. Considering that existential
risk mitigation is a global public good, it is unlikely resources are allocated
to safety optimally in the real world. As such, this should not be taken to be
a prediction of what a particular country with a particular set of institutions
will do with regard to existential risk.

Nevertheless, there are a number of reasons why we might still be inter-
ested in the transition dynamics under the (impatient) optimal allocation.
For one, since there are very long timescales involved here, it is very hard to
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know (and thus model) what government and societal institutions will evolve
to deal with existential risk. However, the ideal these institutions will likely
aim at is the optimal allocation. The optimal allocation might thus be a
rough proxy for the real-world allocation.

Moreover, the (impatient) optimal allocation represents what I would call
the “democratic possibilities frontier” or the “impatient public possibilities
frontier.” Those who are principally concerned about the long-run future
of humanity and advocate for a zero rate of pure time preference might
want us to spend as much as possible on safety in order to avoid existential
catastrophe and enable human flourishing millions of years into the future.
Indeed, even in the Hamiltonian of the optimal allocation, the relative value
of life ṽt is a discounted term; the lower your discount rate ρ, the more
you would want to spend on safety. However, the broader public is not so
patient. As the empirical evidence cited earlier shows, people tend to have a
(relatively large) positive rate of pure time preference; the public is impatient.
Even perfectly designed institutions that take into account existential risk
externalities will ultimately be constrained by the degree to which society
actually cares about the future—they will be constrained by an impatient
public. The existential risk Kuznets curve illustrates the implications of
this impatience. On the one hand, this impatience results in a period of
initially rising levels of risk. For example, this might mean that the arguably
rising level of existential risk of the past century is not necessarily a market
failure, but may well be part of the optimal path given positive pure time
preference. On the other hand, rising standards of living lead even the most
impatient public to start caring more about safety and averting an existential
catastrophe. This leads workers and scientists to be shifted to the safety
sector, eventually causing the hazard rate δ to exponentially decline. Even if
people are impatient, if you make them well off enough, they will start caring
about existential risk.

Seeing the arguably rising levels of existential risk in the past century,
some might call for an end to economic growth. Yet this existential risk
Kuznets curve indicates that stopping economic growth would be deleterious:
it would simply freeze the hazard rate at a high level, leading to a fatal
catastrophe sooner or later. Economic growth enables even an impatient
public with a high rate of pure time preference to start caring about life,
thus ultimately reducing risk and even leading to positive M∞.

Some prominent thinkers have previously posited that humanity is pass-
ing through a unique period with an elevated risk of technological catastro-
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phe. Sagan (1994) calls this the “time of perils.” Parfit (2011, p. 616),
concurs:

We live during the hinge of history. Given the scientific and
technological discoveries of the last two centuries, the world has
never changed as fast. We shall soon have even greater powers to
transform, not only our surroundings, but ourselves and our suc-
cessors. If we act wisely in the next few centuries, humanity will
survive its most dangerous and decisive period. Our descendants
could, if necessary, go elsewhere, spreading through this galaxy.

This existential risk Kuznets curve provides theoretical evidence that
grounds the intuition that we are living in a “time of perils.” We may
be economically advanced enough to have created the means for our perma-
nent destruction, but not economically advanced enough to care enough about
decreasing this existential risk.

This “time of perils” has profound implications. For instance, those alive
today who care about preserving the long-term future of humanity may have
extraordinary altruistic leverage. By working to reduce existential risk now
(increasing the resources dedicated to safety), they can reduce the area under
the “hump” of the hazard rate δ. This in turn increases M∞, unlocking
tremendous value. Moreover, since so few resources are dedicated to safety at
the moment, there are likely very high marginal value opportunities available
to work on safety. This is a unique situation. Suppose existential risk did
not decline to zero exponentially: then M∞ = 0 regardless—the existential
risk curve would never bend—so reducing risk now would not change the
probability of a long and flourishing future of humanity. And if existential
risk did not initially increase, it would never be such a substantial challenge
and there wouldn’t be such high marginal value opportunities to work on
reducing it.

6 Does Faster Growth Increase the Probabil-

ity of Existential Catastrophe?

Faster economic growth is conventionally seen as a great boon for humanity.
Yet when considering existential risk, this picture becomes more muddled.
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Faster economic growth might speed up the development of potentially dan-
gerous technology, such as powerful AI, or accelerate the pace of climate
change. What if faster economic growth—in a world that does not (yet)
value life highly—also accelerates the growth in risk? Could the side effect of
mundane efforts to e.g. make trade more efficient or increase labor force par-
ticipation be increasing the probability of an existential catastrophe? While
the existential risk Kuznets curve explicated in the last section suggests we
should at least want some economic growth even from the perspective of max-
imizing M∞, this does not tell us anything about how the pace of economic
growth affects the probability of an existential catastrophe.

First, consider a generic, uniform shock—e.g. more people working—on
the balanced growth path of the rule of thumb allocation. Since the fraction
of workers and scientists working in the safety sector is fixed, this increases
the number of scientists and workers in the safety sector and consumption
sector by the same proportion. If ǫ < β, this shock therefore decreases the
hazard rate δ. If ǫ = β, there is no effect on δ. But if ǫ > β, the shock
increases the hazard rate δ because of the scale effect.

When ǫ < β, faster growth reduces existential risk even in the rule of
thumb allocation. Yet when ǫ > β, accelerating growth also accelerates the
growth in risk if the allocation of resources to safety does not adjust.

I will look at what happens when we accelerate growth in the (impatient)
optimal allocation. In particular, I will look at the ǫ > β case, since in the
ǫ < β case, faster growth reduces risk even when the allocation of resources
to safety does not adjust. As explained earlier, although the real-world allo-
cation may be imperfect, the optimal allocation might be a rough proxy for
how societies will decide to allocate resources to safety in the long run. More-
over, the optimal allocation represents the “democratic possibilities frontier”:
the (high) positive rate of pure time preference the public appears to have
dictates the degree to which societies can trade off consumption for safety. I
also focus on the γ > 1 case as in the previous section.4

6.1 Simulating an Acceleration of Growth

First, consider what happens when growth is faster for a given time period,
resulting in permanently higher economic output (i.e. this results in a per-

4Note that if γ ≤ 1, accelerating growth would not matter for the chances of human
civilization’s survival in the long run: M∞ = 0 anyway, regardless of whether growth is
faster or slower.
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manent level effect).
In this model, population growth is the driving force behind economic

growth. More population means more nonrival ideas which means more
output. Moreover, it easy to manipulate population growth in our model by
manipulating n. Thus, I consider the effect of accelerated population growth.
In particular, I simulate 2% (instead of 1%) population growth for 30 years
around the time representing today. We can take this to literally represent
the effect of some pro-natalist policy. However, the basic dynamics illustrated
below should apply to a broad class of generic accelerations in growth, e.g.
increasing labor force participation, increasing human capital, increasing the
number of “effective” people by making global exchange easier, or increasing
research effort.

See Appendix B.2 for details of how I simulate the acceleration in growth.
The following figures compare the transition path with steady growth and

the transition path with a period of accelerated growth. The transition path
with steady growth is depicted with the solid colors; the transition path with
a period of accelerated growth is depicted with the lighter colors. Figure 4
shows the growth rates of consumption and safety along the transition path.
Figure 5 shows the fraction of workers and scientists allocated to consumption
along the transition path. Figure 6 shows the relative value of life ũ along
the transition path. Figure 7 shows the hazard rate δ along the transition
path.
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Figure 4: The growth rates along the transition path, comparing steady
growth (solid colors) and a period of accelerated growth (lighter colors). A
period represents a year.

Consider first the growth rates depicted in Figure 4. At around time 600,
population growth accelerates for 30 years. This accelerates the growth rates
of consumption technology A and safety technology B on the transition path
with the accelerated growth. Both growth rates remain higher for a while,
until they eventually converge to the same steady state as along the transition
path with steady growth. The higher growth rates of A and B increase the
growth rates of c and h. gc and gh are thus higher on the transition path
with a period of accelerated growth, until these too converge to the same
steady state as along the transition path with steady growth. Note that
consumption growth actually initially decelerates a bit during the period of
accelerated population growth to compensate for the scale effect of faster
population growth.



EXISTENTIAL RISK AND GROWTH 33

0 200 400 600 800 1000 1200 1400 1600
Time

0

10

20

30

40

50

60

70

80

90

100

Percent

Figure 5: The allocation along the transition path, comparing steady growth
(solid colors) and a period of accelerated growth (lighter colors). A period
represents a year.

Next, consider the key allocation variables shown in Figure 5. The growth
of the share of researchers in the population slightly increases during the
period of accelerated growth. More importantly, along the transition path
with the period of accelerated growth, workers and scientists are shifted to
to safety earlier than along the transition path with steady growth.
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Figure 6: The relative value of life ũ along the transition path, comparing
steady growth (solid green) and a period of accelerated growth (light green).
A period represents a year.

To understand the dynamics at play, consider Figure 6, which compares
the relative value of life ũ along the transition path with accelerated and
steady growth. At approximately time 600, when there is a period of faster
population growth, ũ begins to diverge along the two transition paths. After
time 600, ũ is higher along the transition path with accelerated growth com-
pared to along the transition path with steady growth. Recall the growth
rates illustrated in Figure 4: the acceleration of growth meant faster con-
sumption growth. Faster consumption growth in turn means that along the
transition path with accelerated growth, people are richer, earlier, than they
would have been with steady growth. Since ũ = u(c)

u′(c)c
= ucγ−1

t + 1
1−γ

and
γ > 1, these richer people then value life more highly; they are more con-
cerned for safety, earlier. Thus, resources are shifted to safety earlier, as we
saw in the allocation dynamics.
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Figure 7: The hazard rate along the transition path, comparing steady
growth (black) and a period of accelerated growth (gray). A period rep-
resents a year.

Consider the hazard rate δ depicted in Figure 7. After the period of
accelerated growth around time 600, it initially seems as if all of the wor-
ries about faster economic growth have been confirmed: the acceleration in
growth also accelerates the growth in the hazard rate. This is all an observer
at the time—or even hundreds of years later—would be able to observe.
Armed with empirical data, this observer would conclude that faster growth
increased existential risk.

Yet zooming out, this is not so. The acceleration of growth also acceler-
ates the rise of the relative value of life ũ. As such, ṽt is higher: people start
caring more about safety earlier in the world with a period of accelerated
growth compared to the world with steady growth. Resources are shifted to
safety sooner, and thus the hazard rate curve bends earlier. In a sense, the
period of faster growth accelerates the movement along the existential risk
Kuznets curve. As a result, the overall area under the hazard rate curve is
lower—and recall that this is all that matters for the long-run probability of
civilization’s survival.
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As before, on the steady growth transition path, M∞ conditional on sur-
viving to the time that represents today is approximately 19.3%. However,
on the transition path with a period of accelerated growth, M∞ conditional
on surviving to the time that represents today is approximately 20.8%. Thus,
we see how the period of accelerated growth, despite increasing risk initially,
improves the changes of humanity’s survival in the long run! This effect is
not trivial: faster growth for a relatively short period of time now appears
to result in increasing the long-run probability of human survival by 1.5 per-
centage points. Instead of faster economic growth being a problem in the
context of existential risk, this suggests that faster economic growth could
actually contribute to the challenge of mitigating existential risk—even when
people are impatient.

When previously discussing the existential risk Kuznets curve, I men-
tioned that we may well be living through a “time of perils.” This analysis
suggests that one way to increase the probability of humanity’s survival is
to simply try to get through the “time of perils” as quickly as possible.
This may counterintuitively mean accelerating the increase in existential risk
initially (if we are currently on the upward-sloping part of the hazard rate
curve). However, this accelerationist strategy would ultimately decrease the
area under the hazard rate curve and increase the probability of a long,
flourishing future.

The reverse of the above happens when growth decelerates: the movement
along the existential risk Kuznets curve decelerates, and society is stuck with
higher levels of existential risk for longer, in turn dramatically decreasing the
long-run probability of humanity’s survival. Slower growth—even just for
a while—doesn’t just mean lower living standards, but potentially a much
higher chance of an existential catastrophe and a much lower chance of a long
future of humanity. This should strike fear of even short-term stagnation into
the hearts of all those who care about the long-term future.

The key condition here is that ǫ 6≫ β. The acceleration of growth initially
increases risk due to the scale effect—but since the scale effect of ideas is
larger than the scale effect of existential risk, it was still possible to mitigate
risk eventually once ũ got high enough and people started caring. Yet if
ǫ ≫ β, the higher ũ does not matter: even if society wanted to mitigate the
additional risk later on, it would be impossible.
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6.2 Simulating a Transitory Boom

So far, we have been looking at an acceleration in growth that results in a
permanent level effect. What happens when we have a transitory economic
boom, i.e. a time of faster growth that doesn’t change the long-run level
of output? For the reasons stated before, we again manipulate population
growth, letting it be 2% for 40 years and then 0% for the 40 years after that
(instead of a steady 1%). Thus, the long-run population is unaffected; there
is simply a temporary upward blip. We may interpret this literally as the
effect of a transitory baby boom. However, the basic dynamics illustrated
below should apply to a broader class of transitory booms, e.g. an economic
boom as part of the business cycle in which the economy is operating over
capacity.

See Appendix B.2 for details of how I am simulating the acceleration in
growth.

The following figures compare the transition path with steady growth and
the transition path with a transitory boom. The transition path with steady
growth is depicted with the solid colors; the transition path with a transitory
boom is depicted with the lighter colors. Figure 8 shows the growth rates of
consumption and safety along the transition path. Figure 9 shows the key
allocation of workers and scientists to consumption along the transition path.
Figure 10 shows the hazard rate δ along the transition path.
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Figure 8: The growth rates along the transition path, comparing steady
growth (solid colors) and a transitory boom (lighter colors). A period repre-
sents a year.

Consider first the growth rates shown in figure 8. The faster population
growth initially accelerates the growth rates of both consumption technology
A and safety technology B. Growth in both of these then slows down when
population growth is slower during the time of slower population growth.
The upward blip in the growth rates of A and B in turn lead to an upward
blip in the growth rates of c and h. Nevertheless, after the temporary boom,
all growth rates are the same, as had the boom not happened.
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Figure 9: The allocation along the transition path, comparing steady growth
(solid colors) and a transitory boom (lighter colors). A period represents a
year.

Next, consider the key allocation variables depicted in figure 9. There is a
temporary upward blip in the fraction of population working as researchers.
There is also a temporary downward blip in the fraction of workers and
researchers working in the consumption sector. Yet unlike when growth was
accelerated resulting in a permanent level effect, this temporary economic
boom does not change the long-term trajectory of the relative value of life;
thus, the long-term trajectory of the allocation variables is unchanged.
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Figure 10: The hazard rate along the transition path, comparing steady
growth (solid black) and a temporary boom (gray). A period represents a
year.

Consider the hazard rate illustrated in figure 10. The long-run trajectory
of the hazard rate is the same.

Nevertheless, this doesn’t mean that temporary boom has no effect: there
is an upward blip in the hazard rate during the boom. Recall again that what
matters in determining the long-term probability of humanity’s survival is
the area under the hazard rate curve. This upward blip in the hazard curve
increases the area under the hazard curve, which reduces humanity’s long-
term survival probability. Extrapolating from the simulation, conditional
on surviving until the time representing today, the difference in long-term
survival probabilities is approximately 0.17 percentage points. Considering
this may just be the effect of e.g. the business cycle, and the outcome at
stake is whether humanity goes extinct or not, this is again a surprisingly
large effect.

The opposite occurs when we simulate a temporary bust, i.e. a slow-
down in (population) growth followed by an increase in growth such that
the long-term trend remains the same. Then, the hazard rate curve exhibits
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a downward blip, which increases the long-term probability of humanity’s
survival.

We previously saw that a period of accelerating growth can increase the
long-term probability of humanity’s survival. Here, we thus add important
nuance: the additional growth has to result in a permanent level effect. Sim-
ply “juicing” growth for a while may actually backfire, reducing the probabil-
ity of humanity’s survival. Nevertheless, the intuition we developed remains
the same: we want to get through the “time of perils” as quickly as possible.
Stagnation—in this case the “cooling off” after a transitory boom—during
the “time of perils” is deleterious.

6.3 Patience vs. Growth

The key mechanism at work in this paper is that growing consumption grows
people’s relative value of life ũ (when γ > 1). The period of accelerated
growth improves the chances of civilization’s survival in the long run because
it accelerates the rise in the relative value of life ũ. As people grow richer,
they care more about preventing an existential catastrophe and demand more
safety.

By contrast, philosophers who are concerned about the long-term future
often appeal to ethical arguments for a zero rate of pure time preference.
They care about existential risk mitigation not because of a high ũ, but
because of low or no utility discounting.

How do the these two mechanisms—increasing consumption vs. reducing
the rate of pure time preference ρ—compare in terms of increasing concern
for safety?

Recall that in the optimal allocation,

1− ℓt
ℓt

=
βδtṽt

1− ǫδtṽt
,

1− st
st

=
βδtṽt

1− ǫδtṽt
·
ρ− gpat − φgAt

ρ− gpbt − φgBt

·
gBt

gAt

.

Both the allocation of workers to safety and the allocation of scientists to
safety are proportional to ṽt. ṽt represents people’s demand for safety. Recall
that

ṽt =
ũt

ρ− δt + gvt
, ũt =

u(ct)

u′(ct)ct
.
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We see that people’s concern for life depends on both ũ, which in turn de-
pends on consumption, and ρ.

Thus, we can compare how lowering ρ—making people more patient—
and increasing ct—making people better off and thus increasing ũ—compare
in terms of increasing ṽ, people’s concern for life. Although this concern for
life does not necessarily translate directly to the allocation of resources to
safety in the real world as it does in the optimal allocation, we would hope
that the real-world allocation responds to the people’s demand for safety in
the long run.5

Proposition 10. Elasticities of Concern for Life

Suppose the marginal utility of consumption falls rapidly, such that γ > 1.
Let E ṽ

ρ be the elasticity of ṽ with respect to ρ. Let E ṽ
c be the elasticity of ṽ

with respect to ct. As ũ → ∞ and δ → 0,

E ṽ
ρ → −1, (78)

E ṽ
c → (γ − 1). (79)

In particular, when ũ is large and δ is sufficiently smaller than ρ, E ṽ
ρ ≈ −1

and E ṽ
c ≈ (γ − 1).

Proof. See Appendix A.11.

For large enough ũ (i.e. people are already decently well off and care
about life somewhat), the elasticity of ṽ with respect to ρ is approximately
−1. Halving ρ roughly doubles the concern for life ṽ. Moreover, the elasticity
of ṽ with respect to c is approximately (γ−1). For example, if γ = 2, doubling
c roughly doubles the concern for life ṽ. The larger γ, the larger this elasticity,
since a larger γ means the marginal utility of consumption decreases more
rapidly and so the relative value of life ũ increases more rapidly.

I have computed the approximate elasticities for different values of γ
below. To help clarify the comparison, in the third column, I note what ρ
would have to be reduced to, from a base of ρ = 2%, to match the increase
in the concern for life ṽt from a doubling of consumption.

5Note that when I am referring to ρ, this ρ is the rate of pure time preference without
regard for increasing population. In a total utilitarian setting, the rate of pure time
preference is ρ+ n. Thus, the elasticities with regard to the rate of pure time preference
in a total utilitarian setting would be lower if n > 0.
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Table 2: Patience vs. Growth: Comparison of Effect on Concern for Safety

γ E ṽ
c ρ equivalent to doubling consumption

1.1 0.1 1.87%
1.5 0.5 1.41%
2 1 1%
4 3 0.25%

For γ close to 1, even doubling consumption is equivalent only to a small
change in pure time preference in terms of regard for safety. Increasing
consumption is relatively ineffective in increasing people’s concern for safety.
Yet for larger γ, increasing consumption has very large effect on the concern
for safety—equivalent to very large reductions in pure time preference.

Note that I have been using an approximation for the elasticities that
is valid for sufficiently large ũ. For lower ũ, gvt is higher, so E ṽ

ρ is lower.
At the same time, for lower ũ, E ṽ

c , is higher—in fact, E ṽ
c → ∞ as ũ → 0.

This indicates that the above numbers are a lower bound for the relative
effectiveness of growing c versus lowering ρ. If people are poorer and ũ is
lower, increasing c is much more effective relative to decreasing ρ in increasing
the concern for safety than the numbers above imply.

Nevertheless, the general takeaway is clear. Making people better off
could increase concern for safety and thus demand for existential risk miti-
gation in a way that would be equivalent to significant changes in people’s
attitude toward the future.

7 Conclusion

Technological development can create or mitigate existential risks. Analyzing
this in a model of endogenous growth, when the scale effect of existential risk
is moderate and the marginal utility of consumption declines quickly enough,
this paper grounds the intuition of some prominent thinkers that humanity
may be in a critical “time of perils.” We may be economically advanced
enough to be able to destroy ourselves, but not economically advanced enough
that we care about this existential risk and spend on safety. This “time
of perils” implies that working on reducing existential risk now could be
very impactful from an altruistic perspective. Faster economic growth, while
initially increasing risk, can help us get through this “time of perils” more
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quickly and thus increases the long-run probability of humanity’s survival.
Conversely, short-term economic stagnation could substantially curtail the
future of human civilization. Even if you care only about the long-term
future of humanity, the pace of economic growth in the short run could be
key to whether we make it there. Finally, this paper also highlights the
importance of the scale effect of existential risk. In particular, if this scale
is larger than the scale effect of ideas, it may be impossible to avoid an
existential catastrophe.

This paper suggests many future research directions. It would clearly
be desirable to get better empirical data on the scale effect of existential
risk. More broadly, a better understanding of how existential risk is created
and mitigated would be helpful. It would also be interesting to look at the
implications of a decentralized allocation, as well as possible mechanisms to
efficiently provide for the global public good of existential risk mitigation.
Finally, from the perspective of maximizing altruistic impact, it would be
valuable to compare the impact on the long-run probability of humanity’s
survival from working on policies that might accelerate the rate of growth to
direct work on reducing existential risk by funding the safety sector.
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Appendices

A Proofs and Derivations

A.1 Proof of Proposition 1

Note that

gAt =
Ȧt

At
=

Sλ
at

A1−φ
t

(80)

Given that Sat is a fixed fraction of the total population, the numerator
grows at rate λn. The denominator grows at (1 − φ)gAt. Given that on a
balanced growth path, gA must be constant, the numerator and denominator
must grow at the same rate, yielding

gA =
λn

1− φ
(81)

The same reasoning applies to gB, giving us

gB =
λn

1− φ
(82)

Now, note that Ct = AαLct. Given that Lct is a fixed fraction of the total
population, Ct grows at rate αgAt + n. Given ct = Ct/Nt, ct grows at rate
αgAt. Thus, on the balanced growth path,

gc = αgA =
αλn

1− φ
(83)

The same reasoning applies to gh, so

gh = αgB =
αλn

1− φ
(84)

Finally, consider what happens to δt = δN ǫ−β
t cǫth

−β
t . It follows directly

that gδt = (ǫ− β)n+ ǫgct − βght. Thus, on the balanced growth path

gδ = (ǫ− β)n+ ǫ
αλn

1 − φ
− β

αλn

1− φ
=⇒ gδ = (ǫ− β)

(

αλn

1− φ
+ n

)

(85)



EXISTENTIAL RISK AND GROWTH 46

A.2 First Order Conditions of the Hamiltonian

FOC: st

0 =
∂H

∂st

=⇒ 0 = λsλ−1
t patσ

λ
t N

λ
t A

φ
t − λ(1− st)

λ−1pbtσ
λ
t N

λ
t B

φ
t

=⇒ λpatȦts
−1
t = λpbtḂt(1− st)

−1

=⇒
1− st
st

=
pbtḂt

patȦt

(86)

FOC: ℓt

0 =
∂H

∂ℓt

=⇒ 0 =
∂

∂ℓt
(Mtu(ct)− vtδtMt)

=⇒ Mt
∂

∂ℓt
(u+

(Aα
t ℓt(1− σt))

1−γ

1− γ
) = MtvtδN

ǫ−β
t

∂

∂ℓt
([Aα

t ℓt(1− σt)]
ǫ[Bα

t (1− ℓt)(1− σt)]
−β)

=⇒
(1− γ)(Aα

t ℓt(1− σt))
−γAα

t (1− σt)

1− γ
= vtδN

ǫ−β
t ǫ[Aα

t ℓt(1− σt)]
ǫ−1Aα

t (1− σt)

[Bα
t (1− ℓt)(1− σt)]

−β
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ǫ−β
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t ℓt(1− σt)]
ǫ

=⇒ u′(ct)ctℓ
−1
t = vtδN

ǫ−β
t ǫℓ−1

t cǫth
−β
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ǫ−β
t β(1− ℓt)

−1h−β
t cǫt

=⇒ u′(ct)ctℓ
−1
t = vtδt(ǫℓ

−1
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−1)

=⇒
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δt(ǫ
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ℓt
+ β)

=⇒ (1− ǫδt
vt

u′(ct)ct
)
(1− ℓt)

ℓt
= βδt
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=⇒
(1− ℓt)

ℓt
= βδt
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u′(ct)ct

(1− ǫδt
vt

u′(ct)ct
)−1

(87)
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Consider the term vt
u′(ct)ct

: it is shadow value of life divided by the value
of consumption in util terms. It thus represents the relative value of life, and
it is convenient to define this explicitly:

ṽt ≡
vt

u′(ct)ct
(88)

giving us:

1− ℓt
ℓt

=
βδtṽt

1− ǫδtṽt
(89)

Note that this is a very logical condition: the ratio of workers is propor-
tional to what these workers can produce. In the numerator is the hazard
rate times the relative value of life times β (the effectiveness of safety goods
in reducing existential risk)—this is what can be gained by making a safety
good. In the denominator is 1 (which is value of consumption relative to ṽt)
minus the existential risk increasing effects of consumption.

FOC: σt
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FOC: Mt
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FOC: At

ρ =
∂H/∂At + ˙pat

pat

=⇒ ρ =
˙pat
pat

+
1

pat
[Mt

1− γ

1− γ
(Aα

t ℓt(1− σt))
−γαAα−1ℓt(1− σt) + φAφ−1pats

λ
t σ

λ
t N

λ
t

−MtvtδN
ǫ−β
t (Bα

t (1− ℓt)(1− σt))
−βǫ(Aα

t ℓt(1− σt))
ǫ−1αAα−1ℓt(1− σt)]

=⇒ ρ =
˙pat
pat

+
1

pat
[Mtu

′(ct)α
ct
At

+ patφ
Ȧt

At

− αǫvtMt
δt
At

] (92)

FOC: Bt

ρ =
∂H/∂Bt + ṗbt

pbt

=⇒ ρ =
ṗbt
pbt

+
1

pbt
[φBφ−1pbt(1− st)

λσλ
t N

λ
t

−MtvtδN
ǫ−β
t (Aα

t ℓt(1− σt))
ǫ(Bα

t (1− ℓt)(1− σt))
−β−1(−β)αBα−1(1− ℓt)(1− σt)]

=⇒ ρ =
ṗbt
pbt

+
1

pbt
[pbtφ

Ḃt

Bt

+ αβvtMt
δt
Bt

] (93)

Transversality Conditions

Note that the three standard transversality conditions apply:

lim
t→∞

[e−ρt · vtMt] = 0 (94)

lim
t→∞

[e−ρt · patAt] = 0 (95)

lim
t→∞

[e−ρt · pbtBt] = 0 (96)
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The Price of Ideas

To solve for the allocation of scientists (see FOC: st), I need to solve for the
relative price of ideas pbt/pat. To do this, I manipulate FOC Bt:

ρ =
ṗbt
pbt

+
1

pbt
[pbtφ

Ḃt

Bt
+ αβvtMt

δt
Bt

]

=⇒ ρ−
ṗbt
pbt

− φ
Ḃt

Bt

=
1

pbt
[αβvtMt

δt
Bt

]

=⇒ pbt =
αβvtMtδt/Bt

ρ− gpbt − φgBt

(97)

Similarly, I manipulate FOC At:

ρ =
˙pat
pat

+
1

pat
[Mtu

′(ct)α
ct
At

+ patφ
Ȧt

At
− αǫvtMt

δt
At

]

=⇒ ρ−
˙pat
pat

− φ
Ȧt

At

=
1

pat
[Mtu

′(ct)α
ct
At

− αǫvtMt
δt
At

]

=⇒ pat =
αMt(u

′(ct)ct − ǫδtvt)/At

ρ− gpat − φgAt

(98)

Combining the two, the relative price must satisfy:

pbtBt

patAt
=

βδtvt
u′(ct)ct − ǫδtvt

·
ρ− gpat − φgAt

ρ− gpbt − φgBt
(99)

Putting this in terms of the previously defined relative value of life ṽt I
get:

pbtBt

patAt

=
βδtṽt

1− ǫδtṽt
·
ρ− gpat − φgAt

ρ− gpbt − φgBt

(100)

There needs to be a condition on ρ to keep the denominators positive.
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Allocation of Scientists

Recall from FOC: st that:

1− st
st

=
pbtḂ

patȦ

I can now substitute in the relative price of ideas:

1− st
st

=
βδtṽt

1− ǫδtṽt
·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
(101)

Recall from FOC: ℓt that (1 − ℓt)/ℓt = (βδtṽt)/(1 − ǫδtṽt), so both of
these key allocation variables depend on δtṽt, that is, on the race between
the decline in the hazard rate and the possible rise in the value of life relative
to consumption.

Note that in Jones (2016), (1 − ℓt)/ℓt and (1 − st)/st are instead pro-
portional simply to βδtṽt. Incorporating the existential risk effects of higher
consumption, there is a (much) higher allocation of labor and of scientists
to safety, in particular in the case that the value of life rises faster than the
hazard rate falls, i.e. δtṽt rises.

Moreover, our model introduces an additional constraint. Since ℓt is the
fraction of labor allocated to consumption, it must be that 0 < ℓt ≤ 1 (where
the strict inequality comes from the fact that at least some labor must be
allocated to consumption along the balanced growth path). Thus, (1−ℓt)

ℓt
must

be finite, i.e. the denominator cannot be 0. Given that ǫ, β, δt, and ṽt are
guaranteed to be positive, along the optimal path:

δtṽt <
1

ǫ
(102)

This foreshadows what will happen along the balanced growth path: given
the parameters of our preferences, either δt falls to 0 faster than ṽt, meaning
δtṽt falls to 0, or δtṽt asymptotically approaches 1/ǫ.

Characterizing ṽt

Using FOC: Mt, I obtain
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ρ =
v̇t
vt

+
1

vt
[u(ct)− vtδt]

=⇒ ρ−
v̇t
vt

+ δt =
u(ct)

vt

=⇒ vt =
u(ct)

ρ− δt + gvt
(103)

=⇒ ṽt =
u(ct)/u

′(ct)ct
ρ− δt + gvt

(104)

Thus, the relative value of life depends on the extra utility a person enjoys
versus increasing consumption on the current margin—this is why the degree
of diminishing returns, γ, in our utility function plays such a key role.

Given our isoelastic CRRA utility,

u(ct)

u′(ct)ct
=

u+
c1−γ
t

1−γ

c−γ
t ct

=⇒
u(ct)

u′(ct)ct
= (u+

c1−γ
t

1− γ
)(c

−(1−γ)
t )

=⇒
u(ct)

u′(ct)ct
= ucγ−1

t +
1

1− γ
(105)
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A.3 Proof of Proposition 2

First, given equations (105) and (104) and γ > 1, along a balanced growth
path in which ct → ∞:

gṽ = g u(ct)

u′(ct)ct

− gρ−δt+gvt

gṽ = gucγ−1
t + 1

1−γ

gṽ = (γ − 1)gc (106)

as long as δt converges to some constant.
I shall now conjecture that the solution for the balanced growth path

takes the following form: st and ℓt fall toward zero at a constant exponential
rate, while σt → σ∗. The key condition for this result will be γ > 1 + (β −

ǫ)
(

1−φ
αλ

+ 1
)

.
Given ct = Aα

t ℓt(1 − σt), taking logs and derivatives, in our proposed
solution consumption growth is given by:

gc = αgA + gℓ (107)

Now, observe in (101) that st is inversely proportional to βδtṽt
1−ǫδtṽt

, and that
the remaining terms in (101) will be constant along a balanced growth path.
Observe in (FOC: ℓt) that ℓt is also inversely proportional to βδtṽt

1−ǫδtṽt
. Thus,

along the balanced growth path, gℓ = gs and I get:

gc = αgA + gs (108)

The growth rates of A and B follow straightforwardly from their produc-

tion functions. Given Ȧt = sλt σ
λ
t N

λ
t A

φ
t , gAt =

Ȧt

At
=

sλt σ
λ
t N

λ
t

A1−φ
t

, which becomes

constant along a balanced growth path, so the numerator and denominator
must grow at the same rate:

lim
t→∞

˙ln(sλt σ
λ
t N

λ
t ) = lim

t→∞

˙ln(A1−φ
t )

=⇒ λ(gs + n) = (1− φ)gA

=⇒ gA =
λ(gs + n)

1− φ
(109)

Given Ḃt = (1 − st)
λσλ

t N
λ
t B

φ
t , gBt = Bt

Ḃt
=

(1−st)λσλ
t N

λ
t

B1−φ
t

, which becomes

constant a balanced growth path, so the numerator and denominator must
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grow at the same rate. The key difference to A here is that st falling to 0
at a constant exponential rate means that 1 − st will converge to 1 and be
asymptotically constant, i.e. limt→∞ g1−st = 0.

lim
t→∞

˙ln((1− st)
λσλ

t N
λ
t ) = lim

t→∞

˙ln(B1−φ
t )

=⇒ λn = (1− φ)gB

=⇒ gB =
λn

1− φ
(110)

Plugging (109) into (108) I thus get:

gc = α
λ(gs + n)

1− φ
+ gs (111)

Plugging this into (106):

gṽ = (γ − 1)[
αλ(gs + n)

1− φ
+ gs] (112)

Now make a key observation. Recall from FOC: ℓt that (1 − ℓt)/ℓt =
(βδtṽt)/(1− ǫδtṽt) (and the allocation of scientists is proportional to this as
well). Given a constant, positive ǫ and β, the only way for ℓt (and st) to
fall to 0 is for δtṽt to grow. However, remember (102): δtṽt < 1/ǫ. Thus, as
t → ∞, δtṽt → 1/ǫ, i.e. δtṽt is asymptotically constant. However, this in turn
means that ǫδtṽt converges to 1 asymptotically, meaning that 1 − ǫδtṽt will
fall to 0 exponentially. This then delivers the desired exponential increase in
(1− ℓt)/ℓt and the exponential fall to 0 of ℓt (and st).

This convergence of δtṽt → 1/ǫ is unique to this model. In Jones (2016),
given sufficient curvature of preferences, δtṽt goes to infinity. However, this
convergence is very logical: in the denominator of our condition for (1 −

ℓt)/ℓt is the marginal product of consumption labor, 1 − ǫδtṽt. 1 is the
normalized value of consumption, whereas −ǫδtṽt is the relative impact of
consumption on life. Were δtṽt to keep rising above 1/ǫ, the marginal product
of consumption labor would be negative: consumption labor would destroy
life more than it increases utility.

Thus, I know that:
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lim
t→∞

˙ln(δtṽt) = 0

=⇒ gδ = −gṽ (113)

Plugging in (112):

gδ = −(γ − 1)[
αλ(gs + n)

1− φ
+ gs] (114)

I thus need an expression for gδ. Given δt = δN ǫ−β
t [Aα

t ℓt(1− σt)]
ǫ[Bα

t (1−
ℓt)(1− σt)]

−β:

gδ = lim
t→∞

˙ln(N ǫ−β
t [Aα

t ℓt(1− σt)]
ǫ[Bα

t (1− ℓt)(1− σt)]
−β)

=⇒ gδ = lim
t→∞

[

(ǫ− β) ˙ln(Nt) + ǫ ˙ln([Aα
t ℓt(1− σt)])− β ˙ln([Bα

t (1− ℓt)(1− σt)])
]

=⇒ gδ = (ǫ− β)n+ ǫ(αgA + gℓ)− βαgB

=⇒ gδ = α(ǫgA − βgB) + ǫgℓ + (ǫ− β)n

=⇒ gδ = α(ǫgA − βgB) + ǫgs + (ǫ− β)n (115)

where I substitute in gs = gℓ as explained earlier.
I plug this in and solve:

α(ǫ
λ(gs + n)

1− φ
− β

λn

1 − φ
) + ǫgs + (ǫ− β)n = −(γ − 1)[

αλ(gs + n)

1− φ
+ gs]

=⇒ gs(ǫ+ γ − 1 +
αǫλ+ αλ(γ − 1)

1− φ
) =

−αλǫn + αβλn− (γ − 1)αλn− (1− φ)(ǫ− β)n

1− φ

=⇒ gs =
−αλǫn+ αβλn− (γ − 1)αλn− (1− φ)(ǫ− β)n

(1− φ)(ǫ+ γ − 1) + αǫλ+ αλ(γ − 1)

=⇒ gs =
αλn(−ǫ+ β − γ + 1) + (1− φ)(ǫ− β)n

(1− φ)(ǫ+ γ − 1) + αλ(ǫ+ γ − 1)

=⇒ gs =
n[αλ(1 + β − ǫ− γ) + (1− φ)(β − ǫ)]

(γ + ǫ− 1)(αλ− φ+ 1)
(116)
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gs is negative

⇐⇒ αλ(1 + β − ǫ− γ) + (1− φ)(β − ǫ) < 0

⇐⇒ αλ(γ − 1− β + ǫ) > (1− φ)(β − ǫ)

⇐⇒
αλ

1− φ
((γ − 1)− (β − ǫ)) > β − ǫ

⇐⇒
αλ

1− φ
(γ − 1) > (β − ǫ)

(

1 +
αλ

1− φ

)

⇐⇒ γ > 1 + (β − ǫ)

(

1− φ

αλ
+ 1

)

(117)

Thus, γ > 1 + (β − ǫ)
(

1−φ
αλ

+ 1
)

is the key condition delivering this bal-
anced growth path.

I can now calculate the other asymptotic growth rates as well. It will be
helpful to define:

g ≡
αλn

1− φ
(118)

The asymptotic convergence of 1− ℓt directly implies:

gh = αgB =
αλn

1− φ
= g (119)

I can put gs in terms of g:

gs =
αλn(1 + β − ǫ− γ) + n(1− φ)(β − ǫ)

(γ + ǫ− 1)(1− φ) + (γ + ǫ− 1)(αλ)

=⇒ gs = −g ·
γ − 1− β + ǫ

(1 + αλ
1−φ

)(γ + ǫ− 1)
− n ·

ǫ− β

(1 + αλ
1−φ

)(γ + ǫ− 1)
(120)
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I can now calculate gc from (111):

gc = α
λ(gs + n)

1− φ
+ gs

=⇒ gc =
αλn

1− φ
+ (1 +

αλ

1− φ
) · gs

=⇒ gc = g ·

[

1−
(γ − (1 + β − ǫ)) + 1−φ

αλ
(ǫ− β) + αλ

1−φ
(γ − (1 + β − ǫ)) + (ǫ− β)

(1 + αλ
1−φ

)(γ + ǫ− 1)

]

=⇒ gc = g ·

[

1−
(1 + αλ

1−φ
)(γ − (1 + β − ǫ)) + (1 + 1−φ

αλ
)(ǫ− β)

(1 + αλ
1−φ

)(γ + ǫ− 1)

]

=⇒ gc = g ·






1−

(γ − (1 + β − ǫ)) + (ǫ− β)
1+ 1−φ

αλ

1+ αλ
1−φ

γ − 1 + ǫ







=⇒ gc = g ·

[

1−
(γ − (1 + β − ǫ)) + (ǫ− β)1−φ

αλ

γ − 1 + ǫ

]

=⇒ gc = g ·

[

β + (β − ǫ)1−φ
αλ

γ + ǫ− 1

]

(121)

Since gs < 0, gc < g. gc > 0 follows directly when β ≥ ǫ, as in this case.

How Low Can ρ Go?

What values of ρ are permissible for our asymptotic growth path to be valid?
In particular, the denominators of our shadow prices must be positive

and the optimal allocations must satisfy the transversality conditions.
First, consider pbt. Recall that

pbt =
αβvtMtδt/Bt

ρ− gpbt − φgBt

The denominator has to be positive along the balanced growth path and
gpbt → gpb. Then, if the denominator is positive and thus asymptotically
constant along the balanced growth path:

gpb = lim
t→∞

˙ln(Mt) + ˙ln(vtδt)− gB
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Since δt converges to 0, gM = 0. Moreover, recall that δtvt = δtṽtu
′(ct)ct,

so gδv = gδṽ+gu′(c)c = gu′(c)c = (1−γ)gc since δtṽt is asymptotically constant,
so

gpb = (1− γ)gc − gB (122)

The condition that the denominator of gpb is positive and asymptotically
constant along the balanced growth path now becomes:

ρ > gpb + φgB = (1− γ)gc + (φ− 1)gB (123)

Given γ > 1 and φ < 1 the right hand side is negative, meaning any ρ ≥ 0
is valid.

Recall the transversality condition for Bt:

lim
t→∞

[e−ρt · pbt ·Bt] = 0

Note that since γ > 1, −gpb > gB, so the transversality condition is
satisfied even for ρ = 0

Now, consider pat. Recall that

pat =
αMt(u

′(ct)ct − ǫδtvt)/At

ρ− gpat − φgAt

The denominator has to be positive along the balanced growth path and
gpat → gpa. Then, if the denominator is positive and thus asymptotically
constant along the balanced growth path:

gpa = lim
t→∞

˙ln(u′(ct)ct − ǫδtvt)− gA

given gM = 0. Again, δtvt = δtṽtu
′(ct)ct, so

gpa = lim
t→∞

˙ln(1− ǫδtṽt) + ˙ln(u′(ct)ct)− gA

=⇒ gpa = lim
t→∞

˙ln(1− ǫδtṽt) + (1− γ)gc − gA
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As ǫδtṽt converges to 1/ǫ along the balanced growth path, (1 − ǫδtṽt)
falls exponentially to zero. Indeed, note that since 1 − st and βδtṽt are
asymptotically constant, gs = −gβδṽ/(1−ǫδṽ) = g1−ǫδṽ, so

gpa = gs + (1− γ)gc − gA (124)

The condition that the denominator of gpa be positive and asymptotically
constant now becomes

ρ > gpa + φgA = gs + (1− γ)gc + (φ− 1)gA (125)

Again, since gs < 0, γ > 1, φ < 1, gc > 0, and gA > 0, the right hand
side is negative and any ρ ≥ 0 is valid.

Recall the transversality condition for At:

lim
t→∞

[e−ρt · pat · At] = 0

Since gs < 0 and γ > 1, I get −gpa > gA, satisfying the transversality
condition for A even for ρ = 0.

Next, recall the final transversality condition

lim
t→∞

[e−ρt · vt ·Mt] = 0

Since gM = 0, Mt → M∗
t > 0. Thus, either gv falls exponentially to zero

or ρ > 0 for the transversality condition to hold.
Recall (103):

vt =
u(ct)

ρ− δt + gvt

u(ct) → u and gvt → gv along a balanced growth path. Thus, given a
positive denominator, the denominator is asymptotically constant as δt → 0,
implying

gv = 0 (126)

Since δt falls exponentially to zero and gv = 0, the denominator is positive
if and only if ρ > 0. ρ > 0 then also ensures the transversality condition
holds.

Thus, our balanced growth path is a valid solution for any ρ > 0.
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Note that this ρ is still not considering population growth, i.e. considers
a somewhat selfish agent.

Finally, I have to find σ∗. Substituting the prices of ideas into (FOC: σt)
I get:

σt

1− σt
=

λ(patȦ+ pbtḂ)

Mt[u′(ct)ct + (β − ǫ)δtvt]

=⇒
σt

1− σt
=

λ(αMt(u′(ct)ct−ǫδtvt)/At

ρ−gpat−φgAt
Ȧ+ αβvtMtδt/Bt

ρ−gpbt−φgBt
Ḃ)

Mt[u′(ct)ct + (β − ǫ)δtvt]

=⇒
σt

1− σt
= λα(gAt

u′(ct)ct−ǫδtvt
ρ−gpat−φgAt

u′(ct)ct + (β − ǫ)δtvt
+ gBt

βvtδt
ρ−gpbt−φgBt

u′(ct)ct + (β − ǫ)δtvt
)

Now, recall that δtṽt → 1/ǫ, so δtvt = δtṽt · u
′(ct)ct → 1/ǫ · u′(ct)ct.

=⇒
σ∗

1− σ∗
= lim

t→∞
λα(gAt

u′(ct)ct−u′(ct)ct
ρ−gpat−φgAt

(β/ǫ)u′(ct)ct
+ gBt

(β/ǫ)u′(ct)ct
ρ−gpbt−φgBt

(β/ǫ)u′(ct)ct
)

=⇒
σ∗

1− σ∗
= lim

t→∞

λαgBt

ρ− gpbt − φgBt

(127)

I can now substitute in gpb along our balanced growth path.

σ∗

1− σ∗
=

λαgB
ρ+ (γ − 1)gc + (1− φ)gB

(128)

Therefore,

σ∗

[

1 +
λαgB

ρ+ (γ − 1)gc + (1− φ)gB

]

=
λαgB

ρ+ (γ − 1)gc + (1− φ)gB

=⇒ σ∗ =

λαgB
ρ+(γ−1)gc+(1−φ)gB

1 + λαgB
ρ+(γ−1)gc+(1−φ)gB

=⇒ σ∗ =
λαgB

ρ+ (γ − 1)gc + (1− φ)gB + λαgB

=⇒ σ∗ =
λαgB

ρ+ (γ − 1)gc + (1− φ+ λα)gB
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A.4 Proof of Proposition 3

I conjecture that s̃t ≡ 1− st and ℓ̃t ≡ 1− ℓt fall exponentially to zero on the
asymptotic growth path, while σt → σ∗. Then, it follows directly that

gh = αgB + gℓ̃ (129)

Moreover, since (1 − ℓt)/ℓt = ℓ̃t/(1 − ℓ̃t) and (1 − st)/st = s̃t/(1 − s̃t) are
both proportional to (βδtṽt)/(1 − ǫδtṽt) along an asymptotic growth path,
implying gs̃ = gℓ̃ along the asymptotic growth path (analogous to gs = gℓ
along the asymptotic growth path in the proof of proposition 2). Thus,

gh = αgB + gs̃ (130)

Moreover, an asymptotically constant gB requires

gB =
λ(n+ gs̃)

1− φ
(131)

thus implying

gh = α
λ(n+ gs̃)

1− φ
+ gs̃ (132)

Since ℓ̃t → 0, ℓt is asymptotically constant,

gc = αgA (133)

Similarly, st is asymptotically constant, so an asymptotically constant gA
then directly requires that

gA =
λn

1− φ
(134)

thus implying

gc = α
λn

1− φ
(135)

Now, notice that for s̃t to fall to zero exponentially, (1−st)/st = s̃t/(1−s̃t)
has to fall exponentially to zero. On the asymptotic growth path s̃t/(1−s̃t) is
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proportional to (βδtṽt)/(1− ǫδtṽt), so for s̃t to fall to zero exponentially, δtṽt
has to fall to zero exponentially, meaning 1−ǫδtṽt is asymptotically constant.
Thus, g(βδtṽt)/(1−ǫδt ṽt) = gδtṽt = gs̃. Thus,

gs̃ = gδ + gṽ (136)

It straightforwardly follows that

gδ = ǫgc − βgh + (ǫ− β)n

=⇒ gδ = ǫα
λn

1− φ
− βα

λ(n+ gs̃)

1− φ
− βgs̃ + (ǫ− β)n (137)

To get an expression for gṽ, I must differentiate between the cases in
which γ ≤ 1 and γ > 1. Note that

gṽ = g u(ct)

u′(ct)ct

− gρ−δt+gvt

gṽ = gucγ−1
t + 1

1−γ

as long as δt converges to a constant
Thus, when γ > 1, gṽ = (γ − 1)gc, while when γ ≤ 1, ṽ is asymptotically

constant so gṽ = 0. I will consider the γ > 1 case first. Then,

gs̃ = gδ + gṽ

=⇒ gs̃ = ǫα
λn

1− φ
− βα

λ(n+ gs̃)

1− φ
− βgs̃ + (ǫ− β)n+ (γ − 1)α

λn

1− φ

=⇒ gs̃ =
αλn

1− φ
(ǫ− β + γ − 1)− βgs̃(1 +

αλ

1− φ
) + (ǫ− β)n

=⇒ gs̃(1 + β + β
αλ

1− φ
) =

αλn

1− φ
(ǫ− β + γ − 1) + (ǫ− β)n

=⇒ gs̃ =
n [αλ(ǫ− β + γ − 1) + (1− φ)(ǫ− β)]

(1 + β)(1− φ) + βαλ

=⇒ gs̃ =
−n
[

αλ
1−φ

(1− ǫ+ β − γ) + (β − ǫ)
]

1 + β(1 + αλ
1−φ

)
(138)
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Then, the condition for gs̃ to be negative is

αλ(ǫ− β + γ − 1) + (1− φ)(ǫ− β) < 0

⇐⇒
αλ

1− φ
((γ − 1)− (β − ǫ)) < (β − ǫ)

⇐⇒
αλ

1− φ
(γ − 1) < (β − ǫ)

(

1 +
αλ

1− φ

)

⇐⇒ γ < 1 + (β − ǫ)

(

1− φ

αλ
+ 1

)

(139)

which is the key condition delivering our result.
Let g ≡ αλn

1−φ
. I can now calculate gh:

gh =
αλn

1− φ
+

(

1 +
αλ

1− φ

)

gs̃

=⇒ gh =
αλn

1− φ
+

(

1 +
αλ

1− φ

) n
[

αλ
1−φ

(ǫ− β + γ − 1) + (ǫ− β)
]

1 + β(1 + αλ
1−φ

)

=⇒ gh = g

(

1 +

αλ
1−φ

(ǫ− β + γ − 1) + (ǫ− β) + (ǫ− β + γ − 1) + 1−φ
αλ

(ǫ− β)

1 + β(1 + αλ
1−φ

)

)

=⇒ gh = g ·

[

1−
(1 + αλ

1−φ
)(1− γ + β − ǫ) + (1 + 1−φ

αλ
)(β − ǫ)

1 + β(1 + αλ
1−φ

)

]

(140)

In the case that γ ≤ 1, I get

gs̃ = gδ + gṽ

=⇒ gs̃ = ǫα
λn

1− φ
− βα

λ(n+ gs̃)

1− φ
− βgs̃ + (ǫ− β)n

=⇒ gs̃ =
αλn

1− φ
(ǫ− β)− βgs̃(1 +

αλ

1− φ
) + (ǫ− β)n

=⇒ gs̃(1 + β + β
αλ

1− φ
) =

αλn

1− φ
(ǫ− β) + (ǫ− β)n

=⇒ gs̃ =
n [αλ(ǫ− β) + (1− φ)(ǫ− β)]

(1 + β)(1− φ) + βαλ

=⇒ gs̃ =
−n
[

(1 + αλ
1−φ

)(β − ǫ)
]

1 + β(1 + αλ
1−φ

)
(141)
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which given β > ǫ is negative as conjectured.
I can then calculate gh:

gh =
αλn

1− φ
+

(

1 +
αλ

1− φ

)

gs̃

=⇒ gh =
αλn

1− φ
+

(

1 +
αλ

1− φ

) n
[

(1 + αλ
1−φ

)(ǫ− β)
]

1 + β(1 + αλ
1−φ

)

=⇒ gh = g ·

[

1−
(2 + αλ

1−φ
+ 1−φ

αλ
)(β − ǫ)

1 + β(1 + αλ
1−φ

)

]

Finally, note that given gṽ ≥ 0 and gs̃ < 0 in both cases, since gṽ+gδ = gs̃,
I know gδ is negative, and thus I know that δt falls exponentially to zero.



EXISTENTIAL RISK AND GROWTH 64

A.5 Proof of Proposition 4

In the case that ǫ < β, the proof is straightforward. In particular, in the
previous two proofs for the cases that γ > 1, when I plug in γ = 1 + (β −

ǫ)
(

1−φ
αλ

+ 1
)

it immediately follows that gs = 0.
In the case that ǫ = β and γ ≤ 1, the proof is straightforward as well. In

particular, consider the γ ≤ 1 case in the previous proof; plugging in ǫ = β
immediately yields gs = 0.

Once gs = 0, the proof proceeds as in the rule of thumb allocation.
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A.6 Proof of Proposition 5

This proof is essentially the same as for proposition 2, including the section
on the minimum valid value of ρ, with slight modifications.

First, gs < 0 follows directly from γ > 1 and ǫ > β, so no additional
condition is necessary.

Second, I need to ensure that gc > 0, which is necessary since I am
assuming ct → ∞ such that gṽ = 0. If ǫ ≫ β, this is not the case. Specifically,

gc = g ·

[

β + (β − ǫ)1−φ
αλ

γ + ǫ− 1

]

> 0

⇐⇒ β + (β − ǫ)
1− φ

αλ
> 0

⇐⇒ β
αλ

1− φ
> ǫ− β

⇐⇒
ǫ− β

β
<

αλ

1− φ
(142)
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A.7 Proof of Proposition 6

Given γ ≤ 1, u(ct)
u′(ct)ct

is asymptotically constant, so

gṽ = g u(ct)

u′(ct)ct

− gρ−δt+gvt

=⇒ gṽ = 0 (143)

as long as δt converges to a constant.
Given that ǫ > β, only st → 0 and ℓt → 0 ensures an asymptotic growth

path. gs = 0 would imply gA = gB, and so gδ = α(ǫgA−βgB)+ (ǫ−β)n > 0,
meaning δtṽt → ∞, which is not permissible. If (1 − st) → 0, gA > gB, and
so gδ = α(ǫgA−βgB)−βg1−s+(ǫ−β)n > 0, again meaning δtṽt → ∞, which
is not permissible.

Thus, st (and ℓt) must fall exponentially to 0, which happens only if
δtṽt rises and eventually converges asymptotically to 1/ǫ. Therefore, on the
balanced growth path, gṽ = −gδ. Thus, 0 = −gδ.

The growth rates gδ = α(ǫgA − βgB) + ǫgs + (ǫ − β)n, gA = λ(gs+n)
1−φ

, and

gB = λn
1−φ

follow just as in the proof of proposition 2.
Thus,

0 = gδ = α(ǫgA − βgB) + ǫgs + (ǫ− β)n

=⇒ 0 = α(ǫ
λ(gs + n)

1− φ
− β

αλn

1 − φ
) + ǫgs + (ǫ− β)n

=⇒ gs · (−ǫ)(1 +
αλ

1− φ
) = (ǫ− β)(1 +

αλ

1− φ
)n

=⇒ gs = −
ǫ− β

ǫ
n (144)

which is negative, as conjectured.
Just like in the proof of proposition 2, gh = αgB = αλn

1−φ
≡ g follows.

I can then calculate gc:

gc = αgA + gs

=⇒ gc = α
λ(gs + n)

1− φ
+ gs

=⇒ gc = n ·

[

αλ

1− φ
− (1 +

αλ

1− φ
)
ǫ− β

ǫ

]

=⇒ gc = g − (n+ g)
ǫ− β

ǫ
(145)
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Given ǫ > β, it follows that gc < g.
I have to check that gc > 0 (since gṽ = 0 requires ct → ∞).

gc = g − (n+ g)
ǫ− β

ǫ
> 0

⇐⇒ ǫ
αλ

1− φ
> (1 +

αλ

1− φ
)(ǫ− β)

⇐⇒ 0 > (ǫ− β)− β
αλ

1− φ

⇐⇒
ǫ− β

β
<

αλ

1− φ
(146)

which is the same condition that ǫ 6≫ β from before.
Finally, I determine δt → δ∗. In the case that γ < 1:

δ∗ =
1

ǫ
lim
t→∞

1/ṽt

=⇒ δ∗ =
1

ǫ
lim
t→∞

ρ− δt + gvt

ucγ−1
t + 1

1−γ

=⇒ δ∗ =
(ρ− δ∗ + gv)(1− γ)

ǫ

Note that vt =
u(ct)

ρ−δt+gvt
, so given a positive and thus asymptotically con-

stant denominator, gv = limt→∞
u′(ct)ċt
u(ct)

= limt→∞
u′(ct)c
u(ct)

·gc = limt→∞ 1/(ucγ−1
t +

1
1−γ

) · gc = (1− γ)gc.

=⇒ δ∗ =
(ρ− δ∗ + (1− γ)gc)(1− γ)

ǫ

=⇒ δ∗(1 +
1− γ

ǫ
) =

(1− γ)ρ+ (1− γ)2gc
ǫ

=⇒ δ∗ =
(1− γ)ρ+ (1− γ)2gc

ǫ(1 + 1−γ
ǫ
)

=⇒ δ∗ =
(1− γ)ρ+ (1− γ)2gc

ǫ+ 1− γ
(147)

When γ = 1, u(ct)
u′(ct)ct

= u + ln(ct), so δt → 0. However, δt does not fall

fast enough (not exponentially, gδ = 0)—in particular, δt → 0 proportional
to 1/ṽt proportional to 1/ ln(ct)—so Mt → 0 even when γ = 1.
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A.8 Proof of Proposition 7

First, note that I assume dying is preferred to living with no consumption,
which means γ ≥ 1, or γ < 1 with negative u. Then if gc < 0, consumption
falls arbitrarily close to zero, which for our preferences then means that
utility is negative, which means dying would be preferred to living with this
low level of consumption. Thus, there does not exist an optimal asymptotic
growth path in which gc < 0.

Next, note that δt → ∞ cannot occur when gc ≥ 0 and thus gṽ ≥ 0, since
then then δtṽt → ∞, which is not valid (recall that δtṽt must be less than
1/ǫ). Observe also that gδ is minimized on a potential asymptotic growth
path when st → 0 asymptotically (i.e. when in the limit, everyone is working
on safety).

If ǫ−β
β

> αλ
1−φ

, then (ǫ−β)n > β αλn
1−φ

. The RHS equals αβgB when st → 0.

Given that gδ = ǫgc − αβgB + (ǫ− β)n on an asymptotic growth path where
st → 0, for any gc ≥ 0, gδ > 0, meaning that δt → ∞—which as just noted
is not possible on an asymptotic growth path. Thus, there does not exist an
asymptotic growth path.

Or put another way: if ǫ ≫ β, the scale effects pf existential risk are so
large that, given exogenous population growth, even if (asymptotically) all
humans worked on improving safety, the hazard rate δ would go to ∞.
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A.9 Proof of Proposition 8

I conjecture that the optimal allocation features an asymptotic growth path
in which gc = 0 and st and ℓt decline exponentially to zero.

Then,

0 = gc = α
λ (gs + n)

1− φ
+ gs

=⇒ (1 +
αλ

1− φ
)gs = −

αλ

1 − φ
n

=⇒ gs = −
αλ

(1 − φ)(1 + αλ
1−φ

)
n (148)

which is negative as conjectured.
Then,

gδ = ǫgc + αβgB + (ǫ− β)n

=⇒ gδ = αβ
λn

1− φ
+ (ǫ− β)n =⇒ gδ = 0

Since gṽ = 0 as ct → c∗, gδ = 0 then ensures that δtṽt is asymptoti-
cally constant and δtṽt → 1/ǫ, giving us st falling to zero exponentially as
conjectured.
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A.10 Proof of Proposition 9

Note that for any variable a, (̂1− a) =
˙1−a

1−a
= − ȧ

a
a

1−a
= −â a

1−a
.

Law of Motion: y

Recall that y ≡ gAt =
(stσtNt)λ

A1−φ
t

. Taking logs and derivatives:

ŷ = λ(n+ σ̂ + ŝ)− (1− φ)y (149)

Law of Motion: z

Similarly, I consider ẑ. Recall that z ≡ gBt =
((1−st)σtNt)λ

B1−φ
t

. Taking logs and

derivatives:

ẑ = λ

(

n + σ̂ − ŝ
s

1− s

)

− (1− φ)z (150)

Law of Motion: δ

Recall that δt = δN ǫ−β
t cǫth

−β
t , with ct = Aα

t ℓt (1− σt) and Bα
t (1− ℓt) (1− σt).

Again, taking logs and derivatives:

δ̂ = (ǫ− β)n+ ǫgct − βght

=⇒ δ̂ = (ǫ− β)n+ ǫ

(

αy + ℓ̂− σ̂
σ

1− σ

)

− β

(

αz − ℓ̂
ℓ

1− ℓ
− σ̂

σ

1− σ

)

=⇒ δ̂ = (ǫ− β)

(

n− σ̂
σ

1− σ

)

+ α(ǫy − βz) + ℓ̂

(

ǫ+ β
ℓ

1− ℓ

)

(151)

Law of Motion: s

Next, I consider ŝ. Recall the FOC for st:
1−st
st

= pbtḂt

patȦt
=

pbt((1−st)σtNt)λB
φ
t

pat(stσtNt)λA
φ
t

.

Taking logs and derivatives of both sides:

−ŝ
s

1− s
− ŝ = gpbt + λ

(

−ŝ
s

1− s
+ σ̂ + n

)

+ φz − gpat − λ(ŝ+ σ̂ + n)− φy

=⇒ ŝ

(

1 +
s

1− s

)

= gpat − gpbt + φy − φz + λŝ

(

1 +
s

1− s

)

=⇒ ŝ
1− λ

1− s
= gpat − gpbt + φy − φz (152)



EXISTENTIAL RISK AND GROWTH 71

Recall FOCs for At and Bt:
˙pat

pat
= ρ− 1

pat
[Mtu

′(ct)α
ct
At
+patφ

Ȧt

At
−αǫvtMt

δt
At
]

and ˙pbt
pbt

= ρ− 1
pbt

[pbtφ
Ḃt

Bt
+ αβvtMt

δt
Bt
] respectively. Substituting, I get

ŝ
1− λ

1 − s
= ρ−

1

pat
[Mtu

′(ct)α
ct
At

+ patφ
Ȧt

At

− αǫvtMt
δt
At

]

− ρ+
1

pbt
[pbtφ

Ḃt

Bt
+ αβvtMt

δt
Bt

] + φy − φz

=⇒ ŝ =
1− s

1− λ

[

αMtβδtvt
pbtBt

−
αMt(u

′(ct)ct − ǫδtvt)

patAt

]

(153)

Recall the FOC for σt:
1−σt

σt
= Mt[u′(ct)ct+(β−ǫ)δtvt]

λ(patȦ+pbtḂ)
. From the FOC for st,

I know pbtḂt =
1−st
st

patḂt; substituting this yields:

λ
1− σt

σt
=

Mt[u
′(ct)ct + (β − ǫ)δtvt]

patȦ
(

1 + 1−st
st

)

=⇒ λ
y

st

1− σt

σt
=

Mt[u
′(ct)ct + (β − ǫ)δtvt]

patAt
(154)

Similarly, I get:

λ
z

1− st

1− σt

σt
=

Mt[u
′(ct)ct + (β − ǫ)δtvt]

pbtBt
(155)

Now, recall the FOC for ℓt:
1−ℓt
ℓt

= βδtṽt
1−ǫδtṽt

. I manipulate this:

1− ℓt − ǫδtṽt + ℓtǫδtṽt = ℓtβδtṽt

=⇒ ℓt(β − ǫ)δtvt = (1− ℓt)u
′(ct)ct − ǫδtvt (156)

=⇒ (1− ℓt)u
′(ct)ct = ǫδtvt + ℓt(β − ǫ)δtvt (157)

Combining (154) and (156) gives us

λ
y

st
ℓ
1− σt

σt

=
Mt[u

′(ct)ct − ǫδtvt]

patAt

(158)

Similarly, combining (155) and (157) gives us

λ
z

1− st
(1− ℓ)

1− σt

σt
=

Mtβδtvt
pbtBt

(159)
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Substituting (158) and (159) into (153) yields:

ŝ =
1− s

1− λ

[

αλ
z

1− st
(1− ℓ)

1− σt

σt

− α
y

st
ℓ
1− σt

σt

]

=⇒ ŝ = αz
λ

1 − λ
(1− ℓ)

1− σ

σ
− αy

λ

1− λ

1− s

s
ℓ
1− σ

σ
(160)

Law of Motion: σ

I can use the FOC for σt, (157), (155) and rearrange:

1− σt

σt

=
Mt[u

′(ct)ct + (β − ǫ)δtvt]

λ(patȦ + pbtḂ)

=⇒
1− σt

σt
=

1− ℓ

1− ℓ

Mt[u
′(ct)ct + (β − ǫ)δtvt]

λ
(

1 + st
1−st

)

(pbtḂ)

=⇒
1− σt

σt

=
1− st
1− ℓ

Mt[βδtvt]

λ(pbtgBtBt)
(161)

Taking logs and derivatives yields:

−σ̂
σ

1− σ
− σ̂ = −ŝ

s

1− s
+ ℓ̂

ℓ

1− ℓ
− δ + δ̂ + gvt − gpbt − ẑ − z (162)

From the FOC for Mt, I get gvt =
v̇t
vt

= ρ− u(ct)
vt

+ δt. From the FOC for

Bt I get gpbt =
˙pbt

pbt
= ρ − 1

pbt
[pbtφ

Ḃt

Bt
+ αβvtMt

δt
Bt
]. I can substitute in these

expressions and the expressions I previously found for δ̂ and ẑ. This yields:

−σ̂
σ

1− σ
− σ̂ = −ŝ

s

1− s
+ ℓ̂

ℓ

1− ℓ
− δ + δ̂ + ρ−

u(ct)

vt
+ δt − ρ+ φz +

αMtβδtvt
pbtBt

− ẑ − z

=⇒ −σ̂
1

1− σ
= −ŝ

s

1− s
+ ℓ̂

ℓ

1− ℓ
+ (ǫ− β)

(

n− σ̂
σ

1− σ

)

+ α(ǫy − βz) + ℓ̂

(

ǫ+ β
ℓ

1− ℓ

)

−
u(ct)

vt
+ (φ− 1)z − λ

(

n+ σ̂ − ŝ
s

1− s

)

+ (1− φ)z +
αMtβδtvt
pbtBt

=⇒ −σ̂

(

1

1− σ
+ (β − ǫ)

σ

1− σ
− λ

)

= −ŝ
s

1− s
(1− λ) + ℓ̂

(

ℓ

1− ℓ
+ ǫ+ β

ℓ

1 − ℓ

)

+ n(ǫ− β − λ) + αǫy − αβz −
u(ct)

vt
+

αMtβδtvt
pbtBt

(163)
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We can plug in (159) and rearrange:

=⇒ σ̂
1 + (β − ǫ)σ − λ(1− σ)

1− σ
= (1− λ)

s

1− s
ŝ+ (λ+ β − ǫ)n+ αβz − αǫy +

u(ct)

vt

+ (−

(

ℓ

1− ℓ
(1 + β) + ǫ

)

)ℓ̂− αλz
1− ℓ

1− st

1− σt

σt

I set the following definitions:

θσ =
1− σ

1 + (β − ǫ)σ − λ(1− σ)
(164)

ωσ = −

(

ℓ

1− ℓ
(1 + β) + ǫ

)

(165)

B© = (1− λ)
s

1− s
ŝ+ (λ+ β − ǫ)n + αβz − αǫy +

u(ct)

vt
− αλz

1− ℓ

1− st

1− σt

σt

(166)

Then:

σ̂ = θσ(B©+ ωσℓ̂) (167)

Law of Motion: ℓ

Recall the FOC for ℓt:
1−ℓt
ℓt

=
βδt

vt
u′(ct)ct

1−ǫδt
vt

u′(ct)ct

. Since u′(ct)ct = c1−γ, taking logs

and derivatives, this yields:

−ℓ̂
1

1− ℓ
= δ̂ + gvt − (1− γ)gct +

ǫδt
vt

u′(ct)ct

1− ǫδt
vt

u′(ct)ct

(

δ̂ + gvt − (1− γ)gct

)

Substituting 1−ℓt
ℓt

ǫ
β
=

ǫδt
vt

u′(ct)ct

1−ǫδt
vt

u′(ct)ct

I get:

ℓ̂
1

1− ℓ
= −

(

1 +
1− ℓ

ℓ

ǫ

β

)

(δ̂ + gvt + (γ − 1)gct) (168)

From the FOC for Mt, I get gvt =
v̇t
vt

= ρ − u(ct)
vt

+ δt. It follows directly
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that gct = αy + ℓ̂− σ̂ σ
1−σ

. I can substitute in these two expressions and δ̂:

ℓ̂ = −(1 − ℓ)

(

1 +
1− ℓ

ℓ

ǫ

β

)

·

[(ǫ− β)

(

n− σ̂
σ

1− σ

)

+ α(ǫy − βz)

+ ℓ̂

(

ǫ+ β
ℓ

1− ℓ

)

+ ρ−
u(ct)

vt
+ δt + (γ − 1)

(

αy + ℓ̂− σ̂
σ

1− σ

)

]

=⇒ ℓ̂

[

1 + (γ − 1 + ǫ+ β
ℓ

1 − ℓ
)(1− ℓ)

(

1 +
1− ℓ

ℓ

ǫ

β

)]

= (1− ℓ)

(

1 +
1− ℓ

ℓ

ǫ

β

)

· [(γ − 1 + ǫ− β)
σ

1− σ
σ̂ + (β − ǫ)n

+ (1− γ − ǫ)αy + αβz − ρ− δ +
u(ct)

vt
] (169)

I set the following definitions:

θℓ =
(1− ℓ)

(

1 + 1−ℓ
ℓ

ǫ
β

)

1 +
(

γ − 1 + ǫ+ β ℓ
1−ℓ

)

(1− ℓ)
(

1 + 1−ℓ
ℓ

ǫ
β

) (170)

ωℓ = (γ − 1 + ǫ− β)
σ

1− σ
(171)

A© = (β − ǫ)n + (1− γ − ǫ)αy + αβz − ρ− δ +
u(ct)

vt
(172)

Then:

ℓ̂ = θℓ(A©+ ωℓσ̂) (173)

I substitute in (167):

ℓ̂ = θℓ(A©+ ωℓθσ(B©+ ωσℓ̂))

=⇒ ℓ̂[1− ωℓωσθσ] = θℓ(A©+ ωℓθσ B©)

=⇒ ℓ̂ =
θℓ(A©+ ωℓθσ B©)

1− ωℓωσθσ
(174)
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Addendum: u(ct)
vt

To determine both A© and B©, I need an expression for u(ct)
vt

. First, recall the

FOC for ℓt:
1−ℓt
ℓt

=
βδt

vt
u′(ct)ct

1−ǫδt
vt

u′(ct)ct

. Thus,

ℓ

1− ℓ
βδ

u(ct)

u′(ct)ct
=

u(ct)

vt
(1− ǫδ

vt
u′(ct)ct

)

=⇒
ℓ

1− ℓ
βδ

u(ct)

u′(ct)ct
=

u(ct)

vt
− ǫδ

u(ct)

u′(ct)ct

=⇒
ℓ

1− ℓ
βδ

u(ct)

u′(ct)ct
+ ǫδ

u(ct)

u′(ct)ct
=

u(ct)

vt
(175)

Let ũ = u(c)
u′(c)c

. Then,

ũ =
u(ct)

u′(ct)ct
= ucγ−1

t +
1

1− γ
(176)

Thus, I need an expression for ct. Look at δ:

δt = δN ǫ−β
t cǫth

−β
t

=⇒
δt

δ

(

ct
ht

)−β

= N ǫ−β
t cǫth

−β
t

c−β
t

h−β
t

=⇒

(

δt

δ

(

ct
ht

)−β
)

1
ǫ−β

= Ntct

=⇒

(

δt
δ

(

ct
ht

)−β
)

1
ǫ−β

Nt
= ct (177)

Next, note that

ct
ht

=
Aαℓt(1− σt)

Bα(1− ℓt)(1− σt)

=⇒
ct
ht

=
ℓt

1− ℓt

(

A

B

)α
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Finally, note that

z

y
=

ḂtAt

BtȦt

=
At(1− st)

λσλ
t N

λ
t B

φ
t

Btsλt σ
λ
t N

λ
t A

φ
t

=⇒
z

y
=

A1−φ
t

B1−φ
t

(

1− st
st

)λ

=⇒

(

z

y

)
1

1−φ

=
At

Bt

(

1− st
st

)
λ

1−φ

=⇒

(

z

y

)
1

1−φ

=
At

Bt

(

1− st
st

)
λ

1−φ

=⇒

(

z

y

)
1

1−φ
(

st
1− st

)
λ

1−φ

=
At

Bt
(178)

Thus:

ct =

(

δt
δ

(

ℓt
1−ℓt

(

(

z
y

)
1

1−φ
(

st
1−st

)
λ

1−φ

)α)−β
)

1
ǫ−β

Nt
(179)
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A.11 Proof of Proposition 10

We know from the FOCs of the Hamiltonian that:

ṽt =
ũt

ρ− δt + gvt
, ũt =

u(ct)

u′(ct)ct
(180)

First, consider the denominator of ṽt: ρ−δt+gvt. As δt → 0, ρ−δt+gvt →
ρ+ gvt.

Next, consider gvt. We know from our FOCs that

vt =
u(ct)

ρ− δt + gvt

If the denominator converges to a constant as δt → 0 and ũ → ∞, we get

gvt →
u̇(ct)

u(ct)
=

u′(ct)ċ

u(ct)
=

u′(ct)cgct
u(ct)

(181)

=⇒ gvt →
1

ũt

gct (182)

This means gvt → 0 as ũ → ∞, so indeed means the denominator vt converges
to a constant.

This implies that as δt → 0 and ũ → ∞:

ṽt =
ũt

ρ− δt + gvt
→

ũt

ρ
(183)

This immediately implies

E ṽ
ρ → −1 (184)

and

E ṽ
c → Eũ

c (185)

We now turn to Eũ
c . We know

ũ(ct) = ucγ−1
t +

1

1− γ

=⇒ ũ′(ct) = (γ − 1)ucγ−2 (186)
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Thus,

Eũ
c =

ũ′(ct)ct
ũ(ct)

=
(γ − 1)ucγ−1

t

ucγ−1
t + 1

1−γ

(187)

=⇒ Eũ
c =

(γ − 1)
(

ũt +
1

γ−1

)

ũ
(188)

=⇒ Eũ
c → (γ − 1) (189)

=⇒ E ṽ
c → (γ − 1) (190)

as ũt → ∞.
Finally, to calculate the ρ′ that increases ṽt equivalent to a doubling of

consumption (starting from ρ∗%) for the table in the main text, I find the ρ′

that satisfies:

2E
ṽ
c =

(

ρ′

ρ∗

)Eṽ
c

(191)

=⇒ 2(γ−1) =

(

ρ′

ρ∗

)−1

(192)

=⇒ ρ′ = 2(1−γ)ρ∗ (193)
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B Numerical Simulation

B.1 Simulating the Transition Dynamics

I solve the system of differential equations characterizing the optimal alloca-
tion numerically using “reverse shooting” (like Jones (2016)). I start from
the steady state, consider a small deviation, and then run time backwards.
In the notation that follows, I start from time T and run time backwards to
time 0.

Given values for the parameters γ, ǫ, β, ρ, λ, φ, α, n, u, and δ, as well as
a specified NT and a small δT > 0 (small deviation from the steady state), I
need to find values of sT and ℓT . To do this, I use the function ‘fminsearch’
in Matlab to find values of sT and ℓT that minimize the distance between ŝT ,
ℓ̂T and σ̂T and their steady state values. I then run time backwards, giving
us a candidate path.

To determine the values for the other parameters, I first pick ǫ, β, and γ.
I also set φ Then, I use the function ‘patternsearch’ in Matlab to find values
for λ, δ, u, NT and δT which minimize the weighted sum of the deviations
from a selection of moments of the candidate path and a set of preferred
values. These moments are given below.

1. Given a candidate path, I first find the year t0 in which ũ, the value
of a year of life as a ratio to consumption, is closest to 4. The first moment
is ũt0 compared to 4.

2. The second moment is the growth rate of consumption at t0 compared
to 1 percent.

3. The third moment is ℓt0 , the fraction of workers in the consumption
sector, compared to 95%.

4. The fourth moment is the growth rate of proportion of the population
working as scientists at time t0, gσt0 , compared to 2%.

5. The fifth moment is hazard rate δ at time t0, compared to 0.1%.
6. The sixth moment is the growth rate of δ at time T compared to gδ,

to ensure the the simulation is close to steady state at time T .
I pick γ = 1.5, ǫ = 0.4, and β = 0.3 as reasonable parameters. In

addition, I set ρ = 0.02, α = 1, and n = 1%. Note that these choices don’t
seem to matter for the qualitative results (as long as ǫ > β and γ > 1).
The process described above can find different local minima depending on
the initial guess as well the value of φ supplied, so I hunt for the best overall
fit. I end up using φ = 5/6 and λ = 0.3, δ = 3.8965 × 10−5, u = 0.0098,
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NT = 9.2955× 1014,and δT = 5× 10−4.
To extrapolate M∞, I have to calculate the area under the hazard rate

curve, i.e.
∫∞

t0
δsds. Note that:

∫ ∞

t0

δsds =

∫ T

t0

δsds+

∫ ∞

T

δsds

=⇒

∫ ∞

t0

δsds ≈

∫ T

t0

δsds+

∫ ∞

0

δT · e−sgδds

=⇒

∫ ∞

t0

δsds ≈

∫ T

t0

δsds+
δT
gδ

(194)

since at time T , we are approximately at the steady state, where δ declines
exponentially.

Thus, I sum the area under our simulated δ from the time representing
today to the end of the simulation, which gives us

∫ T

t0
δsds. Verifying that

indeed δ̂T ≈ gδ, I can then calculate δT
gδ
. Summing these two terms gives

us the desired
∫∞

t0
δsds, and then the probability of humanity surviving to

infinity conditional on surviving until t0 is then e
−

∫
∞

t0
δsds.

B.2 Simulating the Acceleration in Growth

The natural way to simulate the acceleration of growth (in this case, faster
population growth) would be to solve the differential equations characteriz-
ing the optimal allocation using “forward shooting”. However, due to the
instability of the system of differential equations, this yields unreliable re-
sults. Thus, I again proceed by solving the system of differential equations
using “reverse shooting” as when we simulated the transition dynamics.

First, the transition path without the acceleration in growth is given by
the path as found in Appendix B.1. I will refer to this as the unperturbed
path.

Next, we would like to simulate the transition path with accelerated
growth. I use the same parameters as in Appendix B.1 except for a time-
varying rate of n, set as discussed in the main text. This gives me a can-
didate path with accelerated growth. I would like to find a transition path
with acceleration that matches the unperturbed path up until the moment
of acceleration. Thus, using the function ‘fminsearch’ in Matlab, I find δT
and NT that yield a candidate path with accelerated growth that minimizes
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the weighted sum of the deviations from a selection of moments and a set of
preferred values.

In particular, I pick some year t0 prior to the year in which growth ac-
celerates; this will be the reference year on the unperturbed path. Given a
candidate path, I find a year t∗ in which δt∗ of our candidate path is closest
to δt0 on the unperturbed path. Then, my moments are st∗ , ℓt∗ , σt∗ , δt∗ , yt∗ ,
zt∗ , and Nt∗ , compared to their respective values at t0 on the unperturbed
transition path. Since s, ℓ, σ, δ, y, z, and N uniquely characterize all the
variables of our economy on the optimal allocation and both the unperturbed
and the accelerated path evolve according to the same system of differential
equations prior to the acceleration, this ensures that both the unperturbed
and accelerated transition path represent the same economy up until the
moment where growth is accelerated.

I experiment with the weights and the reference year to hunt for the best
overall fit. I end up picking δT = 5.0326× 10−4 and NT = 9.3991× 1014 for
the accelerated transition path that results in a permanent level effect, and
δT = 5.0001× 10−4 and NT = 9.2948× 1014 for the transition path with the
temporary boom.

This method appears to work well (i.e. matches the unperturbed path
very well) for an acceleration in growth that is not too large, although it is
still imperfect. However, it enables us to sidestep the difficulty of “forward
shooting” and compare the transition paths with and without an acceleration
in growth using “reverse shooting”.

I extrapolate the long-term survival probability M as before.
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